
Endogeneity and Discrete Outcomes

Andrew Chesher�

Centre for Microdata Methods and Practice, UCL & IFS

Revised April 2nd 2008

Abstract. This paper studies models for discrete outcomes which per-
mit explanatory variables to be endogenous. In these models there is a single
nonadditive latent variate which is restricted to be locally independent of in-
struments. The models are incomplete; they are silent about the nature of
dependence between the latent variate and the endogenous variable and the role
of the instrument in this relationship. These single equation IV models which,
when an outcome is continuous, can have point identifying power, have only set
identifying power when the outcome is discrete. Identi�cation regions vary with
the strength and support of instruments and shrink as the support of a discrete
outcome grows. The paper extends the analysis of structural quantile functions
with endogenous arguments to cases in which there are discrete outcomes.
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1. Introduction

This paper studies instrumental variables models for discrete outcomes in which ex-
planatory variables can be endogenous. Outcomes can be binary, for example in-
dicating the occurrence or otherwise of an event; they can be integer valued - for
example recording counts of events; they can be ordered - perhaps giving a position
on an attitudinal scale or obtained by interval censoring of an unobserved continuous
outcome. Endogenous and other observed variables can be continuous or discrete.

It is shown that these IV models, which can have point identifying power when
outcomes are continuous, do not point identify when outcomes are discrete. How-
ever they do have partial identifying power and this can be useful, particularly in
situations in which the conditions maintained in more restrictive point identifying
models are untenable. The results of the paper are derived for models in which there
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are no parametric restrictions. Such restrictions can be imposed using the methods
developed in the paper but typically they do not deliver point identi�cation.

In the models considered here a scalar discrete outcome is determined by a struc-
tural function

Y = h(X;U)

where U is a continuously distributed, unobserved, scalar random variable and X is
an observable vector random variable. There is endogeneity in the sense that U and
X may not be independently distributed. Since Y is discrete and U is continuous h is
a step function which, in the models studied in this paper, is restricted to be weakly
monotonic (normalized non-decreasing) in its �nal argument, U .

This nonadditive speci�cation is adopted because, when Y is discrete, it is di¢ cult
to produce economic examples in which the unobservable U appears additively in h
and the elements of the problem admit structural interpretation. One consideration
here is that in applications in economics the support of a discrete outcome Y is always
independent of X and in an additive U model the support of U would then have to
be dependent on X. Then U and X would have to be dependently distributed and
it would be hard to give U a structural interpretation. The paper proceeds with
consideration of nonadditive structural functions.

There are instrumental variables excluded from h. They comprise a vector-valued
variable1 Z, with the property that for some � 2 (0; 1) and all z in some set 
Z :

Pr[U � � jZ = z] = � (1)

which is in the nature of a local (to � and to 
Z) independence restriction. The
important feature of this restriction is that the probability in (1) does not depend on z,
the value, � , on the right hand side of (1) being a normalization. In a more restrictive
model, also studied here, U and Z are globally independent and the restriction (1)
holds for all � 2 (0; 1) and all z 2 
Z .

This paper considers identi�cation of the function h(x; �) under the restrictions
embodied in this �single equation�instrumental variables model. Triangular system
models with nonadditive structural functions can have point identifying power (via
a �control function� argument) when the outcome Y is continuous or discrete but
not when endogenous X is discrete. These more restrictive triangular models are
nested within the single equation IV models studied here. They are not a panacea
because their restrictions do not always �ow from economic considerations.2 Their
inability to deliver point identi�cation when endogenous variables are discrete is a
serious limitation. The single equation IV model is therefore worth studying.

If h were strictly increasing in U then Y would be continuously distributed and the
model is the basis for the identifying models developed in for example Chernozhukov
and Hansen (2005). Since a discrete outcome can be very close to continuous if it has
many points of support it seems plausible that there is a partial identi�cation result
for the discrete outcome case. The contribution of this paper is the development of
partial identi�cation results for the discrete outcome model.

1Z may be a random variable in which case 
Z is its support. But Z may be a variable under
the control of the observer, a situation that might arise in experimental economics. In that case 
Z
is a list of values at which Z can be observed.

2Tamer (2003) gives an example of a problem in which a triangular speci�cation is not plausible.
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The key to analysis of the continuous outcome case is, as noted in Chernozhukov
and Hansen (2005), the following condition implied by the model set out above.

for all z: Pr[Y � h(X; �)jZ = z] = �

Under some additional, non-trivial, conditions this leads to point identi�cation of the
function h(�; �).

When Y is discrete the restrictions of the model imply that h(�; �) simultaneously
satis�es inequalities, as follows.

for all z: Pr[Y � h(X; �)jZ = z] � �

for all z: Pr[Y < h(X; �)jZ = z] < �

It is shown that this leads to set identi�cation of the structural function h(�; �).3
To be speci�c, it is shown that structural functions h which do not satisfy these

inequalities cannot be elements of structures which generate the probabilities used
in calculating the inequalities. Given a particular distribution of Y and X given Z,
say FY XjZ , there can be many functions h which satisfy the inequalities and so a set
of potential structural functions which are concordant with FY XjZ . This can lead
to informative bounds on admissible structural functions when Y has many points
of support or when instruments are strong in the sense of being accurate predictors
of values taken by endogenous variables. It is shown that set identi�cation achieved
using the inequalities is sharp in the sense that for every structural function, h,
that satis�es the inequalities there exists a distribution of U and X given Z, say
FUXjZ , such that fh; FUXjZg generate the probability distribution FY XjZ used to
calculate the probability inequalities. Estimates of FY XjZ naturally lead to estimates
of identi�ed sets.

The results are illustrated via examples in Section 4. Ordered probit and covari-
ate dependent Poisson and binomial and binary logit models with endogeneity are
studied.

The results shed light on the impact of endogeneity in situations where outcomes
are by their nature discrete, for example where they are binary or records of counts
of events. Classical instrumental variables attacks fail because the restrictions of the
IV model do not lead to point identi�cation when outcomes are discrete. There are
many econometric applications of models for discrete outcomes - see for example the
compendious survey in Cameron and Trivedi (1998) - but there is little attention to
endogeneity issues except in fully parametric speci�cations. There are a few papers
which take a single equation IV approach to endogeneity in parametric count data
models basing identi�cation on moment conditions - see the discussion in Section
11.3.2 of Cameron and Trivedi (1988). Mullahy (1997) and Windmeijer and Santos
Silva (1997) consider a case in which the conditional expectation of a count variable
given explanatory variables, X = x, and an unobserved scalar heterogeneity term,

3Chernozhukov and Hansen (2001) call h(x; �) a structural quantile function. They give these
inequalities but do not consider their role in the partial identi�cation of structural functions focussing
instead on the continuous outcome case. Of course there are other inequalities but they are all implied
by those stated here.
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V = v, is multiplicative: �(x)� v, with X and V correlated and with V and instru-
mental variables Z having a degree of independent variation.4 Their IV models point
identify � but the details of the functional form restrictions are important in securing
point identi�cation and the method, based as it is on the multiplicative heterogeneity
speci�cation, does not work for discrete variables with bounded support.

A control function approach can deliver identi�cation but this requires stronger
restrictions and has the drawback that there is not point identi�cation when endoge-
nous arguments of structural functions are discrete. Chesher (2003) and Imbens and
Newey (2003) study control function approaches to identi�cation in non-additive error
triangular models with a discrete or continuous outcome and continuous endogenous
arguments in the structural function. Chesher (2005) develops a set identifying tri-
angular model for the case in which endogenous arguments are discrete. Abrevaya,
Hausman and Khan (2007) study testing for causal e¤ects in a triangular model with
a discrete outcome and a discrete endogenous variable and additional monotonicity
restrictions. These control function approaches set the structural equation of interest
in a triangular structural system of equations in which all latent variates (errors) and
instruments are jointly independent.

This paper studies the discrete outcome case in a single equation setting. Hong
and Tamer (2003) and Khan and Tamer (2006) study identi�cation and inference
for linear structural functions when there is endogeneity and a degree of discreteness
induced by censoring but with some continuous variation in outcomes observable. The
model of this paper places no parametric restrictions on structural functions and is
similar to the single equation instrumental variable model used in Chernozhukov and
Hansen (2005) and Chernozhukov, Imbens and Newey (2007) but with the di¤erence
that in this paper purely discrete outcomes are permitted. Chesher (2007b) compares
and contrasts the control function and single equation IV approaches to identi�cation
of nonadditive structural functions.

Roehrig (1988), Benkard and Berry (2006) and Matzkin (2005) study nonpara-
metric identi�cation in non-additive error simultaneous equation models without a
triangularity restriction but only for cases in which the outcomes are continuous.
Tamer (2003) studies a two equation simultaneous system in which outcomes are
binary, there is no triangularity restriction and the two latent variables that drive
stochastic variation are distributed independently of instruments. A binary outcome,
binary endogenous variable special case of the model studied here applies to the
Tamer (2003) problem taken one equation at a time.

The results of the paper are informative about the e¤ect of interval censoring
on the identifying power of models. The examples in Section 4 are striking in this
regard. Quite small amounts of discretization due to interval censoring can result in
signi�cant degradation in the identifying power of models. This is useful information
for designers of survey instruments who have control over the amount of interval
censoring banded responses induce.

Lewbel, Linton and McFadden (2006) study identi�cation and estimation of the
distribution of a continuous unobserved variable when an observable binary outcome
indicates whether the latent variable exceeds an observable and varying threshold.

4For the precise moment conditions see Mullahy (1997).
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Manski and Tamer (2002) develop partial identi�cation results for regression functions
when there is interval censoring of outcomes (and explanatory variables). Neither
model permits endogeneity. This paper di¤ers from these in that it is concerned
with identi�cation of structural functions delivering values of the observed discrete
variables rather than the structural functions delivering values of the unobserved,
pre-censored, continuous latent variables, and this paper focuses on identi�cation in
the presence of endogeneity.

The paper is organised as follows. Section 2 brie�y reviews identi�cation in single
equation IV models for continuous outcomes with nonadditive structural functions.
The main results of the paper are given in Section 3 which is concerned with models
for discrete outcomes and derives set identi�cation results. Proofs of the main propo-
sitions are given in Annexes. Section 4 illustrates the nature of the set identi�cation
results in particular ordered probit, Poisson regression and binomial regression mod-
els, in all cases with endogeneity. Ordered and binary probit and binary logit models
arise as special cases in these examples. Section 5 concludes.

2. Continuous outcomes

Consider the model C comprising the following two restrictions.

C1. Y = h(X;U) with U continuously distributed and h strictly monotonic (nor-
malized increasing) in its last argument. The function is normalised so that
U 2 [0; 1].

C2. For some � 2 (0; 1) there exists Z such that Pr[U � � jZ = z] = � for all z 2 
Z .

These restrictions are at the core of the models for continuous outcomes Y con-
sidered by Chernozhukov and Hansen (2005) and Chernozhukov, Imbens and Newey
(2007). The identifying power of the model C is now brie�y reviewed.

Let a(� ; x; z) denote a conditional distribution function for U given X and Z

a(� ; x; z) � Pr[U � � jX = x;Z = z] (2)

and let 
XjZ denote the support of X which may depend upon the value taken by
Z. By virtue of Restriction C2 there is, for all z 2 
Z :Z


XjZ

a(� ; x; z)dFXjZ(xjz) = � (3)

where FXjZ is the conditional distribution function of X given Z and integration is
de�nite over the support of X.

Since h is strictly increasing in U , applying the function to both sides of the
inequality on the right hand side of (2) gives

a(� ; x; z) = Pr[h(X;U) � h(X; �)jX = x;Z = z] (4)

and because Y = h(X;U) there is

a(� ; x; z) = Pr[Y � h(X; �)jX = x;Z = z] (5)
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and �nally by virtue of (3), on taking expectations with respect to X given Z = z,
for all z 2 
Z :

Pr[Y � h(X; �)jZ = z] = � . (6)

This argument fails at the �rst step (4) if h is not strictly increasing in U .
Without further restriction there are many functions satisfying (6). Certain ad-

ditional restrictions result in a model that identi�es the function h. In the absence
of parametric restrictions these include a requirement that the support of Z be at
least as rich as the support of X and that the distribution of Y and X conditional
on Z has su¢ cient variation with Z. These necessary conditions are implied by a
completeness condition for local (in the sense of Rothenberg (1970)) identi�cation
given in Chernozhukov, Imbens and Newey (2007). When these conditions do not
hold in full there can be informative partial identi�cation of the function h(�; �) in
the sense that the condition (6) along with other maintained conditions limit h(�; �)
to some class of functions. The results of this paper for the discrete outcome case are
of precisely this nature.

In a model in which X is locally exogenous, that is in which for some � and all
x, Pr[U � � jX = x] = � , there is

Pr[Y � h(x; �)jX = x] = � (7)

and h(x; �) is the � -quantile regression function of Y given X = x and h is therefore
identi�ed (Matzkin (2003)) when Y is continuous and when Y is discrete.5

When Y is discrete and X is endogenous neither equation (6) nor equation (7)
hold. The discrete outcome case is explored now.

3. Discrete outcomes

3.1. Probability inequalities. The model C is now amended to permit Y to be
discrete. There is the following model: D, comprising two restrictions.

D1. Y = h(X;U) with U continuously distributed and h is weakly monotonic (nor-
malized càglàd, non-decreasing) in its last argument. Its codomain is the as-
cending sequence fymgMm=1 which is independent of X. M may be unbounded.
The function is normalised so that U 2 (0; 1).

D2. For some � 2 (0; 1) there exists Z such that Pr[U � � jZ = z] = � for all z 2 
Z .

Restriction D2, which is identical to Restriction C2 in the continuous outcome
model, is a local-to-� independence restriction. A more restrictive model DG, which
will also be considered, embodies a global, full independence restriction requiring
Restriction D2 to hold for all � 2 (0; 1).6

An important implication of the weak monotonicity condition contained in Re-
striction D1 is that the function h(x; u) can be characterized by functions fpm(x)gMm=0
as follows:

for m 2 f1; : : : ;Mg: h(x; u) = ym if pm�1(x) < u � pm(x) (8)
5 In the discrete case h is normalized to be càglàd for variation in U .
6 In the model D the content of 
Z can depend on � .
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with, for all x, p0(x) � 0 and pM (x) � 1.
The equality (6) does not hold under the restrictions of model D. This is because

when Y is discrete, h(X;U) is not strictly increasing in U , and the equality (5) fails
to hold. It is shown in Annex 1 that in its place there are the following inequalities
which hold for all � 2 (0; 1) and for all x and z.

Pr[Y � h(X; �)jX = x;Z = z] � a(� ; x; z)

Pr[Y < h(X; �)jX = x;Z = z] < a(� ; x; z)
(9)

On taking expectations with respect to X given Z = z on the left and right hand
sides of these inequalities and using the independence restriction embodied in (3)
which holds at the speci�c value � in the model D, and for all � in the model DG,
the following inequalities (10) are obtained.

For all z 2 
Z :

8<:
Pr[Y � h(X; �)jZ = z] � �

Pr[Y < h(X; �)jZ = z] < �
(10)

The inequalities exhaust the information about the structural function contained
in the models.7 They are the base upon which the identi�cation analysis of the
discrete outcome IV model is constructed.

3.2. Partial identi�cation. Let FY XjZ and FUXjZ denote distribution functions
of respectively (Y;X) and (U;X) conditional on Z de�ned as follows

FY XjZ(y; xjz) � Pr[Y � y ^X � xjZ = z] =
Z
s�x

FY jXZ(yjs; z)dFXjZ(sjz)

FUXjZ(u; xjz) � Pr[U � u ^X � xjZ = z] =
Z
s�x

FU jXZ(ujs; z)dFXjZ(sjz)

where FY jXZ and FU jXZ are distribution functions of respectively Y and U condi-
tional on X and Z.8

Under the weak monotonicity condition embodied in the models D and DG each
structure, Sa � fha; F aUXjZg, delivers a conditional distribution for (Y;X) given Z,
F aY XjZ , as follows.

F aY XjZ(ym; xjz) = F
a
UXjZ(p

a
m(x); xjz) (11)

This holds for m 2 f1; : : : ;Mg and the functions fpam(x)gMm=0 characterise the struc-
tural function ha as set out in (8).

Data are informative about distribution functions of observable variables Y and
X conditional on Z = z for each value of Z that can be observed. It is assumed
henceforth that the set of values of Z that can be observed is the set 
Z which appears
in Restriction D1. It may happen that distinct structures deliver indistinguishable

7The model DG implies other inequalities but they are all implied by (10).
8 Inequalities hold element by element when applied to vectors.
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distributions of observables for all z 2 
Z , that is that there exists Sa 6= Sa
0
such

that F aY XjZ = F
a0
Y XjZ for all z 2 
Z . Such structures are observationally equivalent.

The existence of observationally equivalent structures is plausible because of the
possibility of o¤setting variations in the functions pam(x) by altering the sensitivity
of F aUXjZ(ujx; z) to variations in x on the right hand side of (11) while leaving the
left hand side unchanged. Crucially the independence restriction embodied in the IV
models studied here places limits on the variations in the functions pam(x) that can
be so compensated. The inequalities (10) are the key to understanding these limits.
There is the following Theorem.

Theorem 1. Let Pra indicate probabilities calculated using a distribution function
F aY XjZ . Consider a function h and a value � 2 (0; 1) satisfying the conditions of model
D. If for any z 2 
Z either of the inequalities

Pra[Y � h(X; �)jZ = z] � �

Pra[Y < h(X; �)jZ = z] < �

fails to hold then there exists no structure S� � fh�; F �UXjZg satisfying the conditions
of model D such that (i) h�(x; u)ju=� = h(x; �) and (ii) F �Y XjZ = F

a
Y XjZ .

The proof, which is straightforward given the development up to this point, is
given in Annex 2. The following Corollary is a direct consequence.

Corollary. If for any � 2 (0; 1) and any z 2 
Z either of the inequalities of
Theorem 1 is violated by a function h(x; u) then there is no structure in which h(x; u)
is a structural function that (i) satis�es the restrictions of model DG and (ii) is
observationally equivalent to structures Sa that generate the distribution F aY XjZ .

Theorem 2 concerns the sharpness of set identi�cation induced by the inequalities
of Theorem 1.

Theorem 2. If h(x; u) satis�es the restrictions of the model DG and does not lead
to violation of the inequalities of Theorem 1 for any z 2 
Z and for any � 2 (0; 1)
then there exists a proper distribution function FUXjZ such that S = fh; FUXjZg
satis�es the restrictions of model DG and is observationally equivalent to structures
Sa that generate the distribution F aY XjZ .

A constructive proof of Theorem 2 for continuously varying X is given in Annex
3. A proof for discrete X can be developed along similar lines.

The essence of the result of Theorem 1 and its Corollary is that a putative struc-
tural function that violates either of the inequalities of Theorem 1 for any value of
the instruments cannot be an element in a structure that generates the probabilities
used in the calculation of the inequalities.

The essence of the result of Theorem 2 is that all structural functions that satisfy
the inequalities of Theorem 1 for all values of the instruments z 2 
Z and of � 2 (0; 1)
are components of some admissible structure that generates the probabilities used to
calculate the inequalities.

For any distribution F aY XjZ there are typically many structural functions that
satisfy the inequalities of Theorem 1. This is true even when structural functions
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are subject to parametric restrictions. Examples are given in Section 4. Thus the
models D and DG set identify the structural function which underlies any distribution
F aY XjZ and there is set identi�cation of parameter values when there are parametric
restrictions.

Faced with a particular distribution F aY XjZ and support of Z, 
Z , it may be
possible to enumerate or otherwise characterize the set of structural functions that
satisfy the inequalities of Theorem 1 for all z 2 
Z , either for a particular value of �
under the restrictions of a model D or for all � 2 (0; 1) under the global independence
restriction of model DG.

The nature and support of the instrumental variables is critical in determining
the extent of the set of identi�ed functions. In particular when there are values of Z
for which values taken by X can be predicted with high accuracy then there can be
close to point identi�cation of h(X;U) at those values of X.

The degree of discreteness in the distribution of Y a¤ects the extent of partial
identi�cation. Examples are given in Section 4. The di¤erence between the two
probabilities in the inequalities of Theorem 1, �� (z), is the conditional probability
of the event: (Y;X) realisations lie on the structural function:

�� (z) � Pr[Y = h(X; �)jZ = z]

which is an event of measure zero when Y is continuously distributed. As the support
of Y grows more dense then, if a continuous limit is approached, the maximal prob-
ability mass (conditional on X and Z ) on any point of support of Y , and so �� (z),
will converge to zero and the upper and lower bounds will come to coincide. In some
circumstances variation in instruments can a¤ect the e¤ective degree of discreteness
in the distribution of Y . The Poisson example studied in Section 4 is a case in point.

Even when the bounds coincide there can remain a set of structural functions
admitted by the model. This is always the case when Z has no variation at all and
more generally when the support of Z is less rich than the support of X.9

3.3. Estimation and inference. The focus of this paper is identi�cation, specif-
ically the feasibility of using data to gain information about structural functions gen-
erating discrete outcomes when there may be endogeneity and there are instrumental
variable restrictions. Here are a few observations on estimation and inference, topics
which are left for future research.

Given an estimate F̂Y XjZ and any additional restrictions to be satis�ed by the
structural function h the set of functions that satisfy these restrictions and do not vio-
late the �estimated�inequalities for any value of the instruments can be enumerated.
Let cPr indicate probabilities taken with respect to F̂Y XjZ . Using this approach the
estimated identi�ed set of structural functions will consist of all functions h satisfying
(a) the inequalities:

9The completeness conditions advanced, for example, in Chernozhukov Imbens and Newey (2007)
have the e¤ect of achieving point identi�cation in cases in which bounds coincide, but there is
the di¢ culty for practitioners that economics does not speak loudly, perhaps not at all, about the
plausibility of such conditions.
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minz2
Z
cPr[Y � h(X; �)jZ = z] � �

maxz2
Z
cPr[Y < h(X; �)jZ = z] < �

for all � 2 (0; 1) and (b) any further restrictions such as would arise if h were required
to be in some parametric family. The results on estimation and inference in the
presence of intersection bounds given in Chernozhukov, Lee and Rosen (2008) are
useful here.

Another approach to set estimation exploits the fact that the inequalities of Theo-
rem 1 can be expressed as conditional moment inequalities involving binary indicator
variables. Under the model D there is, for some speci�ed � and all z 2 
Z :10

EY XjZ [1[Y � h(X; �)]jZ = z]� � � 0

EY XjZ [1[Y < h(X; �)]jZ = z]� � < 0

and under the model DG these inequalities hold for all � 2 (0; 1).
For any positive vector valued function w(z) there are the unconditional moment

inequalities:
EY XZ [(1[Y � h(X; �)]� �)w(Z)] � 0

EXY Z [(1[Y < h(X; �)]� �)w(Z)] < 0:

Under the model D where only one value of � is involved these can serve as the basis
for inference as in for example Andrews, Berry and Jia (2004), Moon and Schorfheide
(2006), Pakes, Porter, Ho and Ishii (2006) and Rosen (2006).

Under the model DG there is a continuum of moment inequalities on which there
seem to be few research results at this time although inference with point identi�ca-
tion induced by a continuum of moment equalities is quite well understood, see for
example Carrasco and Florens (2000).

4. Illustrations and elucidation

This Section illustrates the set identi�cation results, showing in particular cases how
the set identifying probability inequalities and identi�ed sets vary with the nature and
strength of instruments and the degree of discreteness in outcomes. The illustrations
use particular parametric structures commonly used in microeconometric practice.
Speci�cally ordered probit, Poisson and binomial structures are considered in a set-
ting in which there is potentially endogenous variation in continuous explanatory
variables.11

These particular parametric examples are useful because the degree of discreteness
in outcomes can be tuned by altering characteristics of these structures. For example
the ordered probit structure can span the range from binary to almost continuous
outcomes by choice of number and spacing of thresholds. This range is spanned in a
di¤erent way in the binomial structure by varying the �number of trials�parameter.

101[C] is 1 if C is true and 0 otherwise.
11Discrete endogenous variables are considered in Chesher (2007c).
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In the Poisson case the e¤ective degree of discreteness increases with the �mean
parameter�introducing the possibility that variation in an instrument can a¤ect the
degree of discreteness in an outcome.

The parametric examples also bring home an important message of the paper,
namely that even with parametric restrictions on structural functions the single equa-
tion IV model does not in general deliver point identi�cation. This di¢ culty arises
because of the incompleteness of the IV model which is silent about the genesis of
endogenous variables and the role played by instrumental variables in that process.

Of course to develop the examples employed in this Section it is necessary to
employ a complete data generating structure. The examples are generated as spe-
cial cases of a structure in which the structural function of interest is augmented by
an equation relating the endogenous variable to an instrument and a latent variable
which can be correlated with the latent variable in the structural function. Trans-
formed latent variables have a joint Gaussian distribution. The structures obey the
restrictions of the model DG because the structural function is nondecreasing in a
scalar continuously distributed latent variate which is distributed independently of
an instrumental variable. Only the restrictions of the single equation IV model DG
are used in the subsequent identi�cation analysis.

4.1. A generic structure for discrete outcomes with endogeneity. The
general form of the structure used in the illustrative examples is as follows.

The structural function is h(X;U) with h nondecreasing in U which is normalised
Unif(0; 1) so that there is the characterisation:

for m 2 f1; : : : ;Mg: Y = h(X;U) = ym if pm�1(X) < U � pm(X) (12)

for some ascending sequence fymgMm=1, with p0(X) � 0 and pM (X) � 1.
If U and X are independently distributed then Pr[Y � ymjX = x] = pm(x).

Particular examples are obtained by choosing particular functions fpm(X)gMm=1. In
the illustrations that follow these functions are speci�ed as cumulative probabilities
for classical covariate dependent ordered probit (including binary probit), Poisson
and binomial (including binary logit) distributions with endogeneity introduced by
allowing U and X to be jointly dependent in a manner now described.

Let � and ��1 denote respectively the standard normal distribution and quantile
function. Values of X are generated by the auxiliary equation

X = �0 + �1Z + V

and, with W � ��1(U), there is a joint Gaussian distribution of the latent variates
conditional on Z = z.�

W
V

�
jZ = z � N

��
0
0

�
;

�
1 �wv
�wv �vv

��
(13)

It follows that X given Z = z is distributed N (�0 + �1z; �vv) and the conditional
distribution function of Y given X = x and Z = z is

FY jXZ(ymjx; z) = �
�

1

�wjv

�
��1 (pm(x))�

�wv
�vv

(x� �0 � �1z)
��

(14)
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where �2wjv � 1� �
2
wv=�vv is the conditional variance of W given V .

The structural equations for Y and X have a triangular form and (U; V ) and Z
are jointly independently distributed. A model that embodies those restrictions can
have point identifying power when outcomes are discrete as shown in Chesher (2003).
Those restrictions are not imposed by the single equation IV model now considered.

4.2. Ordered probit structures. In the ordered probit illustration the struc-
tural function is characterised by

pm(x) = �

�
1

�2
(Tm � �0 � �1x)

�
, m 2 f0; : : : ;Mg (15)

where � is the standard normal distribution function, �2 > 0, and fTmgMm=0 are
constants with T0 = �1 and TM � 1. These probabilities can arise by interval
censoring of a latent Y �

Y � = �0 + �1X + �2U

with U independent of X and distributed N(0; 1) and for m 2 f1; : : : ;Mg: Y = ym
for Tm�1 < Y � � Tm. In this case the values of the thresholds will usually be known
but in other ordered response settings they may not be known.

In the particular case explored here there is throughout �0 = �1 = 1 = �2 = 1,
�wv = 0:6, �0 = 0 and �1 = 1. In the �rst two cases studied �vv = 1 so the instrument
is relatively weak, the squared correlation between X and Z being 0:36. In the �rst
case studied Y takes 4 values with fTmgM�1

m=1 = f�0:7; 0:0;+0:7g.
Now consider the admissibility of structural functions

pm(x) = �

�
1

a2
(Tm � a0 � a1x)

�
, m 2 f1; : : : ;Mg (16)

with a0 = �0 = 1 and a2 = �2 = 1 and with a1 taking values in

f0:6; 0:7; 0:8; 0:9; 1:0; 1:2; 1:4; 1:6; 1:8g:

The value of a1 is allowed to vary around the value (1:0) in the structural function
actually generating the probability distributions in the calculations that follow. The
values of a0 and a2 and the thresholds are held �xed at the values in the structural
function that generates the probability distributions. Variations in z in the interval
[�3; 3] are considered.12

Figure 1 shows the upper and lower bounding probabilities of Theorem 1 cal-
culated for a1 2 f1:0; 1:2; 1:4; 1:6; 1:8g and the structural function obtained when
� = 0:5.13 In Figure 2 the value of � is 0:75. In Figure 3 the value of � is returned
12Computations were done in the R environment (Ihaka and Gentleman (1996)). The integrate

function was used in computing the bounding probabilities and identifed sets were determined by
solving an optimisation problem using recursive calls to the optimise function to calculate solutions.
13When a1 > 0 the structural function h(x; �) with parameters set equal to a0, a1 and a2 can be

expressed as:
for m 2 f1; : : : ;Mg: h(x; �) = ym if sm�1(�) < x � sm(�)

where
sm(�) =

1

a1

�
Tm � a0 � a2��1(�)

�
, m 2 f1; : : : ;Mg

with inequalities reversed when a1 < 0.
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Table 1: Parameter values for the structures generating probability distrubtions in
the ordered probit examples

Figures �0 �1 �2 �0 �1 �wv �vv � M

1 & 5 1 1 1 0 1 0:6 1:00 0:50 4

2 & 6 1 1 1 0 1 0:6 1:00 0:75 4

3 & 7 1 1 1 0 1 0:6 0:48 0:50 4

4 & 8 1 1 1 0 1 0:6 1:00 0:50 10

to 0:5 and the instrument is strengthened by reducing �vv to 0:48. This also has
the e¤ect of increasing the strength of endogeneity in the sense that the squared
correlation between W and V rises from 0:36 to 0:75. In Figure 4 the value of �vv is
returned to 1 and the discreteness of the outcome is reduced with M = 11 with

fTmgM�1
m=1 = f�1:25;�0:85;�0:5;�0:25; 0:0; 0:25; 0:5; 0:85; 1:25g.

Table 1 summarises these settings of the parameters of the structure that generates
the probabilities used in the calculations. In Figures 5-8 the parameter settings are
as in Figures 1-4 but with a1 varying in f0:6; 0:7; 0:8; 0:9; 1:0g.

First consider Figures 1 and 5. Here and in all the Figures the upper and lower
bounding probabilities for a1 = 1 lie respectively above and below the line making the
value of � under consideration (0:5 except in Figures 2 and 6 where � = 0:75). This is
as it must be because the probabilities are calculated using �1 = 1. In Figures 1 and
5, as a1 moves above (below) 1, the upper (lower) bounding probabilities approach the
marked � = 0:5 line but they do not cross it. None of these values of a1 is identi�ably
distinct from the value �1 = 1 for the � = 0:5 structural function. In Figures 2 and
6 in which � = 0:75 the lines for a1 2 f0:6; 1:6; 1:8g do cross the � = 0:75 line. The
implication of Theorem 1 is that these are not values in the identi�ed set of values of
�1 at these parameter settings.

As the value of � varies di¤erent values of a1 become admissible. There is a
set of admissible values for each � and the set of admissible values under the global
independence model DG is the intersection of these sets. For the parameter �1 on
which we are focussing here the identi�ed set at the settings in Figures 1, 2, 5 and 6
is the interval (0:63; 1:23).

Here and in the other Figures the upper (lower) bounding probabilities approach 1
(0) as the absolute value of the instrument becomes large in magnitude. This happens
because as z moves to very low or high values the distribution of X given Z = z is
relocated to very low or high values with the result that, with high probability Y falls
on an extreme point of its support. All structural functions considered here come
to coincide and deliver an extreme point of support at su¢ ciently extreme values of
X. As z moves to extreme values, extreme values of X become highly likely and
the probability that Y lies on or below any structural function approaches 1 and the
probability it lies strictly below any structural function approaches 0.

In Figures 3 and 7 the value of � is returned to 0:50 and the instrument is strength-
ened by reducing the variance of V to 0:48. Now the lines for a1 2 f0:6; 1:6; 1:8g do
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cross the � = 0:50 line and the result of Theorem 1 is that these are not values in the
identi�ed set of values of �1 at these parameter settings. Strengthening the instru-
ment reduces the extent of the identi�ed set. Under the global independence condition
of model DG the identi�ed set for the parameter �1 is the interval (0:73; 1:16) with
the stronger instrument.

Changing the value of the coe¢ cient �1 in the auxiliary equation has no e¤ect on
identi�ed sets as long as the support of Z changes concomitantly - changing �1 has the
same e¤ect as changing the scale on which Z varies. The support of the instrument
has a very signi�cant e¤ect on the content of identi�ed sets. Obviously the crossings
of the � lines noted above will only be helpful in practice if values of z in the vicinity
of those crossings can be observed. In the particular parametric case studied here
there is additionally a phenomenon whereby if z varies unboundedly then, under
model DG, there can be point identi�cation achieved by crossings at extreme values
of � This would not be a useful route to point identi�cation in practice and relies on
parametric restrictions that have the e¤ect of �linking� the behaviour of structural
functions at extreme values of the endogenous variables to their behaviour at more
moderate values.

In Figures 4 and 8 the instrument is returned to its original strength and the
degree of discreteness in the outcome is reduced, Y now having 10 points of support.
Now the lines for a1 2 f0:6; 0:7; 1:4; 1:6; 1:8g all cross the � = 0:50 line and the
implication of Theorem 1 is that these are not values in the identi�ed set of values
of �1 at these parameter settings. Reducing discreteness reduces the extent of the
identi�ed set. Under the global independence condition of model DG the identi�ed
set for the parameter �1 is the interval (0:79; 1:10) with this less discrete outcome.

In practice one would calculate joint identi�ed sets (or estimates of them) for
multiple parameters. Here for ease of exposition the focus has been on just one
parameter. With discrete endogenous variables it is feasible to take a completely
nonparametric approach and set identify the full structural function as shown in
Chesher (2007b).

4.3. Poisson structures. In the Poisson example there are threshold functions:

pm(x) = exp(��(x))
m�1X
y=0

�(x)y

y!
m 2 f1; 2; : : : g (17)

with �(x) parameterized as follows.

�(x) = exp(�0 + �1x) (18)

This speci�cation is commonly found in applied work. If U and X are independently
distributed then

P [Y = ymjX = x] =
�(x)ym

ym!
exp(��(x))

and with ym = m� 1, Y has a Poisson distribution conditional on X. The model D
permits X to be endogenous and requires U and Z to be independently distributed.
The identifying power of this model in a particular case is now investigated.
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In the illustration the structure generating probability distributions used in the
calculations has �0 = �0:5 and �1 = 0:5. X is endogenous with �wv = 0:6,
V ar(XjZ) = �vv = 1 and �0 = 0, �1 = 1.

Figures 9 and 10 show the variation with the value of the instrument in the
bounding probabilities of Theorem 1, calculated for � = 0:5 structural functions
using fpm(x)g1m=1 as de�ned above with �(x) = exp(a0 + a1x), with a0 = �0:5 and
a1 varying in f0:1; 0:2; : : : ; 0:8; 0:9g. At low values of the instrument these variations
in a1 about the probability distribution generating value �1 = 0:5 are not identi�ably
distinguishable using the model D. However at high values of the instrument quite
small departures from �1 = 0:5 can be identi�ed. Indeed, if large enough values lie
in the support of Z then virtually all departures can be detected and there is point
identi�cation.

This �identi�cation at in�nity�phenomenon arises because Z has a positive e¤ect
on X which in turn has a positive e¤ect on the threshold functions. The result is
that as Z increases the discrete outcome tends to take larger and larger values and to
become more dispersed, the discreteness in the outcome virtually disappears, and a
position where there is point identi�cation is approached. This would not occur with
some other speci�cations of �(x) or if the impact of Z on X is limited. In practice
one encounters rather small values of the counts in the data to which Poisson models
are brought and point identi�cation via this device using a single equation IV model
is infeasible.

4.4. Binomial structures. In the binomial structure there are threshold func-
tions:

pm(x) =

m�1X
y=0

�
N

y

�
(x)y (1� (x))N�y m 2 f1; 2; : : : ;Mg (19)

with M = N + 1 and in this illustration (x) is parameterized as follows.

(x) � exp(�0 + �1x)

1 + exp(�0 + �1x)
(20)

When U and X are independently distributed Y has a binomial distribution
conditional on X with point probabilities as follows.

Pr[Y = yjX = x] =

�
N

y

�
(x)y (1� (x))N�y ; y 2 f0; 1; 2; : : : ; Ng

When N = 1 this is a parametric binary logit model. The model D permits X to
be endogenous requiring U and Z to be independent. The identifying power of this
model in a particular case is now investigated.

In the illustration the structure generating probability distributions used in the
calculations has �0 = 0:75 and �1 = 1:0. X is endogenous with �wv = 0:6,
V ar(XjZ) = �vv = 1 and �0 = 0, �1 = 1.

Figures 11-16 show the bounding probabilities of Theorem 1 calculated for � = 0:5
structural functions using fpm(x)gMm=1 as de�ned above with

(x) =
exp(a0 + a1x)

1 + exp(a0 + a1x)
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a0 = 0:75 and a1 varying as follows.

a1 2 f0:6; 0:7; 0:8; 0:9; 1:0; 1:2; 1:4; 1:6; 1:8g

The �rst two Figures (11 and 12) in the sequence show bounding probabilities for
the case N = 1 in which Y is generated by a binary logit structure with endogenous
X. In each case the calculation is done using the probability distribution generated
by the structure which has �1 = 1. In no case does the bounding probability cross
the � = 0:5 line and there is no close approach at all. Very wide variations in a1 are
accommodated in the identi�ed set when Y is binary. The single equation IV model
is quite uninformative in this binary case, a case studied in more detail in Chesher
(2007c).

In Figures 13 and 14 N = 3 and none of the bounding probability functions
cross the � = 0:5 line although there is very close approach for values of a1 far
from 1. In Figures 15 and 16 N = 6 and now structural functions with a1 outside
the interval [0:7; 1:4] can be ruled inadmissible when the probability distribution
generating structure has �1 = 1. As N is increased further the bounding probabilities
become increasingly informative and close to point identi�cation is achieved by the
single equation IV model.

5. Concluding remarks

Single equation IV models for discrete outcomes are not point identifying. However
they can have partial identifying power and econometric analysis using these models
can be informative. They have the advantages that they are less restrictive than
commonly used triangular system models which lead to control function approaches
to estimation and that they can be employed when endogenous explanatory variables
are discrete. They o¤er the possibility of a single equation attack on estimation
in the sorts of incomplete models studied in Tamer (2003). The minimalist, but
perhaps palatable, restrictions imposed in the single equation IV model lead to partial
identi�cation of deep structural objects which may be of greater interest than point
identi�cation of the various averages of structural features which have featured largely
in the recent nonparametric identi�cation literature.

This paper has considered the case in which there is a scalar discrete outcome. The
analysis can be extended to the vector case. This is of interest when studying panel
data with discrete outcomes where endogeneity may arise because of the presence
of �individual e¤ects�which may be correlated with observed explanatory variables.
Consider a case with M structural equations

Ym = hm(X;Um); m = 1; : : : ;M

in which each function hm is weakly increasing in Um and each Um is a scalar ran-
dom variable normalised marginally Unif(0; 1) and U � fUmgMm=1 and a vector of
instrumental variables Z 2 
Z are independently distributed. De�ne h � fhmgMm=1
and

C(�) � Pr
"
M̂

m=1

Um � �m

#
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which is a copula since the components of U have marginal uniform distributions.
An argument along the lines of that used in Section 3.1 leads to the following pair of
inequalities which hold for all � � f�mgMm=1 2 [0; 1]M and z 2 
Z .

Pr

"
M̂

m=1

(Ym � hm(X; �m) jZ = z
#
� C(�)

Pr

"
M̂

m=1

(Ym < hm(X; �m) jZ = z
#
< C(�)

Let Pr a indicate probabilities taken with respect to a distribution function F aY XjZ
generated by an admissible structure Sa � fha; F aUXjZg. Consider a structure S

� �
fh�; F �UXjZg and let C

� be the copula (for U) associated with the distribution function
F �UXjZ . Arguing as in Section 3.2 it can be shown that S

� is observationally equivalent

to Sa for z 2 
Z if and only if the following inequalities hold for all � 2 [0; 1]M and
z 2 
Z .

Pra

"
M̂

m=1

(Ym � h�m(X; �m) jZ = z
#
� C�(�)

Pr a

"
M̂

m=1

(Ym < h
�
m(X; �m) jZ = z

#
< C�(�)

These inequalities de�ne an identi�ed set of structural functions associated with Sa.
In the absence of restrictions on the dependence amongst the components of U any
copula can appear in these inequalities and then there will only be bene�t in joint
consideration of the M structural functions if there are cross-function restrictions -
for example if X appears in each function via a common single index X� say.

Some of the restrictions embodied in the model and examples can be relaxed. For
example it is easy to generalise to the case in which exogenous variables appear in the
structural function. In the examples there is just one instrumental variable and para-
metric restrictions are considered. The results of the paper do apply when there are
many instruments and it is interesting to consider the over-partial-identi�cation that
may then result. This, and tests for the validity of partially identifying instrumental
variable restrictions are the subject of current research. A fully nonparametric analy-
sis of a model for binary outcomes with discrete endogenous variables is contained
in Chesher (2007c).14 In the binary outcome case additional heterogeneity, W , inde-
pendent of instruments Z, can be introduced if there is a monotone index restriction,
that is if the structural function has the form h(X�;U;W ) with h monotonic in X�
and in U .

It is clear from the examples studied here that when discreteness is a signi�cant
aspect of an outcome the identifying power of a single equation IV model can be
low unless instruments are strong. The marginal value of the additional restrictions
embodied in triangular, causal chain, models is high in this circumstance but whether

14Some results were given at the 60th Birthday Conference in Honour of Peter Robinson on May
25th 2007.
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those restrictions are plausible is a matter for case by case consideration in the eco-
nomic or other context of the application. These triangular models do not deliver
point identi�cation when endogenous variables are discrete. Finally, thinking about
survey design, it is clear that the impact of discreteness on the identifying power
of models is an element that should be considered when deciding whether to illicit
banded responses and when deciding what type of banding to employ.
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Annex 1

Probability inequalities

It is shown that under the restrictions of model D there are the following inequal-
ities which hold for all x, z and � .

Pr[Y � h(X; �)jX = x; Z = z] � a(� ; x; z)

Pr[Y < h(X; �)jX = x; Z = z] < a(� ; x; z)
(A1.1)

Consider the �rst inequality. Directly from the de�nition of Y :

Pr[Y � h(X; �)jX = x;Z = z] = Pr[h(X;U) � h(X; �)jX = x;Z = z]

and because h(x; �) = ym if and only if � 2 (pm�1(x); pm(x)] there is the following.

Pr[h(X;U) � h(X; �)jX = x;Z = z] =

MX
m=1

1[h(x; �) = ym] Pr[h(X;U) � h(X; pm(x))jX = x;Z = z]

1[�] is the indicator function, equal to 1 if its argument is true and 0 otherwise. Since
h(x; u) is nondecreasing with points of increase only at u 2 fp1(x); : : : ; pM (x)g

Pr[h(X;U) � h(X; pm(x))jX = x;Z = z] = Pr[U � pm(x)jX = x;Z = z]

� a(pm(x); x; z)

and so

Pr[h(X;U) � h(X; �)jX = x;Z = z] =

MX
m=1

1[h(x; �) = ym]a(pm(x); x; z)

and since a(t; x; z) is a strictly increasing function of t and h(x; �) = ym if and only
if � 2 (pm�1(x); pm(x)] there is on substituting h(X;U) = Y

Pr[Y � h(X; �)jX = x;Z = z] � a(� ; x; z)

which is the required inequality.
Consider the second inequality in (A1.1). Directly from the de�nition of Y :

Pr[Y < h(X; �)jX = x;Z = z] = Pr[h(X;U) < h(X; �)jX = x;Z = z]

and because h(x; �) = ym if and only if � 2 (pm�1(x); pm(x)] there is the following.

Pr[h(X;U) < h(X; �)jX = x;Z = z] =

MX
m=2

1[h(x; �) = ym] Pr[h(X;U) � h(X; pm�1(x))jX = x;Z = z]
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Since h(x; u) is nondecreasing with points of increase only at u 2 fp1(x); : : : ; pM (x)g

Pr[h(X;U) � h(X; pm�1(x))jX = x;Z = z] = Pr[U � pm�1(x)jX = x;Z = z]

� a(pm�1(x); x; z)

and so

Pr[h(X;U) � h(X; �)jX = x;Z = z] =
MX
m=2

1[h(x; �) = ym]a(pm�1(x); x; z)

and because a(t; x; z) is a strictly increasing function of t and h(x; �) = ym if and
only if � 2 (pm�1(x); pm(x)] there is on substituting h(X;U) = Y ,

Pr[Y < h(X; �)jX = x; Z = z] < a(� ; x; z)

which is the required inequality.

Annex 2

Proof of Theorem 1

Consider structures S� � fh�; F �UXjZg satisfying the conditions of model D and
such that h�(x; u)ju=� = h(x; �). The inequalities in the statement of Theorem 1
must hold for all z 2 
Z with Pra replaced by Pr�. Therefore if for some z 2 
Z
either inequality fails to hold then F �Y XjZ 6= F

a
Y XjZ .

Annex 3

Proof of Theorem 2

The proof proceeds by considering a structural function h(x; u), that:

1. is weakly monotonic nondecreasing for variations in u,

2. is characterised by functions fpm(x)gMm=0,

3. satis�es the inequalities of Theorem 1 when probabilities are calculated using
a conditional distribution FY XjZ .

A proper conditional distribution FUXjZ is constructed which respects the in-
dependence restriction (U and Z are independent) and has the property that the
distribution function generated by fh; FUXjZg is identical to FY XjZ used to calculate
the probabilities in Theorem 1.15

15This method of construction builds on a method proposed for the discrete endogenous variable,
binary outcome case by Martin Cripps.
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Most of the proof is concerned with constructing a distribution for U conditional
on both X and Z, FU jXZ . This is combined with FXjZ , the (identi�ed) distribution
of X conditional on Z implied by FY XjZ , in order to obtain the required distribution
of (U;X) conditional on Z.

The construction of FUXjZ is done for a representative value, z, of Z. The argu-
ment of the proof can be repeated for any z such that the inequalities of Theorem 1
are satis�ed.

Unless otherwise stated belowm 2 f1; : : : ;Mg whereM is the number of points of
support of Y and M may be unbounded. It is helpful to introduce some abbreviated
notation.

De�ne conditional probabilities as follows.

�m(x) � Pr[Y = ymjX = x;Z = z] = FY jXZ(ymjx; z)

�m � Pr[Y = ymjZ = z] =
Z

x2
XjZ

�m(x)dFXjZ(xjz)

��m(x) �
mX
j=1

�j(x) ��m �
mX
j=1

�j

De�ne �0(x) � �0 � 0, and
P0
m=1 �m � 0 and note that ��M = 1 and for all x,

��M (x) = 1. Both f�m(x)gMm=0 and f�mgMm=0 depend on z but, to avoid clutter,
dependence on z is not made explicit at many points in the notation in this Annex.

De�ne functions:

um(v) =

8><>:
0 ; 0 < v �

Pm�1
j=1 �j

v �
Pm�1
j=1 �j ;

Pm�1
j=1 �j < v �

Pm
j=1 �j

�m ;
Pm
j=1 �j < v � 1

which have the property
PM
m=1 um(v) = v:

De�ne sets as follows. Let 
XjZ denote the support of X conditional on Z. Let
� denote the empty set.

For m 2 f1; : : : ;Mg:
Xm(s) � fx : pm(x) = sg

for m 2 f1; : : : ;M � 1g:
Xm[s] � fx : pm(x) � sg

and, for the case m =M :

XM [s] � fx : pM�1(x) � sg:

De�ne

sm(v) � min
s

(
s :

Z
x2Xm[s]

�m(x)dFXjZ(xjz) � um(v)
)

and de�ne functions �m(v; x) as follows.

�m(v; x) �
�
�m(x) ; x 2 Xm[sm(v)]
0 ; x =2 Xm[sm(v)]
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�(v; x) �
MX
m=1

�m(v; x)

For a structural function h(x; u) characterised by fpm(x)gMm=1 the distribution
function FU jXZ is de�ned as

FU jXZ(ujx; z) � �(u; x)

where z is the value of Z upon which there is conditioning at various points in the
de�nition of �(v; x). The distribution function FUXjZ is then obtained as

FUXjZ(ujx; z) =
Z
s�x

FU jXZ(ujs; z)dFXjZ(sjz):

It is now shown that FU jXZ is a proper distribution function exhibiting the inde-

pendence property U k Z, that is:Z

XjZ

FU jXZ(ujx; z)dFXjZ(xjz) � FU jZ(ujz) = u

for all u.
It is required to show that (1) �(0; x) = 0 for all x, (2) �(1; x) = 1 for all x,

(3) for each x, �(v; x) � �(v0; x) for all v > v0 and (4) independence, speci�cally:
EXjZ [�(v;X)jz] = v for all z and recall that �(v; x) depends on z although this is
not made explicit in the notation.

1. �(0; x) = 0 for all x. For each m, um(0) = 0, so sm(0) = 0. Therefore for
each m; Xm[sm(0)] = �, so for each m and all x, �m(0; x) = 0 and so for all x,
�(0; x) = 0.

2. �(1; x) = 1 for all x. For each m, um(1) = �m, so sm(1) = 1. Therefore for
each m, Xm[sm(1)] = 
XjZ , so for each m and all x, �m(1; x) = �m(x) and so,
on summing across m, for all x, �(1; x) = 1.

3. �(v; x) � �(v0; x) for all v > v0. The functions um(v) are nondecreasing,
therefore the functions sm(v) are nondecreasing. Therefore for all v > v0,
Xm[sm(v)] � Xm[sm(v0)], and so each function �m(v; x) is nondecreasing from
which the result follows.

4. Independence. For each m and all v:Z
x2
XjZ

�m(v; x)dFXjZ(xjz) =
Z

x2Xm[sm(v)]

�m(x)dFXjZ(xjz) = um(v)

and soZ
x2
XjZ

�(v; x)dFXjZ(xjz) =
Z

x2
XjZ

MX
m=1

�m(v; x)dFXjZ(xjz) =
MX
m=1

um(v) = v:



Endogeneity and Discrete Outcomes 24

It is now shown that FUXjZ , de�ned above, has an observational equivalence prop-
erty. Speci�cally it is shown that, when h(x; u) satis�es the inequalities of Theorem
1, the structure fh; FUXjZg, employing FUXjZ de�ned above, generates FY XjZ which
de�nes the values of the probabilities f�m(x)gMm=1 and f�mg

M
m=1 that are employed

in its construction.
Expressed in terms of the functions fpm(x)gMm=0 the inequalities take the following

form.

MX
m=1

Z
pm�1(x)<u�pm(x)

��m�1(x)dFXjZ(xjz) < u �
MX
m=1

Z
pm�1(x)<u�pm(x)

��m(x)dFXjZ(xjz)

This involves the cumulative probabilities ��m(x). It is convenient to write the in-
equalities in terms of the point probabilities f�mgMm=1, as follows.

M�1X
m=1

Z
pm(x)<u

�m(x)dFXjZ(xjz) < u � �1 +
MX
m=2

Z
pm�1(x)<u

�m(x)dFXjZ(xjz) (A3.1)

It is now shown that, under this condition h together with FU jXZ de�ned above
(that is �(u; x)) generates FY jXZ . That happens if and only if the following conditions
hold: for each m and all x:

�(pm(x); x) = ��m(x)

which is true if, for all i and j and all x the following conditions hold.

�j(pi(x); x) =

�
�j(x) ; j � i
0 ; j > i

(A3.2)

It is now shown that when the constraints (A3.1) are satis�ed this condition is sat-
is�ed.

First consider the case j = i. Every term on the left hand side of (A3.1) is
nonnegative, so when the constraints are satis�ed, for each i and all uZ

pi(x)<u

�i(x)dFXjZ(xjz) < u

that is for some �(u) > 0 Z
pi(x)<u

�i(x)dFXjZ(xjz) = u+ �(u)

equivalently Z
pi(x)<u��(u)

�i(x)dFXjZ(xjz) = u

and so for all v, si(v) > v. It follows that for each i, Xi[si(v)] contains Xi[v] of which
Xi(v) = fx : pi(x) = vg is a subset. Therefore, if the constraints (A3.1) hold then
�i(pi(x); x) = �i(x).
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Now consider the case i > j. Because each �j(v; x) is nondecreasing in v, and
because for all i > j, pi(x) � pj(x), �j(pi(x); x) � �j(pj(x); x). But the maximum
value that �j(v; x) can take is �j(x). It follows that for all i � j, �j(pi(x); x) = �j(x).

Now consider the case i = j � 1. Consider some j and u < pj(x) and the right
hand side of the constraints (A3.1). All contributions from terms in the summation
with i > j are zero. All contributions with i < j are bounded by �i and so there is
the following inequality. Z

pj�1(x)<u

�j(x)dFXjZ(xjz) � u�
j�1X
i=1

�i

Consider the content of the set Xj [sj(v)]. For v <
Pj�1
i=1 �i, uj(v) is zero and the set

is empty. For pj(x) > v �
Pj�1
i=1 �i, the inequality above requires that sj(v) � v. In

particular, for i < j, sj(pi(x)) < pi(x). It follows that Xj [sj(v)] has no intersection
with Xi(v) and so �j(pi(x); x) = 0 for i < j.

Finally consider the case i < j � 1. Because each �j(v; x) is nondecreasing in v,
and because for all i < j � 1, pi(x) � pj�1(x), �j(pi(x); x) � �j(pj�1(x); x) = 0 and
so for all i < j � 1, �j(pi(x); x) = 0. This concludes the demonstration that (A3.2)
holds.

It has been shown that FU jXZ(ujx; z) = �(u; x), constructed as above, is a proper
distribution function respecting the independence restriction, U k Z, delivering, with
the structural function h, the conditional distribution function FY jXZ . It follows that
FU jXZ de�ned as above, brought together with FXjZ to produce FUXjZ , combines with
h to deliver FY XjZ .

The inequalities of Theorem 1 are crucial in endowing fh; FUXjZg with the obser-
vational equivalence property. It has been shown that for each h that satis�es those
inequalities there exists at least one distribution FUXjZ such that fh; FUXjZg gener-
ates the distribution FY XjZ used to calculate the probability inequalities of Theorem
1.
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Figure 1: Base case: � = 0:50. Upper and lower bounding probabilities for ordered
probit structural functions with � = 0:75, a0 = a2 = 1, and a2 varying as shown.
Parameter values in the structure generating the probability distributions used in the
calculations are �0 = �1 = �2 = 1, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1, M = 4 points
of support.
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Figure 2: Base case: � = 0:75. Upper and lower bounding probabilities for ordered
probit structural functions with � = 0:75, a0 = a2 = 1, and a2 varying as shown.
Parameter values in the structure generating the probability distributions used in the
calculations are �0 = �1 = �2 = 1, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1, M = 4 points
of support.
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Figure 3: Strong Instrument. Upper and lower bounding probabilities for ordered
probit structural functions with � = 0:50, a0 = a2 = 1, and a2 varying as shown.
Parameter values in the structure generating the probability distributions used in the
calculations are �0 = �1 = �2 = 1, �0 = 0, �1 = 1, �wv = 0:6, �vv = 0:48, M = 4
points of support.
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Figure 4: Less discrete M = 10. Upper and lower bounding probabilities for ordered
probit structural functions with � = 0:50, a0 = a2 = 1, and a2 varying as shown.
Parameter values in the structure generating the probability distributions used in the
calculations are �0 = �1 = �2 = 1, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1, M = 10
points of support.
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Figure 5: Base case: � = 0:50. Upper and lower bounding probabilities for ordered
probit structural functions with � = 0:75, a0 = a2 = 1, and a2 varying as shown.
Parameter values in the structure generating the probability distributions used in the
calculations are �0 = �1 = �2 = 1, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1, M = 4 points
of support.
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Figure 6: Base case: � = 0:75. Upper and lower bounding probabilities for ordered
probit structural functions with � = 0:75, a0 = a2 = 1, and a2 varying as shown.
Parameter values in the structure generating the probability distributions used in the
calculations are �0 = �1 = �2 = 1, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1, M = 4 points
of support.
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Figure 7: Strong Instrument. Upper and lower bounding probabilities for ordered
probit structural functions with � = 0:50, a0 = a2 = 1, and a2 varying as shown.
Parameter values in the structure generating the probability distributions used in the
calculations are �0 = �1 = �2 = 1, �0 = 0, �1 = 1, �wv = 0:6, �vv = 0:48, M = 4
points of support.
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Figure 8: Less discrete M = 10. Upper and lower bounding probabilities for ordered
probit structural functions with � = 0:50, a0 = a2 = 1, and a2 varying as shown.
Parameter values in the structure generating the probability distributions used in the
calculations are �0 = �1 = �2 = 1, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1, M = 10
points of support.
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Figure 9: Upper and lower bounding probabilities for Poisson structural functions
with � = 0:50, a0 = �0:5, and a1 varying as shown. Parameter values in the structure
generating the probability distributions used in the calculations are �0 = �0:5, �1 =
0:5, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1.
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Figure 10: Upper and lower bounding probabilities for Poisson structural functions
with � = 0:50, a0 = �0:5, and a1 varying as shown. Parameter values in the structure
generating the probability distributions used in the calculations are �0 = �0:5, �1 =
0:5, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1.
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Figure 11: N = 1: binary logit. Upper and lower bounding probabilities for binomial
structural functions with � = 0:50, a0 = 0:75, and a1 varying as shown. Parameter
values in the structure generating the probability distributions used in the calculations
are �0 = 0:75, �1 = 1:0, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1.
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Figure 12: N = 1: binary logit. Upper and lower bounding probabilities for binomial
structural functions with � = 0:50, a0 = 0:75, and a1 varying as shown. Parameter
values in the structure generating the probability distributions used in the calculations
are �0 = 0:75, �1 = 1:0, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1.
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Figure 13: N = 3. Upper and lower bounding probabilities for binomial structural
functions with � = 0:50, a0 = 0:75, and a1 varying as shown. Parameter values
in the structure generating the probability distributions used in the calculations are
�0 = 0:75, �1 = 1:0, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1.
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Figure 14: N = 3. Upper and lower bounding probabilities for binomial structural
functions with � = 0:50, a0 = 0:75, and a1 varying as shown. Parameter values
in the structure generating the probability distributions used in the calculations are
�0 = 0:75, �1 = 1:0, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1.
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Figure 15: N = 6. Upper and lower bounding probabilities for binomial structural
functions with � = 0:50, a0 = 0:75, and a1 varying as shown. Parameter values
in the structure generating the probability distributions used in the calculations are
�0 = 0:75, �1 = 1:0, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1.
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Figure 16: N = 6. Upper and lower bounding probabilities for binomial structural
functions with � = 0:50, a0 = 0:75, and a1 varying as shown. Parameter values
in the structure generating the probability distributions used in the calculations are
�0 = 0:75, �1 = 1:0, �0 = 0, �1 = 1, �wv = 0:6, �vv = 1.


