“Confluence” in Ito-Sadahiro number systems

Tomáš Vávra
Joint work with D. Dombek and Z. Masáková

Department of Mathematics
FNSPE CTU in Prague

Vancouver
06/07/2013
For $\beta > 1$ we want to write numbers in the form $\sum_{i \leq N} a_i \beta^i$.

Let

$$T_\beta : [0, 1) \to [0, 1), \quad T_\beta(x) = \beta x - \lfloor \beta x \rfloor$$

Then

$$x = \frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \ldots, \quad \text{where } x_i = \lfloor \beta T^{i-1}(x) \rfloor$$

We denote $d_\beta(x) = x_1 x_2 x_3 \cdots \in \{0, 1, \ldots, \lfloor \beta \rfloor - 1\}^\mathbb{N}$.
For $\beta > 1$ we want to write numbers in the form $\sum_{i \leq N} a_i \beta^i$.

Let

$$T_\beta : [0,1) \rightarrow [0,1), \quad T_\beta(x) = \beta x - \lfloor \beta x \rfloor$$

Then

$$x = \frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \ldots, \quad \text{where } x_i = \lfloor \beta T^{i-1}(x) \rfloor$$

We denote $d_\beta(x) = x_1 x_2 x_3 \cdots \in \{0, 1, \ldots, \lceil \beta \rceil - 1\}^\mathbb{N}$.
For $\beta > 1$ we want to write numbers in the form $\sum_{i \leq N} a_i \beta^i$.

Let

$$T_\beta : [0, 1) \to [0, 1), \quad T_\beta(x) = \beta x - \lfloor \beta x \rfloor$$

Then

$$x = \frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \ldots, \quad \text{where } x_i = \lfloor \beta T^{i-1}(x) \rfloor$$

We denote $d_\beta(x) = x_1 x_2 x_3 \cdots \in \{0, 1, \ldots, \lfloor \beta \rfloor - 1\}^\aleph_0$.
For $\beta > 1$ we want to write numbers in the form $\sum_{i \leq N} a_i \beta^i$.

Let

$$T_\beta : [0, 1) \to [0, 1), \quad T_\beta(x) = \beta x - \lfloor \beta x \rfloor$$

Then

$$x = \frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \ldots, \quad \text{where } x_i = \lfloor \beta T^{i-1}(x) \rfloor$$

We denote $d_\beta(x) = x_1 x_2 x_3 \cdots \in \{0, 1, \ldots, \lceil \beta \rceil - 1\}^\mathbb{N}$.
Admissibility condition

Theorem (W. Parry)

A sequence \(x = x_1x_2x_3 \ldots \) is \(\beta \)-admissible iff for each \(i \geq 1 \)

\[
0^\omega \preceq_{\text{lex}} x_1x_{i+1}x_{i+2} \cdots \preceq_{\text{lex}} \lim_{\varepsilon \to 0^+} d_\beta(1 - \varepsilon).
\]

Ordering on \(\mathbb{R} \) corresponds to the lexicographic ordering of \(d_\beta(x) \).

Expansion \(d_\beta(x) \) is the biggest amongst all the representations in lexicographic order.
Admissibility condition

Theorem (W. Parry)

A sequence \(x = x_1x_2x_3 \ldots \) is \(\beta \)-admissible iff for each \(i \geq 1 \)

\[
0^\omega \preceq_{\text{lex}} x_i x_{i+1} x_{i+2} \cdots \prec_{\text{lex}} \lim_{\varepsilon \to 0^+} d_\beta(1 - \varepsilon).
\]

Ordering on \(\mathbb{R} \) corresponds to the lexicographic ordering of \(d_\beta(x) \).

Expansion \(d_\beta(x) \) is the biggest amongst all the representations in lexicographic order.
Admissibility condition

Theorem (W. Parry)

A sequence $x = x_1 x_2 x_3 \ldots$ is β-admissible iff for each $i \geq 1$

$$0^\omega \preceq_{\text{lex}} x_i x_{i+1} x_{i+2} \cdots \preceq_{\text{lex}} \lim_{\varepsilon \rightarrow 0^+} d_\beta(1 - \varepsilon).$$

Ordering on \mathbb{R} corresponds to the lexicographic ordering of $d_\beta(x)$.

Expansion $d_\beta(x)$ is the biggest amongst all the representations in lexicographic order.
Now for $\beta > 1$ we would like to write numbers as $\sum_{i\leq N} a_i(-\beta)^i$.

Let $\mathcal{I} = \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right) = [\ell, \ell + 1)$ and

$$T_{-\beta} : \mathcal{I} \rightarrow \mathcal{I}, \quad T_{-\beta}(x) = -\beta x - \lfloor -\beta x - \ell \rfloor$$

Then

$$x = \frac{x_1}{-\beta} + \frac{x_2}{(-\beta)^2} + \frac{x_3}{(-\beta)^3} + \cdots, \quad \text{where } x_i = \lfloor -\beta T^{i-1}(x) - \ell \rfloor.$$

We denote $d_{-\beta}(x) = x_1 x_2 x_3 \cdots \in \{0, 1, \ldots, \lfloor \beta \rfloor\}^\mathbb{N}$.
(−β)-expansions

Now for β > 1 we would like to write numbers as $\sum_{i \leq N} a_i(-\beta)^i$.

Let $I = \left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1}\right) = [\ell, \ell + 1)$ and

$$T_{-\beta} : I \rightarrow I, \quad T_{-\beta}(x) = -\beta x - \lfloor -\beta x - \ell \rfloor$$

Then

$$x = \frac{x_1}{-\beta} + \frac{x_2}{(-\beta)^2} + \frac{x_3}{(-\beta)^3} + \cdots, \quad \text{where } x_i = \lfloor -\beta T_{-\beta}^{i-1}(x) - \ell \rfloor.$$

We denote $d_{-\beta}(x) = x_1 x_2 x_3 \cdots \in \{0, 1, \ldots, \lfloor \beta \rfloor\}^\mathbb{N}$.

Confluence
Now for $\beta > 1$ we would like to write numbers as $\sum_{i \leq N} a_i(-\beta)^i$.

Let $\mathcal{I} = \left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1}\right] = [\ell, \ell + 1)$ and

$$T_{-\beta} : \mathcal{I} \to \mathcal{I}, \quad T_{-\beta}(x) = -\beta x - \lfloor -\beta x - \ell \rfloor$$

Then

$$x = \frac{x_1}{-\beta} + \frac{x_2}{(-\beta)^2} + \frac{x_3}{(-\beta)^3} + \ldots, \quad \text{where } x_i = \lfloor -\beta T^{i-1}(x) - \ell \rfloor.$$

We denote $d_{-\beta}(x) = x_1 x_2 x_3 \cdots \in \{0, 1, \ldots, \lfloor \beta \rfloor\}^\mathbb{N}$.

$(−\beta)$-expansions
Now for $\beta > 1$ we would like to write numbers as $\sum_{i \leq N} a_i(-\beta)^i$.

Let $\mathcal{I} = \left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1}\right) = [\ell, \ell + 1)$ and

$$T_{-\beta}: \mathcal{I} \to \mathcal{I}, \quad T_{-\beta}(x) = -\beta x - \lfloor -\beta x - \ell \rfloor$$

Then

$$x = \frac{x_1}{-\beta} + \frac{x_2}{(-\beta)^2} + \frac{x_3}{(-\beta)^3} + \ldots, \quad \text{where } x_i = \lfloor -\beta T^{i-1}(x) - \ell \rfloor.$$

We denote $d_{-\beta}(x) = x_1x_2x_3 \cdots \in \{0, 1, \ldots, \lfloor \beta \rfloor\}^\mathbb{N}$.
Admissibility

Theorem (S. Ito, T. Sadahiro)

A string $x_1x_2x_3 \ldots$ is $(-\beta)$-admissible iff for each $n \geq 1$

$$d_{-\beta}(\ell) \preceq_{\text{alt}} x_i x_{i+1} x_{i+2} \cdots \prec_{\text{alt}} \lim_{\varepsilon \to 0^+} d_{-\beta}(\ell + 1 - \varepsilon)$$

When $x \notin I$, we divide by a suitable power of $(-\beta)$ and expand $x/(-\beta)^k$.

When $d_{-\beta}(x/(-\beta)^k) = x_1x_2 \ldots$, we denote

$$\langle x \rangle_{-\beta} = x_1 \ldots x_k \bullet x_{k+1} \cdots \approx x_1(-\beta)^{k-1} + \cdots + x_k(-\beta)^0 + \ldots$$
Admissibility

Theorem (S. Ito, T. Sadahiro)

A string \(x_1x_2x_3 \ldots \) is \((-\beta)\)-admissible iff for each \(n \geq 1 \)

\[
d_{-\beta}(\ell) \leq_{\text{alt}} x_\ell x_{\ell+1} x_{\ell+2} \cdots \prec_{\text{alt}} \lim_{\varepsilon \to 0^+} d_{-\beta}(\ell + 1 - \varepsilon)
\]

When \(x \not\in \mathcal{I} \), we divide by a suitable power of \((-\beta)\) and expand \(x/(-\beta)^k \).

When \(d_{-\beta}(x/(-\beta)^k) = x_1x_2 \ldots \), we denote

\[
\langle x \rangle_{-\beta} = x_1 \ldots x_k \bullet x_{k+1} \cdots \approx x_1(-\beta)^{k-1} + \cdots + x_k(-\beta)^0 + \ldots
\]
We define $(\pm \beta)$-integers as

$$Z_\beta = \{ x \in \mathbb{R} \mid \langle |x| \rangle = x_1 \ldots x_k \bullet 0^\omega \} = \bigcup_{n \geq 0} \beta^n T_\beta^{-n}(0)$$

$$Z_{-\beta} = \{ x \in \mathbb{R} \mid \langle x \rangle = x_1 \ldots x_k \bullet 0^\omega \} = \bigcup_{n \geq 0} (-\beta)^n T_{-\beta}^{-n}(0)$$

By coding gaps in $Z_{-\beta}$ by letters of an alphabet, one gets a bidirectional infinite word u_β, resp. $u_{-\beta}$.

The words u_β and $u_{-\beta}$ are invariant under substitution.

Substitutions are over a finite alphabet for $d_\beta(1)$, resp $d_{-\beta}(\ell)$

eventually periodic
We define $(\pm \beta)$-integers as

\[
\mathbb{Z}_\beta = \{ x \in \mathbb{R} \mid \langle |x| \rangle = x_1 \ldots x_k \cdot 0^\omega \} = \bigcup_{n \geq 0} \beta^n T_\beta^{-n}(0)
\]

\[
\mathbb{Z}_{-\beta} = \{ x \in \mathbb{R} \mid \langle x \rangle = x_1 \ldots x_k \cdot 0^\omega \} = \bigcup_{n \geq 0} (-\beta)^n T_{-\beta}^{-n}(0)
\]

By coding gaps in $\mathbb{Z}_{-\beta}$ by letters of an alphabet, one gets a bidirectional infinite word u_β, resp. $u_{-\beta}$.

The words u_β and $u_{-\beta}$ are invariant under substitution.

Substitutions are over a finite alphabet for $d_\beta(1)$, resp $d_{-\beta}(\ell)$ eventually periodic.
We define $(\pm \beta)$-integers as

$$\mathbb{Z}_\beta = \{ x \in \mathbb{R} \mid \langle |x| \rangle = x_1 \ldots x_k \cdot 0^\omega \} = \bigcup_{n \geq 0} \beta^n T_{\beta}^{-n}(0)$$

$$\mathbb{Z}_{-\beta} = \{ x \in \mathbb{R} \mid \langle x \rangle = x_1 \ldots x_k \cdot 0^\omega \} = \bigcup_{n \geq 0} (-\beta)^n T_{-\beta}^{-n}(0)$$

By coding gaps in $\mathbb{Z}_{-\beta}$ by letters of an alphabet, one gets a bidirectional infinite word u_β, resp. $u_{-\beta}$.

The words u_β and $u_{-\beta}$ are invariant under substitution.

Substitutions are over a finite alphabet for $d_\beta(1)$, resp $d_{-\beta}(\ell)$ eventually periodic.
Some properties of $(\pm \beta)$-integers

Unlike \mathbb{Z}_β is $\mathbb{Z}_{-\beta}$ not symmetric around 0.

$\mathbb{Z}_{-\beta} = \{0\}$ iff $\beta < \frac{1+\sqrt{5}}{2}$. This never happens for \mathbb{Z}_β.

\mathbb{Z}_β is relatively dense, i.e. lengths of gaps are $< K$.

W. Steiner: $\mathbb{Z}_{-\beta}$ does not have to be uniformly discrete nor relatively dense.
Some properties of \((\pm \beta)\)-integers

Unlike \(\mathbb{Z}_\beta\) is \(\mathbb{Z}_{-\beta}\) not symmetric around 0.

\[
\mathbb{Z}_{-\beta} = \{0\} \text{ iff } \beta < \frac{1+\sqrt{5}}{2}.
\]
This never happens for \(\mathbb{Z}_\beta\).

\(\mathbb{Z}_\beta\) is relatively dense, i.e. lengths of gaps are \(< K\).

W. Steiner: \(\mathbb{Z}_{-\beta}\) does not have to be uniformly discrete nor relatively dense.
Some properties of $(\pm \beta)$-integers

Unlike \mathbb{Z}_β is $\mathbb{Z}_{-\beta}$ not symmetric around 0.

$\mathbb{Z}_{-\beta} = \{0\}$ iff $\beta < \frac{1+\sqrt{5}}{2}$. This never happens for \mathbb{Z}_β.

\mathbb{Z}_β is relatively dense, i.e. lengths of gaps are $< K$.

W. Steiner: $\mathbb{Z}_{-\beta}$ does not have to be uniformly discrete nor relatively dense.
Some properties of $(\pm \beta)$-integers

Unlike \mathbb{Z}_β is $\mathbb{Z}_{-\beta}$ not symmetric around 0.

$$\mathbb{Z}_{-\beta} = \{0\} \text{ iff } \beta < \frac{1+\sqrt{5}}{2}. \text{ This never happens for } \mathbb{Z}_\beta.$$

\mathbb{Z}_β is relatively dense, i.e. lengths of gaps are $< K$.

W. Steiner: $\mathbb{Z}_{-\beta}$ does not have to be uniformly discrete nor relatively dense.
Motivation

Lemma

Let $\beta > 1$ be root of $x^2 - mx - m$, $m \geq 1$. Then

$$\mathbb{Z}_{-\beta} = \left\{ \sum_{i \geq 0} a_i(-\beta)^i \mid a_i \in A_{-\beta} \right\}$$

For β-numeration, we have the following theorem

Theorem (Ch. Frougny)

Let $\beta > 1$ then the following conditions are equivalent:

1. β is root of $x^k - mx^{k-1} - \cdots - mx - n$ for $m \geq n \geq 1$.
2. $\mathbb{Z}_\beta = \left\{ \sum_{i \geq 0} a_i \beta^i \mid a_i \in \{0, 1, \ldots, \lfloor \beta \rfloor\} \right\}$.
Motivation

Lemma

Let $\beta > 1$ be root of $x^2 - mx - m$, $m \geq 1$. Then

$$\mathbb{Z}_{-\beta} = \left\{ \sum_{i \geq 0} a_i(-\beta)^i \mid a_i \in A_{-\beta} \right\}$$

For β-numeration, we have the following theorem

Theorem (Ch. Frougny)

Let $\beta > 1$ then the following conditions are equivalent:

1. β is root of $x^k - mx^{k-1} - \cdots - mx - n$ for $m \geq n \geq 1$.

2. $\mathbb{Z}_\beta = \left\{ \sum_{i \geq 0} a_i\beta^i \mid a_i \in \{0, 1, \ldots \lfloor \beta \rfloor\} \right\}$.
Let $\beta > 1$. Then three following conditions are equivalent:

1. β is root of $x^k - mx^{k-1} - \cdots - mx - n$, where $m \geq n \geq 1$ and $m = n$ for k even.

2. $\mathbb{Z}_{-\beta} = \left\{ \sum_{i \geq 0} a_i(-\beta)^i \mid a_i \in A_{-\beta} \right\}$.

3. Substitutions fixing u^+_{β} and u^-_{β} are conjugate.
You will see $1) \Rightarrow 2)$ and consequently $1) \Rightarrow 3)$ on the blackboard.
Confluence property implies spaces in $\mathbb{Z}_{-\beta}$ are ≤ 1.

It follows that $d_{-\beta}(\ell) = m0 m0 \ldots m0 a b \ldots$, $ab \neq m0$.

We take the shortest forbidden string $1m0m0 \ldots 0m$ where m is the maximal digit.
Proof continued: 2) \Rightarrow 1)

Confluence property implies spaces in \mathbb{Z}_β are ≤ 1.

It follows that $d_\beta(\ell) = m0m0\ldots m0a b\ldots$, $ab \neq m0$.

We take the shortest forbidden string $1m0m0\ldots 0m$ where m is the maximal digit.
Proof continued: 2) ⇒ 1)

Confluence property implies spaces in $\mathbb{Z}_{-\beta}$ are ≤ 1.

It follows that $d_{-\beta}(\ell) = m0m0\ldots m0ab\ldots$, $ab \neq m0$.

We take the shortest forbidden string $1m0m0\ldots 0m$ where m is the maximal digit.
One can show that admissible transcription is of the form

$$\begin{align*}
1 & \ m & 0 & m & 0 & \ldots & m & \bullet \\
= & 0 & 0 & a_1 & a_2 & a_3 & \ldots & a_k & \bullet
\end{align*}$$

From $d_{-\beta}(\ell)$ we can derive constraints for $a_1a_2\ldots a_k$ which lead to our polynomials.
Proof continued

One can show that admissible transcription is of the form

\[
\begin{align*}
1 & \quad m & \quad 0 & \quad m & \quad 0 & \cdots & \quad m & \quad \bullet \\
= & \quad 0 & \quad 0 & \quad a_1 & \quad a_2 & \quad a_3 & \cdots & \quad a_k & \quad \bullet
\end{align*}
\]

From $d_{-\beta}(\ell)$ we can derive constraints for $a_1 a_2 \ldots a_k$ which lead to our polynomials.
In β-systems, rewriting system associated to β was confluent.

The $(-\beta)$-rewriting system is not confluent, e.g. for $\beta = \frac{1 + \sqrt{5}}{2}$ we have

\[1\bullet = 110\bullet = 11010\bullet = \ldots \]

Arithmetics of confluent $\pm \beta$?

- If β is $+$confluent then the set of numbers with finite expansion forms a ring.
- If β is $-$confluent then $m + 1$ has infinite expansion.
In β-systems, rewriting system associated to β was confluent.

The $(-\beta)$-rewriting system is not confluent, e.g. for $\beta = \frac{1+\sqrt{5}}{2}$ we have

\[1\bullet = 110\bullet = 11010\bullet = \ldots \]

Arithmetics of confluent $\pm \beta$?

- If β is $+$confluent then the set of numbers with finite expansion forms a ring.
- If β is $-$confluent then $m + 1$ has infinite expansion.
In β-systems, rewriting system associated to β was confluent.

The $(−\beta)$-rewriting system is not confluent, e.g. for $\beta = \frac{1+\sqrt{5}}{2}$ we have

$$1\bullet = 110\bullet = 11010\bullet = \ldots$$

Arithmetics of confluent $\pm \beta$?

- If β is $+\text{confluent}$ then the set of numbers with finite expansion forms a ring.
- If β is $−\text{confluent}$ then $m + 1$ has infinite expansion.
“Confluent” bases appear in:

- Study of optimal representations (K. Dajani et al.)
- Study of Rauzy fractals and reversal invariant language of u_β (J. Bernat)
- Description of spectra of numbers (D. Garth & K. Hare)

Study of the set

$$X^{(m)}(\beta) := \left\{ \sum_{i \geq 0} a_i \beta^i \mid a_i \in \{0, 1, \ldots, m\} \right\}.$$
“Confluent” bases appear in:

- Study of optimal representations (K. Dajani et al.)
- Study of Rauzy fractals and reversal invariant language of \(u_\beta \) (J. Bernat)
- Description of spectra of numbers (D. Garth & K. Hare)

Study of the set

\[
X^{(m)}(\beta) := \left\{ \sum_{i \geq 0} a_i \beta^i \mid a_i \in \{0, 1, \ldots, m\} \right\}.
\]
Comparison of β- and $(-\beta)$- numeration

Ch. Kalle: Let $\beta \in (1, 2)$ then T_β and $T_{-\beta}$ are measurably isomorphic iff β is root of $x^k - x^{k-1} - \cdots - x - 1$.

Conjecture: This holds also for roots of

$$x^k - mx^{k-1} - \cdots - mx - n, \quad m \geq n \geq 1.$$

This property is not exactly our confluence.
Comparison of β- and ($-\beta$)- numeration

Ch. Kalle: Let $\beta \in (1, 2)$ then T_β and $T_{-\beta}$ are measurably isomorphic iff β is root of $x^k - x^{k-1} - \cdots - x - 1$.

Conjecture: This holds also for roots of

$$x^k - mx^{k-1} - \cdots - mx - n, \quad m \geq n \geq 1.$$

This property is not exactly our confluence.
Comparison of β- and $(-\beta)$- numeration

Ch. Kalle: Let $\beta \in (1, 2)$ then T_β and $T_{-\beta}$ are measurably isomorphic iff β is root of $x^k - x^{k-1} - \cdots - x - 1$.

Conjecture: This holds also for roots of

$$x^k - mx^{k-1} - \cdots - mx - n, \quad m \geq n \geq 1.$$

This property is not exactly our confluence.
Thank you for your attention!