Strong shift equivalence of matrices over a ring

joint work in progress with Scott Schmieding

Mike Boyle

University of Maryland
Introduction

For problems of \mathbb{Z}^d SFTs and their relatives:

$d \geq 2$:
computability conditions are fundamental.

$d = 1$:
Key features:
(1) Algebra around matrices
(SSE, SE, related invariants)
(2) Positivity constraints

This talk reports progress on (1).

All rings and semirings are assumed to contain \{0, 1\}.
Strong shift equivalence

Let S be a semiring.
And on the first day [1973], Williams defined strong shift equivalence.

Matrices A, B over S are elementary strong shift equivalent over S (ESSE-S) if they are square and there exist matrices U, V over S such that

$$A = UV \quad \text{and} \quad B = VU.$$

A, B are strong shift equivalent over S (SSE-S) if there exists a chain

$$A = A_0, A_1, \ldots, A_\ell = B$$

with A_{i-1} and A_i ESSE-S for $0 < i \leq \ell$.
Why did Williams define SSE?

- Up to topological conjugacy, every shift of finite type (SFT) is an “edge SFT” σ_A, defined by a square matrix A over \mathbb{Z}_+.

- σ_A and σ_B are isomorphic (topologically conjugate) iff A, B are SSE-\mathbb{Z}_+.

But SSE over \mathbb{Z}_+ is very hard to understand completely (not known to be decidable, even restricted to small cases).

So on the second day, Williams defined ...
Shift equivalence

DEFN Square matrices A, B are shift equivalent over S (SE-S) if \exists matrices U, V over S and $\ell \in \mathbb{N}$ such that

$$A^\ell = UV \quad B^\ell = VU$$

$$AU = UB \quad BV = VA$$

Always: SSE-S implies SE-S. Also

- SE-\mathbb{Z}_+ is decidable (Kim-Roush).

- SE-\mathbb{Z}_+ turns out to be reasonably tractable, and closely related to significant applications in symbolic dynamics

- SE over \mathbb{Z} (or other rings) has useful and conceptually satisfying algebraic reformulations.
Classifying shifts of finite type.

Williams gave us:

- **Theorem (Annals of Math 1973)**
 \[SE-\mathbb{Z}_+ \implies SSE-\mathbb{Z}_+ . \]

- **Conjecture (Annals of Math 1974)**
 \[SE-\mathbb{Z}_+ \implies SSE-\mathbb{Z}_+ . \]

Eventually counterexamples were constructed (Kim Roush 1992,1999), based on a lovely algebraic topological structure created by Wagoner ("strong shift equivalence space"). No progress since on understanding refinement of \(SSE-\mathbb{Z}_+ \) by \(SE-\mathbb{Z}_+ \).

However ...

From here \(S \) is a ring.
There are good reasons to study SSE over other rings and semirings.

- To approach the \mathbb{Z} problem.

- There are other symbolic dynamical systems presented by matrices over S_+ and classified up to conjugacy by SSE over S_+. E.g.:

 $\mathcal{S} = \mathbb{Z}G$, G finite: SSE-\mathbb{Z}_+G classifies free G-SFTs.

 $\mathcal{S} = \mathbb{Z}G$, $G = \mathbb{Z}^n$: SSE-\mathbb{Z}_+G classifies irred. SFTs with Markov measure.

 $\mathcal{S} =$ integral semigroup ring of a certain noncommutative semigroup: SSE over S_+ classifies sofic shifts.
• For understanding constraints of order on algebraic properties of matrices.

• Understanding SSE-S for its own sake.

• Understand better proofs that can’t work and theorems that can’t be proved.

Before confronting the hard problem of understanding how SSE-S_+ refines SE-S_+, we would like to understand how SSE-S refines SE-S.

It was known that SE-S implies SSE-S if

\[S = \mathbb{Z} \text{ (Williams, 70s)} \]
\[S = \text{PID (Effros, 80s)} \]
\[S = \text{Dedekind domain (B-Handelman, 90s)}. \]

That was it.
Definitions

\[\text{GL}(S) = \text{group of } \mathbb{N} \times \mathbb{N} \text{ matrices } \begin{pmatrix} U & 0 \\ 0 & I \end{pmatrix} \]
with \(U \) finite invertible.

\[\text{EL}(S) = \text{subgroup generated by basic elementary matrices } E \]
\((E = I \text{ except perhaps in one offdiagonal entry}) \)

\[\text{EL}(S) = \text{commutator subgroup} \]

\[K_1(S) = \text{GL}(S) / \text{EL}(S) \]

The central connection for clarifying SSE-\(S \) is ...

THEOREM (B-Schmieding)
Suppose A, B are matrices over S. TFAE.

(1) A and B are SSE over S.

(2) There are E, F in $\text{El}(S[t])$ such that $E(I - tA)F = (I - tB)$.

The finite matrices $I - tA, I - tB$ are embedded as the upper left corners of matrices with all other entries zero (and identified with these infinite matrices).

This grows out of work by Shannon, BGMY, Wagoner, Kim-Roush-Wagoner, B-Sullivan.

The theorem above leads to ...
THEOREM (B-Schmieding)
Let A be a square matrix over S.

(I) If B is SE over S to A, then there is a nilpotent matrix N such that

$$\begin{pmatrix} A & 0 \\ 0 & N \end{pmatrix}$$

is SSE over S to B.

(II) The map

$$\begin{pmatrix} A & 0 \\ 0 & N \end{pmatrix} \to I - tN$$

induces a bijection from the set of SSE classes of matrices SE over S to A to the abelian group $NK_1(S)/H_A$.
The group $NK_1(S)$ is an important group in the algebraic K-theory of the ring S. It is the kernel of the map

$$K_1(S[t]) \to K_1(S)$$

induced by $t \mapsto 0$.

The group H_A is the set of elements in $K_1(S)$ containing a matrix U such that there is E in $\text{El}(S)$ such that

$$U(I - tA)E = I - tA.$$
What about this group

\[NK_1(S)/H_A \]

which captures the refinement of SE-\(S \) by SSE-\(S \)?

\(NK_1(S) \) if nontrivial is not finitely generated (Farrell 1977).

\(H_A = 0 \) if \(A \) is nilpotent or \(S \) is commutative.

Any consequences of Theorem?
Known fact: for $S = ZG$ with $G = \mathbb{Z}/n\mathbb{Z}$:
$NK_1(S) = 0$ iff n is squarefree.

For the not-squarefree case: we expect this will let us refute a working conjecture of Bill Parry on the classification of skew products of mixing SFTs by finite groups.

For a huge class of rings, we now know SE-S implies SSE-S. This includes ZG with $G = \mathbb{Z}^n$.

THM. Suppose A and B are matrices over a dense subring S of the reals, with A primitive and B SE over S to A, with trace$(A) > 0$. Then B is SSE over S to a primitive matrix.

(The “Generalized Spectral Conjecture” of B-Handelman is reduced to realization by any element of a shift equivalence class.)
In “Path Methods for strong shift equivalence of positive matrices” (B-Kim-Roush 2013), the constructions of certain SSEs of positive matrices A, B over S a dense subring of R depended on an assumption A, B SSE over S (not just SE). We now know this is not an artifact of a deficient proof. E.g., $S = \mathbb{Q}[\pi^2, \pi^3, e, e^{-1}]$ has $NK_1(S)$ nontrivial.

In (B-Kim-Roush 2013), a 3-step program was proposed for understanding SSE-S_+ of positive trace matrices over S a dense subring of \mathbb{R}. One step was to understand the refinement of SE by SSE over S.

In this work, we found a characterization of equivalence in the Bass group $\text{Nil}_0(S)$ which (so far?) we have not found in the literature.
The connections involved in these results may lead to ideas useful for understanding the \mathbb{Z}_+^n case of SSE. This suggestion is perhaps not so wild as it might appear.

As Sinai replied, when asked after a talk whether he thought his probabilistic approach to the Mobius subshift could lead to a proof of the Riemann Hypothesis:
The situation is not hopeless.