1. A 2-Dimensional Reduction of Chern-Simons

Quantum Chern-Simons theory is a (3,2,1)-dimensional TFT on oriented manifolds with a p_1-structure with values in the 2-category of \mathbb{C}-linear categories,

$$Z_C : \text{Bord}_{(3,2,1)}^{(w_1,p_1)} \to \text{Cat}_\mathbb{C},$$

with

$$Z_C(S^1) \simeq \mathcal{C},$$

a modular tensor category. That is, a ribbon fusion category with a non-degenerate S-matrix. In particular, \mathcal{C} is linear (over \mathbb{C}), braided, has duals, and is semisimple with finitely many simple objects.

Remark 1.1. A p_1-structure on a manifold M, is the data of a null homotopy of the composition

$$M \to BO \to K(\mathbb{Z}, 4),$$

where $M \to BO$ classifies the (stable) tangent bundle of M, and $BO \to K(\mathbb{Z}, 4)$ is the first Pontryagin class.

Date: July 14, 2014.
Remark 1.2. Philosophically, a modular tensor category is a categorification of a commutative Frobenius algebra. If \(\mathcal{C} \) is a modular tensor category, then \(K^0(\mathcal{C}) \) inherits the structure of a commutative ring over \(\mathbb{Z} \) from the braiding on \(\mathcal{C} \), and thus, \(K^0(\mathcal{C}) \otimes_{\mathbb{Z}} \mathbb{C} \) is a commutative algebra. The trace map \(K^0(\mathcal{C}) \to \mathbb{C} \) sends the equivalence class \(V \) to \(\dim(V) := \text{Trace}(\text{Id}_V) \), the latter of which is defined in any ribbon tensor category.

Definition 1.3. The Verlinde ring is \(K^0(\mathcal{C}) \), and the Verlinde Algebra of \(\mathcal{C} \) is the algebra \(K^0(\mathcal{C}) \otimes_{\mathbb{Z}} \mathbb{C} \). The former is a Frobenius ring while the latter is a Frobenius algebra.

Two main examples of interest are the following:

Example 1.4. Let \(G \) be a finite group, then \(\text{Vect}_G(G) \), the category of \(G \)-equivariant vector bundles on \(G \), is a modular tensor category. The monoidal structure is defined as follows. Let \(V \) be an equivariant vector bundle on \(G \), that is a collection of vector spaces \(V_x \), \(x \in G \), and isomorphisms \(V_x \cong V_{gxg^{-1}} \) satisfying a cocycle condition. Given two equivariant vector bundles \(V \) and \(W \), we define a new equivariant vector bundle \(V \otimes^c W \) using convolution:

\[
(V \otimes^c W)_x := \bigoplus_{x_1x_2=x} V_{x_1} \otimes W_{x_2}.
\]

Notice that,

\[
(V \otimes^c W)_{gxg^{-1}} := \bigoplus_{x_1x_2=gxg^{-1}} V_{x_1} \otimes W_{x_2} \\
\cong \bigoplus_{g^{-1}x_1x_2g=x} V_{x_1} \otimes W_{x_2} \\
\cong \bigoplus_{g^{-1}x_1gg^{-1}x_2g=x} V_{g^{-1}x_1} \otimes W_{g^{-1}x_2} \\
\cong \bigoplus_{y_1y_2=x} V_{y_1} \otimes W_{y_2} \\
\cong (V \otimes^c W)_x
\]
So that $V \otimes c W$ is indeed another equivariant vector bundle. One can show, $K^0(\mathcal{C}) = K_G(G)$ is a Frobenius algebra, multiplication arises from the pushforward of group multiplication.

Example 1.5. There is a twisted version of the example above. Let
\[\alpha \in H^4(BG, \mathbb{Z}) \to H_3^G(G, \mathbb{Z}) \simeq H^2_G(G, U(1)) \simeq H^1_G(G, \{\text{Line Bundles}\}) \]
where the first arrow in the sequence sends a map $BG \to B^4\mathbb{Z}$ to a map $G/G \to B^2\mathbb{C}^\times \times B^3\mathbb{C}^\times \to B^2\mathbb{C}^\times$, by taking free loops. That is, we get a \mathbb{C}^\times-gerbe on G/G. For the remaining arrows, recall that
\[\mathbb{Z} \simeq K(\mathbb{Z}, 0), \ U(1) \simeq K(\mathbb{Z}, 1), \ \mathbb{C}P^\infty \simeq K(\mathbb{Z}, 2). \]

From the data of α, one can construct hermitian lines $L_{x,y}$ with isomorphisms $L_{yxy^{-1},z} \otimes L_{x,y} \to L_{x,zy}$, where $x, y, z \in G$. Then $\text{Vect}_G^\alpha(G)$, the category of α-twisted equivariant vector bundles on G, is a modular tensor category with a monoidal structure given by α-twisted convolution. An object in this category is a vector bundle V over G together with isomorphisms $L_{x,y} \otimes V_x \to V_{yxy^{-1}}$, where the $L_{x,y}$ are hermitian lines constructed using the data of α. These are equivariant vector bundles twisted by a gerbe.

Definition 1.6. Now, let G be simply connected, compact, simple Lie group and let
\[1 \to \mathbb{C}^\times \to \tilde{LG} \to LG \to 1 \]
be the universal central extension corresponding to a generator of $H^2(LG, \mathbb{C}^\times)$.

Remark 1.7. A projective representation of LG is equivalent to a honest representation of \tilde{LG}, where we require the center \mathbb{C}^\times to act by scalar multiplication.

Definition 1.8. A positive energy representation of LG at level α is a representation of \tilde{LG}, V, extending to the semi-direct product $\tilde{LG} \rtimes \text{Rot}(S^1)$, such that $\text{Rot}(S^1)$ acts by non-negative characters only. That is, $\text{Rot}(S^1)$ induces a decomposition of vector spaces
\[V = \bigoplus_{n \geq 0} V(n) \]
where \(V(n) = \{ v \in V | R_\theta v = e^{in\theta} v \} \) and \(R_\theta \in \text{Rot}(S^1) \).

Remark 1.9. If \(V \) is irreducible, the kernel of the central extension acts by a single scalar \(\alpha \) (Schur’s Lemma), called the level of the representation. The level classifies the central extension of \(LG \) and is a class \(\alpha \in H^4(BG, \mathbb{Z}) \simeq \mathbb{Z} \). Furthermore, \(V \) is determined by its level and its lowest nonzero energy eigenspace, which itself is an irreducible representation of \(G \). We will use this fact in the sequel.

Proposition 1.10. Given \(G \) and an element \(\alpha \in H^4(BG, \mathbb{Z}) \simeq \mathbb{Z} \), the category of positive energy representations of the loop group \(LG \) at level \(\alpha \), \(\text{Rep}^\alpha(LG) \), is a modular tensor category.

Definition 1.11. Let \(\text{Ver}_\alpha(G) \) be the Verlinde ring of the modular tensor category \(\text{Rep}^\alpha(LG) \), and let \(\text{Ver}_\alpha(G) \otimes \mathbb{Z} \mathbb{C} \) be its Verlinde algebra.

In this talk, we will consider a 2-dimensional reduction of Chern-Simons theory. This is an oriented 2-dimensional TFT \(Z'_C \) defined by

\[
Z'_C(M) := Z_C(S^1 \times M).
\]

In particular,

\[
Z'_C(\text{pt}) := Z_C(S^1 \times \text{pt}) \simeq \mathcal{C}.
\]

\[
Z'_C(S^1) \simeq \text{HH}_0(\mathcal{C}).
\]

Remark 1.12. We consider an oriented 2-dimensional TFT because the map defining the 2-dimensional reduction

\[
\text{Bord}^{(w_1, p_1)}_2 S^1 \times - \longrightarrow \text{Bord}^{(w_1, p_1)}_{(3,2,1)} \longrightarrow \text{Cat}_\mathbb{C}
\]

factors through the oriented bordism category \(\text{Bord}^{w_1}_2 \).

We claim there is a commutative diagram

\[
\begin{array}{ccc}
\text{Bord}^{(w_1, p_1)}_{(3,2,1)} & \longrightarrow & \text{Cat}_\mathbb{C} \\
\text{Bord}^{(w_1, p_1)}_2 & \longrightarrow & \text{Bord}^{w_1}_2 \\
\text{S}^1 \times & \text{s.l.} & \\
\end{array}
\]

Goal 1.13. Show the Verlinde Algebra \(K^0(\mathcal{C}) \otimes \mathbb{Z} \mathbb{C} \) is the Frobenius algebra defining the \((2,1)\)-dimensional reduction \(Z'_C \).
Thus, we must show the following

Proposition 1.14. Let \mathcal{C} be a modular tensor category, then

$$K^0(\mathcal{C}) \otimes \mathbb{Z} \mathcal{C} \simeq \text{HH}_0(\mathcal{C}).$$

Proof. There is an isomorphism $K^0(\mathcal{C}) \otimes \mathbb{Z} \mathcal{C}$ with the algebra of \mathbb{C}-valued functions on the finite set I of isomorphism classes of simple objects. This uses the non-degeneracy of the S-matrix [Bakalov-Kirillov 3.1.12]. This algebra can be interpreted as $\text{End}(\text{Id}_\mathcal{C})$ by Schur’s Lemma. Furthermore, $\text{End}(\text{Id}_\mathcal{C}) \simeq \text{HH}_0(\mathcal{C})$, using the semisimplicity of the category \mathcal{C}. \qed

2. **The example $G = SU(2)$ and $\alpha = k$**

Start with the complexified representation ring $\text{Rep}(SU(2)) = \mathbb{C}[t, t^{-1}]^{\Sigma_2}$. That is, the irreducible representations are V_n with $\dim(V_n) = n + 1$. This representation corresponds to the polynomial $t^n + t^{n-2} + \ldots + t^{-n}$. Multiplication of polynomials gives the formula:

$$V_n \otimes V_m = V_{m+n} \oplus V_{m+n-2} \oplus \ldots \oplus V_{|m-n|}.$$

The Verlinda algebra, $\text{Ver}_k(SU(2)) \otimes \mathbb{Z} \mathbb{C}$, is a quotient of $\text{Rep}(SU(2))$ by

$$V_{k+1} = 0$$

and the relation

$$V_n \oplus V_{2k+2-n} = 0.$$

Example 2.1. Take $k = 5$, then in $\text{Rep}(SU(2))$. Draw a picture with a mirror at 6!

$$V_3 \otimes V_4 = V_7 \oplus V_5 \oplus V_3 \oplus V_1$$

and in the quotient $\text{Ver}_5(SU(2))$ this becomes

$$V_3 \otimes V_4 = -V_5 \oplus V_5 \oplus V_3 \oplus V_1 = V_3 \oplus V_1.$$

If $k = 0$ we have

$$\text{Ver}_0(SU(2)) \otimes \mathbb{Z} \mathbb{C} = \mathbb{C}[x]/x.$$

If $k = 1$ we have

$$\text{Ver}_1(SU(2)) \otimes \mathbb{Z} \mathbb{C} = \mathbb{C}[x]/(x^2 - 1).$$
One can show:

\[Ver_{k-1}(SU(2)) \otimes_{\mathbb{Z}} \mathbb{C} = \mathbb{C}[x]/(\prod_{m=1}^{k} (x - 2 \cos(\frac{m}{2k + 2\pi}))). \]

Remark 2.2. Again, positive energy representations of level \(k \) are determined by their lowest energy eigenstate which itself is an irreducible representation of the group, in this case \(SU(2) \). The first equation \(V_{k+1} = 0 \) corresponds to the fact that the antidominant weights controlling irreducible representations live in the positive Weyl alcove [Segal-Pressley 9.3.5].

Remark 2.3. The unit of the algebra is called the Vacuum representation of level \(k \). It is the positive energy representation of level \(k \) that is induced from a lowest energy eigenspace being a lowest weight representation.

Remark 2.4. The “fusion” algebra structure has origins in conformal field theory. Let \(V_p, V_q \) be irreducible positive energy representations of \(G = SU(2) \). Then,

\[V_p \cdot V_q = \sum_{V_r} N_{V_p, V_q}^{V_r} V_r, \]

Here, \(N_{V_p, V_q}^{V_r} \) is the dimension of the vector space

\[(V_p \otimes V_q \otimes V_r^*)_{\text{Hol}(\mathbb{P}^1 - \{p_1, p_2, p_3\}, G_{\mathbb{C}})}. \]

This is (dual to) the space of conformal blocks. One can show this multiplication is associative and gives rise to the Verlinde algebra. There is a subtle point here. Let \(\hat{G} \) be the canonical central extension of \(\text{Hol}(\mathbb{C}^*, G_{\mathbb{C}})^{\times 3} \) that extends each of the individual universal central extensions. Then, one needs to show the image of

\[\text{Hol}(\mathbb{P}^1 - \{p_1, p_2, p_3\}, G_{\mathbb{C}}) \to \hat{G} \]

splits to actually have a well defined action of \(\text{Hol}(\mathbb{P}^1 - \{p_1, p_2, p_3\}, G_{\mathbb{C}}) \) on \(V_p \otimes V_q \otimes V_r^* \). This is established by using the residue formula.

Furthermore, one can show that:

\[N_{V_p, V_q}^{V_r} = \begin{cases} 1 & \text{if } r - |p - q| \text{ is even and } |p - q| \leq r \leq \min(p + q, 2k - p - q) \\ 0 & \text{otherwise} \end{cases} \]
This computation is in Verlinde’s original paper.

3. Twistings and Orientations

To give a complex vector bundle on M is to give vector bundles V_i on open sets U_i of a covering and isomorphisms

$$\lambda_{ij} : V_i \to V_j$$

which satisfy a cocycle condition on intersections. In complex K-theory this is expressed by the Mayer-Vietoris sequence. In forming a twisted vector bundle V, one introduces a complex line bundle L_{ij} on $U_i \cap U_j$ together with isomorphisms:

$$\lambda_{ij} : L_{ij} \otimes V_i \to V_j.$$

The L_{ij} must come equipped with isomorphisms

$$L_{jk} \otimes L_{ij} \to L_{ik}$$

on triple intersections and satisfy a cocycle condition on quadruple intersections. Thus, we can form a twisted version of $K(M)$ given an element $\tau \in H^1(M, \{\text{Line Bundles}\}) \cong H^3(M, \mathbb{Z})$. This group parametrizes complex \mathbb{C}^\times-gerbes.

Remark 3.1. There is second way to think about this. Recall that \mathcal{F} (the space of Fredholm operators of a complex Hilbert space \mathcal{H}) is a representing space for K-theory. That is, $K(X) = \pi_0 \Gamma(X \times \mathcal{F} \to X)$. If $U = U(\mathcal{H})$ is the unitary group and $P \to X$ is a principal PU-bundle, one can form the associated bundle $\xi = P \times_{PU} \mathcal{F} \to X$ with fiber \mathcal{F}. Define P-twisted K-theory to be

$$K(X)_P = \pi_0 \Gamma(\xi \to X).$$

Thus one twists K-theory by PU-bundles over X, and isomorphism classes of such bundles are given by $[X, BPU]$. Since BPU is a model for $K(\mathbb{Z}, 3)$, we arrive at $[X, BPU] \cong H^3(X, \mathbb{Z})$.

Remark 3.2. A third way to think about this from an ∞-categorical perspective is in Ando-Blumberg-Gepner’s “Twists of K-Theory.” They
discuss a map \(K(\mathbb{Z}, 3) \xrightarrow{T} BGL_1(K) \cong |\text{Line}_K| \) and form the composition

\[
M \xrightarrow{T} K(\mathbb{Z}, 3) \xrightarrow{T} BGL_1(K) \cong |\text{Line}_K|.
\]
The corresponding Thom spectrum is

\[
M^{T\tau} := \text{colim}(\text{Sing}M \xrightarrow{T\tau} \text{Line}_K \xrightarrow{} \text{Mod}_K).
\]
Finally, twisted \(K \)-theory is given by

\[
K^n(M^\tau) := \pi_0(\text{Mod}_K(M^{T\tau}, \Sigma^n K)).
\]

Remark 3.3. That is, twistings of \(K \)-theory on a space \(M \) are classified up to isomorphism by the set \(H^0(M, \mathbb{Z}/2) \times H^1(M, \mathbb{Z}/2) \times H^3(M, \mathbb{Z}) \).

Example 3.4. A real vector bundle \(V \rightarrow M \) determines a twisting \(\tau_V \) in complex \(K \)-theory, whose equivalence class is:

\[
[\tau_V] = (\text{rank} V, w_1(V), W_3(V)) \in H^0(M, \mathbb{Z}/2) \times H^1(M, \mathbb{Z}/2) \times H^3(M, \mathbb{Z})\)
\]

More precisely, a real vector bundle \(V \) has a second Stiefel-Whitney class \(w_2(V) \in H^2(M, \mathbb{Z}/2) \), and gives a real \(\mathbb{R}^\times \)-gerbe. The third integral Stiefel-Whitney class \(W_3(V) \) is the image of \(w_2(V) \) under the Bockstein \(H^2(M, \mathbb{Z}/2) \rightarrow H^3(M, \mathbb{Z}) \), and corresponds to complexification.

One can further assign a twisting to any virtual real vector bundle by setting \(\tau_{-V} := -\tau_V \).

Remark 3.5. Let \(\tau \) be a twisting on a manifold \(N \), then to a proper map \(p : M \rightarrow N \) one can define a pushforward map

\[
p_* : K^{(\tau_p + p^*\tau)}(M) \rightarrow K^{\tau + *}(N).
\]
where \(\tau_p = \tau_M - p^*\tau_N \) is the twisting associated to the relative tangent bundle.
Definition 3.6. A KU-orientation of V is an equivalence $\tau_V \simeq \tau_{\text{rank}V}$ or equivalently, a trivialization of the twisting attached to the reduced bundle $(V - \text{rank}V)$. Equivalently, this is a spin^c structure on V.

Definition 3.7. An orientation of a manifold or stack is an orientation of its (virtual) tangent bundle. Recall that the tangent bundle to a smooth stack is a graded vector bundle. We form a virtual bundle by taking the alternating sum of its homogeneous components.

Definition 3.8. A KU-orientation of a map $p : M \to N$ is a trivialization of the twisting $\tau_{TM - p^*TN - \text{rank}_p} = \tau_p - \tau_{\text{rank}_p}$. Thus, to a KU-oriented, proper map $p : M \to N$ one can define a pushforward map

$$p_* : K^\bullet + \text{dim}(M) - \text{dim}(N)(M) \to K^\bullet(N).$$

Example 3.9. If X is a closed oriented 2-manifold, the tangent space of the stack M_X at A (a connection on principal bundle P) is the complex

$$0 \to \Omega_X^0(g_P) \xrightarrow{d_A} \Omega_X^1(g_P) \xrightarrow{d_A} \Omega_X^2(g_P),$$

where g_P is the adjoint bundle associated to P. One forms the virtual tangent bundle to M_X as the index of an elliptic complex. The reduced tangent bundle to M_X is computed by the de Rham complex coupled to the reduced adjoint bundle $\overline{g}_P := g_P - \text{dim}G$.

Freed-Hopkins-Teleman describe a universal orientation that simultaneously orients M_X for not only closed 2-manifolds X, but 2-manifolds with boundary. In particular, the restriction maps $t : M_X \to M_{\partial X}$ are oriented. That is, there is a trivialization of the twisting $\tau_t - \tau_{\text{rank}t}$.

4. Pushforward Using Consistent Orientations

Let G be a compact Lie group. Let Z be a 1 or 2 dimensional oriented manifold. Let M_Z be the stack of flat connections of X. For example, $M_{S^1} \simeq G/G$. To a bordism $X : Y_0 \to Y_1$ we consider the correspondence of flat G-connections:
We would like to define a push-pull

\[Z_X := t_* \circ s^* : K^\bullet(M_{Y_0}) \to K^\bullet(M_{Y_1}). \]

But the pushforward, \(t_* \), requires an orientation on (twisted) K-theory. Freed-Hopkins-Teleman show that orientations can be consistently chosen. Moreover, the functor \(Z \) respects gluing, i.e. is functorial and defines a 2d-TFT. For instance, given

We have that

\[(t'r')_* \circ (sr)^* = [t'_* \circ s'^*] \circ [t_* \circ s^*] \]

Remark 4.1. Moreover, they show there is a well-defined map from “consistent orientations” to levels on \(G \).

Remark 4.2. Notice that \(M_{S^1} \simeq G/G \) as stacks, and thus \(K^\bullet(M_{S^1}) \simeq K^\bullet_G(G) \).

Theorem 4.3. For any compact Lie group \(G \), once a consistent orientation is chosen (and hence a level), the value of \(S^1 \) on the corresponding 2d TFT recovers the Frobenius ring

\[K^{ullet \theta + h + \alpha}_G(G) \simeq Ver_\alpha(G). \]
Acknowledgements: We thank Dan Freed and Pavel Safronov for extremely helpful conversations regarding Chern-Simons theory and the Verlinde algebra.

Department of Mathematics, The University of Texas, Austin, TX 78712
E-mail address: lcohn@math.utexas.edu