Stochastic Equations of Super-Lévy Process with General Branching Mechanism

Xu Yang

(Joint work with Hui He and Zenghu Li)

Beijing Normal University

June 18, 2012
Content

- Introduction
- Main results
- Proof of Theorem 2
- Further result: SPDE driven by α-stable noise
Let \(\{X_t : t \geq 0\} \) be a binary branching super-Brownian motion (SBM). Then \(X_t(dx) = X_t(x)dx \) and the density is the unique positive weak solution to (Konno-Shiga (1988) and Reimers (1989)):

\[
\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + \sqrt{X_t(x)} \dot{W}_t(x), \quad t \geq 0, \quad x \in \mathbb{R},
\]

where \(\dot{W}_t(x) \) is the derivative of a space-time Gaussian white noise (GWN).

- The pathwise uniqueness for (1) is unknown.
 Progress: Perkins, Sturm, Mytnik, etc.

- Xiong (2012) studied the pathwise uniqueness to SPDE for the distribution function process of the SBM.
 Pathwise uniqueness to similar equation see Dawson and Li (2012).

- This talk is to generalize the result of Xiong (2012) to the super-Lévy process with general branching mechanism.
Let \(\{X_t : t \geq 0\} \) be a binary branching super-Brownian motion (SBM). Then \(X_t(dx) = X_t(x)dx \) and the density is the unique positive weak solution to (Konno-Shiga (1988) and Reimers (1989)):

\[
\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + \sqrt{X_t(x)} \dot{W}_t(x), \quad t \geq 0, \quad x \in \mathbb{R},
\]

(1)

where \(\dot{W}_t(x) \) is the derivative of a space-time Gaussian white noise (GWN).

- The pathwise uniqueness for (1) is unknown.
 Progress: Perkins, Sturm, Mytnik, etc.

- Xiong (2012) studied the pathwise uniqueness to SPDE for the distribution function process of the SBM.
 Pathwise uniqueness to similar equation see Dawson and Li (2012).

- This talk is to generalize the result of Xiong (2012) to the super-Lévy process with general branching mechanism.
Let \(\{X_t : t \geq 0\} \) be a binary branching super-Brownian motion (SBM). Then \(X_t(dx) = X_t(x)dx \) and the density is the unique positive weak solution to (Konno-Shiga (1988) and Reimers (1989)):

\[
\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + \sqrt{X_t(x)} \dot{W}_t(x), \quad t \geq 0, \quad x \in \mathbb{R},
\]

where \(\dot{W}_t(x) \) is the derivative of a space-time Gaussian white noise (GWN).

- The pathwise uniqueness for (1) is unknown.
 Progress: Perkins, Sturm, Mytnik, etc.

- **Xiong (2012)** studied the pathwise uniqueness to SPDE for the distribution function process of the SBM.
 Pathwise uniqueness to similar equation see Dawson and Li (2012).

- This talk is to generalize the result of Xiong (2012) to the super-Lévy process with general branching mechanism.
Let \(\{X_t : t \geq 0\} \) be a binary branching super-Brownian motion (SBM). Then \(X_t(dx) = X_t(x)dx \) and the density is the unique positive weak solution to (Konno-Shiga (1988) and Reimers (1989)):

\[
\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + \sqrt{X_t(x)} \dot{W}_t(x), \quad t \geq 0, \quad x \in \mathbb{R},
\]

where \(\dot{W}_t(x) \) is the derivative of a space-time Gaussian white noise (GWN).

- The pathwise uniqueness for (1) is unknown.
 Progress: Perkins, Sturm, Mytnik, etc.

- Xiong (2012) studied the pathwise uniqueness to SPDE for the distribution function process of the SBM.
 Pathwise uniqueness to similar equation see Dawson and Li (2012).

- This talk is to generalize the result of Xiong (2012) to the super-Lévy process with general branching mechanism.
• $D(\mathbb{R}) := \{ f : f \text{ is bounded right continuous increasing and } f(-\infty) = 0 \}$.

$M(\mathbb{R}) := \{ \text{finite Borel measures on } \mathbb{R} \}$.

There is a 1-1 correspondence between $D(\mathbb{R})$ and $M(\mathbb{R})$ assigning a measure to its distribution function. We endow $D(\mathbb{R})$ with the topology induced by this correspondence from the weak convergence topology of $M(\mathbb{R})$.

• The branching mechanism ϕ:

$$\phi(\lambda) = b\lambda + c\lambda^2/2 + \int_{0}^{\infty} (e^{-z\lambda} - 1 + z\lambda)m(dz).$$

• $M(\mathbb{R})$-valued $\{ X_t \}$ process is called a super-Lévy process if

\[
\left\{ \begin{array}{l}
\mathbb{E}_{\mu}\left\{ \exp\left[-\langle X_t, f \rangle \right] \right\} = \exp\left\{ -\langle \mu, v_t \rangle \right\}, \\
\frac{\partial}{\partial t} v_t(x) = Av_t(x) + \phi(v_t(x)), \quad v_0(x) = f(x).
\end{array} \right.
\]
• $D(\mathbb{R}) := \{ f : \text{f is bounded right continuous increasing and } f(-\infty) = 0 \}$.
 $M(\mathbb{R}) := \{ \text{finite Borel measures on } \mathbb{R} \}$.
 There is a 1-1 correspondence between $D(\mathbb{R})$ and $M(\mathbb{R})$ assigning a measure to its distribution function. We endow $D(\mathbb{R})$ with the topology induced by this correspondence from the weak convergence topology of $M(\mathbb{R})$.

• The branching mechanism ϕ:

\[
\phi(\lambda) = b\lambda + c\lambda^2/2 + \int_0^\infty (e^{-z\lambda} - 1 + z\lambda)m(dz).
\]

• $M(\mathbb{R})$-valued $\{X_t\}$ process is called a super-Lévy process if

\[
\begin{align*}
E_\mu \left\{ \exp[-\langle X_t, f \rangle] \right\} &= \exp\{ -\langle \mu, v_t \rangle \}, \\
\frac{\partial}{\partial t} v_t(x) &= Av_t(x) + \phi(v_t(x)), \quad v_0(x) = f(x).
\end{align*}
\]
• $D(\mathbb{R}) := \{f \in C^0 \cap L^\infty : f \text{ is bounded right continuous increasing and } f(-\infty) = 0\}$.

$M(\mathbb{R}) := \{\text{finite Borel measures on } \mathbb{R}\}$.

There is a 1-1 correspondence between $D(\mathbb{R})$ and $M(\mathbb{R})$ assigning a measure to its distribution function. We endow $D(\mathbb{R})$ with the topology induced by this correspondence from the weak convergence topology of $M(\mathbb{R})$.

• The branching mechanism ϕ:

$$\phi(\lambda) = b\lambda + c\lambda^2/2 + \int_0^\infty (e^{-z\lambda} - 1 + z\lambda)m(dz).$$

• $M(\mathbb{R})$-valued $\{X_t\}$ process is called a super-Lévy process if

$$\left\{ \begin{array}{l}
E_{\mu}\left\{ \exp[-\langle X_t, f \rangle] \right\} = \exp\{-\langle \mu, v_t \rangle\}, \\
\frac{\partial}{\partial t} v_t(x) = Av_t(x) + \phi(v_t(x)), \quad v_0(x) = f(x).
\end{array} \right.$$
Our aim in this talk is that under a mild condition on A, \{${Y_t}$\}, defined by $Y_t(x) = X_t(-\infty, x]$, is the pathwise unique solution to

$$Y_t(x) = Y_0(x) - b \int_0^t Y_s(x) ds + \sqrt{c} \int_0^t \int_0^{Y_s(x)} W(ds, du) + \int_0^t \int_0^\infty \int_0^{Y_s-(x)} z \tilde{N}_0(ds, dz, du) + \int_0^t A^* Y_s(x) ds,$$ \hspace{1cm} (2)

where $W(ds, du)$ is a GWN and $\tilde{N}_0(ds, dz, du)$ compensated Poisson random measure (CPRM), A^* denotes the dual operator of A.

- Xiong (2012): $A = \Delta/2$ and $b = \tilde{N}_0 = 0$.
- Key approach: connecting (2) with a backward doubly SDE. Xiong (2012) used an L^2-argument. We use an L^1-argument.
- For $M(\mathbb{R})$-valued process \{${X_t}$\}, its distribution \{${Y_t}$\} is $D(\mathbb{R})$-valued.
Our aim in this talk is that under a mild condition on A, $\{Y_t\}$, defined by $Y_t(x) = X_t(\infty, x]$, is the pathwise unique solution to

$$Y_t(x) = Y_0(x) - b \int_0^t Y_s(x) ds + \sqrt{c} \int_0^t \int_0^{Y_s(x)} W(ds, du)$$

$$+ \int_0^t \int_0^\infty \int_0^{Y_{s-}(x)} z\tilde{N}_0(ds, dz, du) + \int_0^t A^*Y_s(x) ds,$$

where $W(ds, du)$ is a GWN and $\tilde{N}_0(ds, dz, du)$ compensated Poisson random measure (CPRM), A^* denotes the dual operator of A.

- **Xiong (2012):** $A = \Delta/2$ and $b = \tilde{N}_0 = 0$.
- Key approach: connecting (2) with a backward doubly SDE.
 Xiong (2012) used an L^2-argument. We use an L^1-argument.
- For $M(\mathbb{R})$-valued process $\{X_t\}$, its distribution $\{Y_t\}$ is $D(\mathbb{R})$-valued.
Our aim in this talk is that under a mild condition on A, $\{Y_t\}$, defined by $Y_t(x) = X_t(-\infty, x]$, is the pathwise unique solution to

$$Y_t(x) = Y_0(x) - b \int_0^t Y_s(x) ds + \sqrt{c} \int_0^t \int_0^s Y_s(x) W(ds, du)$$

$$+ \int_0^t \int_\infty^s \int_0^Y Y_s(x) z \tilde{N}_0(ds, dz, du) + \int_0^t A^* Y_s(x) ds,$$ (2)

where $W(ds, du)$ is a GWN and $\tilde{N}_0(ds, dz, du)$ compensated Poisson random measure (CPRM), A^* denotes the dual operator of A.

- **Xiong (2012):** $A = \Delta/2$ and $b = \tilde{N}_0 = 0$.

- **Key approach:** connecting (2) with a backward doubly SDE. Xiong (2012) used an L^2-argument. We use an L^1-argument.

- For $M(\mathbb{R})$-valued process $\{X_t\}$, its distribution $\{Y_t\}$ is $D(\mathbb{R})$-valued.
Our aim in this talk is that under a mild condition on \(A \), \(\{Y_t\} \), defined by \(Y_t(x) = X_t(-\infty, x] \), is the pathwise unique solution to

\[
Y_t(x) = Y_0(x) - b \int_0^t Y_s(x) ds + \sqrt{c} \int_0^t \int_0^{Y_s(x)} W(ds, du) \\
+ \int_0^t \int_0^\infty \int_0^{Y_{s-}(x)} z\tilde{N}_0(ds, dz, du) + \int_0^t A^* Y_s(x) ds, \tag{2}
\]

where \(W(ds, du) \) is a GWN and \(\tilde{N}_0(ds, dz, du) \) compensated Poisson random measure (CPRM), \(A^* \) denotes the dual operator of \(A \).

- **Xiong (2012):** \(A = \Delta/2 \) and \(b = \tilde{N}_0 = 0 \).

- **Key approach:** connecting (2) with a backward doubly SDE. Xiong (2012) used an \(L^2 \)-argument. We use an \(L^1 \)-argument.

- For \(M(\mathbb{R}) \)-valued process \(\{X_t\} \), its distribution \(\{Y_t\} \) is \(D(\mathbb{R}) \)-valued.
Main results

Theorem 1

$D(\mathbb{R})$-valued process $\{Y_t\}$ is the distribution of a super-Lévy process iff there is, on an enlarged probability space, a GWN $\{W(ds, du)\}$ and a CPRM $\{\tilde{N}_0(ds, dz, du)\}$ so that $\{Y_t\}$ solves (2).

Let $(P_t)_{t \geq 0}$ be the transition semigroup of a Lévy process with generator A.

Condition 1

For some continuous function $(t, z) \mapsto p_t(z)$, $\alpha \in (0, 1)$ and $C \in B[0, \infty)$,

$$P_t(x, dy) = p_t(y - x)dy \quad \text{and} \quad p_t(x) \leq t^{-\alpha}C(t), \quad t > 0, \ x, y \in \mathbb{R}.$$

The condition holds if A is the generator of a stable process with index in $(1, 2]$.

Theorem 2

Under Condition 1, the pathwise uniqueness holds for (2) with $Y_0 \in D(\mathbb{R})$.
Main results

Theorem 1

$D(\mathbb{R})$-valued process $\{Y_t\}$ is the distribution of a super-Lévy process iff there is, on an enlarged probability space, a GWN $\{W(ds, du)\}$ and a CPRM $\{\tilde{N}_0(ds, dz, du)\}$ so that $\{Y_t\}$ solves (2).

Let $(P_t)_{t \geq 0}$ be the transition semigroup of a Lévy process with generator A.

Condition 1

For some continuous function $(t, z) \mapsto p_t(z)$, $\alpha \in (0, 1)$ and $C \in B[0, \infty)$,

$$P_t(x, dy) = p_t(y - x)dy \quad \text{and} \quad p_t(x) \leq t^{-\alpha}C(t), \quad t > 0, \ x, y \in \mathbb{R}.$$

The condition holds if A is the generator of a stable process with index in $(1, 2]$.

Theorem 2

Under Condition 1, the pathwise uniqueness holds for (2) with $Y_0 \in D(\mathbb{R})$.
Main results

Theorem 1

$D(\mathbb{R})$-valued process $\{Y_t\}$ is the distribution of a super-Lévy process iff there is, on an enlarged probability space, a GWN $\{W(ds, du)\}$ and a CPRM $\tilde{N}_0(ds, dz, du)$ so that $\{Y_t\}$ solves (2).

Let $(P_t)_{t \geq 0}$ be the **transition semigroup** of a Lévy process with generator A.

Condition 1

For some continuous function $(t, z) \mapsto p_t(z)$, $\alpha \in (0, 1)$ and $C \in B[0, \infty)$,

$$P_t(x, dy) = p_t(y - x)dy \quad \text{and} \quad p_t(x) \leq t^{-\alpha}C(t), \quad t > 0, \ x, y \in \mathbb{R}.$$

The condition holds if A is the generator of a stable process with index in $(1, 2]$.

Theorem 2

Under Condition 1, the pathwise uniqueness holds for (2) with $Y_0 \in D(\mathbb{R})$.

Proof of Theorem 2

• Define ξ by

$$\xi(t) = \beta t + \sigma B_t + \int_0^t \int_{\{|z| \leq 1\}} z \tilde{M}(ds, dz) + \int_0^t \int_{\{|z| > 1\}} z M(ds, dz)$$

(3)

and independent of $\{W(ds, du)\}$ and $\{\tilde{N}_0(ds, dz, du)\}$ and $\xi_t^r = \xi(r \wedge t) - \xi(t)$.

• Take $T > 0$ and define GWN $W^T(ds, dx)$ and CPRM $\tilde{N}_0^T(ds, dz, du)$ by

$$W^T((0, t] \times A) = W([T - t, T) \times A), \quad \tilde{N}_0^T((0, t] \times B) = \tilde{N}_0([T - t, T) \times B).$$

From (2),

$$Y_{T-t}(x) = Y_0(x) + \int_t^T A^* Y_{T-s}(x) ds + \sqrt{c} \int_{t-}^T \int_0^{Y_{T-s}(x)} W_T(ds, du)$$

$$- \int_t^T b Y_{T-s}(x) ds + \int_{t-}^T \int_0^{Y_{(T-s)^-}(x)} \tilde{N}_T(ds, dz, du).$$

(4)

$W_T(ds, du)$ is the backward Itô’s integral, i.e., in the Riemann sum approximating the stochastic integral, taking right end-points instead of the left ones.
Proof of Theorem 2

• Define ξ by

$$
\xi(t) = \beta t + \sigma B_t + \int_0^t \int_{\{|z|\leq 1\}} z \tilde{M}(ds, dz) + \int_0^t \int_{\{|z|> 1\}} z M(ds, dz)
$$

(3)

and independent of $\{W(ds, du)\}$ and $\{\tilde{N}_0(ds, dz, du)\}$ and $\xi_t^r = \xi(r \wedge t) - \xi(t)$.

• Take $T > 0$ and define GWN $W^T(ds, dx)$ and CPRM $\tilde{N}_0^T(ds, dz, du)$ by

$$
W^T((0, t] \times A) = W([T - t, T) \times A), \quad \tilde{N}_0^T((0, t] \times B) = \tilde{N}_0([T - t, T) \times B).
$$

From (2),

$$
Y_{T-t}(x) = Y_0(x) + \int_t^T A^* Y_{T-s}(x) ds + \sqrt{c} \int_{t^{-}}^{T^{-}} \int_0^{Y_{T-s}(x)} W_T(ds, du)
$$

$$
- \int_t^T b Y_{T-s}(x) ds + \int_{t^{-}}^{T^{-}} \int_0^{Y_{T-s}^{-}(x)} z \tilde{N}_T(ds, dz, du).
$$

(4)

$W_T(ds, du)$ is the backward Itô’s integral, i.e., in the Riemann sum approximating the stochastic integral, taking right end-points instead of the left ones.
Proof of Theorem 2

• Define ξ by

$$\xi(t) = \beta t + \sigma B_t + \int_0^t \int_{\{|z| \leq 1\}} z\tilde{M}(ds, dz) + \int_0^t \int_{\{|z| > 1\}} zM(ds, dz)$$

and independent of $\{W(ds, du)\}$ and $\{\tilde{N}_0(ds, dz, du)\}$ and $\xi^r_t = \xi(r \land t) - \xi(t)$.

• Take $T > 0$ and define GWN $W^T(ds, dx)$ and CPRM $\tilde{N}_0^T(ds, dz, du)$ by

$$W^T((0, t] \times A) = W([T - t, T) \times A), \quad \tilde{N}_0^T((0, t] \times B) = \tilde{N}_0([T - t, T) \times B).$$

From (2),

$$Y_{T-t}(x) = Y_0(x) + \int_t^T A^*Y_{T-s}(x)ds + \sqrt{c} \int_{t-}^T \int_0^{Y_{T-s}(x)} W_T(ds, du)$$

$$- \int_t^T bY_{T-s}(x)ds + \int_{t-}^T \int_\infty^{Y_{(T-s)-}(x)} z\tilde{N}_T(ds, dz, du).$$

$W_T(ds, du)$ is the backward Itô’s integral, i.e., in the Riemann sum approximating the stochastic integral, taking right end-points instead of the left ones.
Proof of Theorem 2

• Define ξ by

$$
\xi(t) = \beta t + \sigma B_t + \int_0^t \int_{\{\lvert z \rvert \leq 1\}} z\tilde{M}(ds, dz) + \int_0^t \int_{\{\lvert z \rvert > 1\}} zM(ds, dz)
$$

and independent of $\{W(ds, du)\}$ and $\{\tilde{N}_0(ds, dz, du)\}$ and $\xi^r_t = \xi(r \wedge t) - \xi(t)$.

• Take $T > 0$ and define GWN $W^T(ds, dx)$ and CPRM $\tilde{N}^T_0(ds, dz, du)$ by

$$
W^T((0, t] \times A) = W([T - t, T) \times A), \quad \tilde{N}^T_0((0, t] \times B) = \tilde{N}_0([T - t, T) \times B).
$$

From (2),

$$
Y_{T-t}(x) = Y_0(x) + \int_t^T A^*Y_{T-s}(x)ds + \sqrt{c} \int_{t-}^{T-} \int_0^{Y_{T-s}(x)} W_T(ds, du)
$$

$$
- \int_t^T bY_{T-s}(x)ds + \int_{t-}^{T-} \int_0^{\infty} \int_0^{Y_{(T-s)-}(x)} z\tilde{N}_T(ds, dz, du).
$$

$W_T(ds, du)$ is the backward Itô’s integral, i.e., in the Riemann sum approximating the stochastic integral, taking right end-points instead of the left ones.
From (3) and (4), under Condition 1 for all $x \in \mathbb{R}$ and $0 \leq r \leq t \leq T$ we have a.s.

$$
Y_{T-t}(\xi^r_t + x) = Y_0(\xi^r_T + x) - b \int_t^T Y_{T-s}(\xi^r_s + x) ds + \sigma \int_t^T \nabla Y_{T-s}(\xi^r_s + x) dB_s
$$

$$
+ \sqrt{c} \int_{t-}^T \int_0^\infty W_T(ds, du)
$$

$$
+ \int_{t-}^T \int_0^\infty \int_{t-}^\infty \int_0^\infty Y_{(T-s)_-}(\xi^r_s + x) z \tilde{N}_T(ds, dz, du)
$$

$$
- \int_t^T \int_{\mathbb{R}^o} [Y_{T-s}(\xi^r_s_- + x - z) - Y_{T-s}(\xi^r_s_- + x)] \tilde{M}(ds, dz). \quad (5)
$$

Remark:

(i) The fourth and fifth terms are time-reversed martingales.

(ii) We cannot establish (5) simultaneously for all $(t, x) \in [r, T] \times \mathbb{R}$. $t \mapsto Y_{T-t}(\xi^r_s + x)$ is neither right continuous nor left continuous.

(iii) The process defined by above general kind of SDE is unique.

(iv) Prove a generalized Itô’s formula, which is initiated by Pardoux and Peng (1994).
From (3) and (4), under Condition 1 for all $x \in \mathbb{R}$ and $0 \leq r \leq t \leq T$ we have a.s.

$$Y_{T-t}(\xi_t^r + x) = Y_0(\xi_T^r + x) - b \int_t^T Y_{T-s}(\xi_s^r + x) ds +\sigma \int_t^T \nabla Y_{T-s}(\xi_s^r + x) dB_s$$

$$\quad + \sqrt{c} \int_{t^-}^{T^-} \int_0^\infty W_T(ds, du)$$

$$\quad + \int_{t^-}^T \int_0^\infty \int_0^\infty Y_{(T-s)-}(\xi_s^r + x) z\tilde{N}_T(ds, dz, du)$$

$$\quad - \int_t^T \int_{\mathbb{R}^c} [Y_{T-s}(\xi_s^- + x - z) - Y_{T-s}(\xi_s^r + x)] \tilde{M}(ds, dz).$$ \hspace{1em} (5)

Remark:

(i) The fourth and fifth terms are time-reversed martingales.

(ii) We cannot establish (5) simultaneously for all $(t, x) \in [r, T] \times \mathbb{R}$.

$t \mapsto Y_{T-t}(\xi_s^r + x)$ is neither right continuous nor left continuous.

(iii) The process defined by above general kind of SDE is unique.

(iv) Prove a generalized Itô’s formula, which is initiated by Pardoux and Peng (1994).
From (3) and (4), under Condition 1 for all $x \in \mathbb{R}$ and $0 \leq r \leq t \leq T$ we have a.s.

$$Y_{T-t}(\xi^r_t + x) = Y_0(\xi^r_T + x) - b \int_t^T Y_{T-s}(\xi^r_s + x) ds + \sigma \int_t^T \nabla Y_{T-s}(\xi^r_s + x) dB_s$$

$$+ \sqrt{c} \int_t^{T-} \int_0^{Y_{T-t}(\xi^r_s + x)} W_T(ds, du)$$

$$+ \int_t^{T-} \int_0^\infty \int_0^{Y(T-s)-}(\xi^r_s + x) z \tilde{N}_T(ds, dz, du)$$

$$- \int_t^T \int_{\mathbb{R}^\circ} [Y_{T-s}(\xi^r_{s-} + x - z) - Y_{T-s}(\xi^r_{s-} + x)] \tilde{M}(ds, dz). \quad (5)$$

Remark:

(i) The fourth and fifth terms are time-reversed martingales.

(ii) We cannot establish (5) simultaneously for all $(t, x) \in [r, T] \times \mathbb{R}$.

(iii) The process defined by above general kind of SDE is unique.

(iv) Prove a generalized Itô’s formula, which is initiated by Pardoux and Peng (1994).
From (3) and (4), under Condition 1 for all $x \in \mathbb{R}$ and $0 \leq r \leq t \leq T$ we have a.s.

\[
Y_{T-t}(\xi_t^r + x) = Y_0(\xi_T^r + x) - b \int_t^T Y_{T-s}(\xi_s^r + x) ds + \sigma \int_t^T \nabla Y_{T-s}(\xi_s^r + x) dB_s \\
+ \sqrt{c} \int_t^T \int_0^{T-t} \left(Y_{T-t}(\xi_s^r + x) \right) W_T(ds, du) \\
+ \int_t^T \int_0^\infty \int_0^\infty \left(Y_{(T-s)}(\xi_s^r + x) \right) z\tilde{N}_T(ds, dz, du) \\
- \int_t^T \int_{\mathbb{R}^\circ} \left[Y_{T-s}(\xi_s^- + x - z) - Y_{T-s}(\xi_s^- + x) \right] \tilde{M}(ds, dz).
\]

Remark:

(i) The fourth and fifth terms are time-reversed martingales.

(ii) We cannot establish (5) simultaneously for all $(t, x) \in [r, T] \times \mathbb{R}$.

(iii) The process defined by above general kind of SDE is unique.

(iv) Prove a generalized Itô’s formula, which is initiated by Pardoux and Peng (1994).
The weak solution for the following SPDE was constructed by Mytnik (2002):

\[
\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^{\beta} \dot{L}, \quad X_0 \geq 0, \ x \in \mathbb{R}^d, \tag{6}
\]

where \(L(ds, dx) \) is a one-sided, \(\alpha \)-stable white noise without negative jumps, \(1 < \alpha < \min(2, (2/d) + 1), \ \beta > 0, \ p := \alpha \beta < (2/d) + 1. \)

• \(p = 1 \), the solution is a superprocess and the weak uniqueness holds.

• \(p \neq 1 \), the uniqueness for (6) and the properties of solution are unknown.

• We consider the case \(d = 1 \) and \(p \in (0, \alpha) \) here. Other cases are being considered.
Further result: SPDE driven by α-stable noise

The weak solution for the following SPDE was constructed by Mytnik (2002):

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^\beta \dot{L}, \quad X_0 \geq 0, \ x \in \mathbb{R}^d,$$

(6)

where $L(ds, dx)$ is a one-sided, α-stable white noise without negative jumps, $1 < \alpha < \min(2, (2/d) + 1)$, $\beta > 0$, $p := \alpha \beta < (2/d) + 1$.

- $p = 1$, the solution is a superprocess and the weak uniqueness holds.
- $p \neq 1$, the uniqueness for (6) and the properties of solution are unknown.
- We consider the case $d = 1$ and $p \in (0, \alpha)$ here. Other cases are being considered.
Further result: SPDE driven by α-stable noise

The weak solution for the following SPDE was constructed by Mytnik (2002):

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)\beta \dot{L}, \quad X_0 \geq 0, \ x \in \mathbb{R}^d, \quad (6)$$

where $L(ds, dx)$ is a one-sided, α-stable white noise without negative jumps, $1 < \alpha < \min(2, (2/d) + 1)$, $\beta > 0$, $p := \alpha \beta < (2/d) + 1$.

- $p = 1$, the solution is a superprocess and the weak uniqueness holds.
- $p \neq 1$, the uniqueness for (6) and the properties of solution are unknown.
- We consider the case $d = 1$ and $p \in (0, \alpha)$ here. Other cases are being considered.
Further result: SPDE driven by α-stable noise

The weak solution for the following SPDE was constructed by Mytnik (2002):

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^\beta \dot{L}, \quad X_0 \geq 0, \; x \in \mathbb{R}^d,$$

(6)

where $L(ds, dx)$ is a one-sided, α-stable white noise without negative jumps, $1 < \alpha < \min(2, (2/d) + 1)$, $\beta > 0$, $p := \alpha \beta < (2/d) + 1$.

- $p = 1$, the solution is a superprocess and the weak uniqueness holds.
- $p \neq 1$, the uniqueness for (6) and the properties of solution are unknown.
- We consider the case $d = 1$ and $p \in (0, \alpha)$ here. Other cases are being considered.
• Equation (6) means:
\[
\langle X_t, f \rangle = \langle X_0, f \rangle + \frac{1}{2} \int_0^t \langle X_s, f'' \rangle ds + \int_0^t \int_{\mathbb{R}} X_{s-}(x)^{\beta} f(x) L(ds, dx).
\] (7)

• \(\{X_t\} \) satisfies SPDE (7) iff it satisfies
\[
\langle X_t, f \rangle = \langle X_0, f \rangle + \frac{1}{2} \int_0^t \langle X_s, f'' \rangle ds + \int_0^t \int_0^\infty \int_{\mathbb{R}} \int_{\mathbb{R}} X_{s-}(u)^p z f(u) \tilde{N}_0(ds, dz, du, dv),
\] (8)
where \(\tilde{N}_0(ds, dz, du, dv) \) is a CPRM.

• Similar to Theorem 1.1 (a) and 1.3 (a) in Mytnik and Perkins (2003) we have: \(X_t(\cdot) \) has a continuous version for fixed \(t \).
Occupation density \(\mathcal{V}_t(x) := \int_0^t X_s(x) ds \) has a jointly continuous version.

• Connecting (8) with a backward doubly SDE, (8) has a pathwise uniqueness solution, which implies the weak uniqueness to (7).
• Equation (6) means:

\[
\langle X_t, f \rangle = \langle X_0, f \rangle + \frac{1}{2} \int_0^t \langle X_s, f'' \rangle ds + \int_0^t \int_\mathbb{R} X_{s-}(x)^\beta f(x) L(ds, dx). \tag{7}
\]

• \(\{X_t\} \) satisfies SPDE (7) iff it satisfies

\[
\langle X_t, f \rangle = \langle X_0, f \rangle + \frac{1}{2} \int_0^t \langle X_s, f'' \rangle ds + \int_0^t \int_0^\infty \int_\mathbb{R} \int_\mathbb{R} X_{s-}(u)^p zf(u) \tilde{N}_0(ds, dz, du, dv), \tag{8}
\]

where \(\tilde{N}_0(ds, dz, du, dv) \) is a CPRM.

• Similar to Theorem 1.1 (a) and 1.3 (a) in Mytnik and Perkins (2003) we have: \(X_t(\cdot) \) has a continuous version for fixed \(t \).

Occupation density \(\mathcal{Y}_t(x) := \int_0^t X_s(x) ds \) has a jointly continuous version.

• Connecting (8) with a backward doubly SDE, (8) has a pathwise uniqueness solution, which implies the weak uniqueness to (7).
Equation (6) means:

$$\langle X_t, f \rangle = \langle X_0, f \rangle + \frac{1}{2} \int_0^t \langle X_s, f'' \rangle ds + \int_0^t \int_{\mathbb{R}} X_s - (x)^{\beta} f(x) L(ds, dx). \quad (7)$$

\(\{X_t\} \) satisfies SPDE (7) iff it satisfies

$$\langle X_t, f \rangle = \langle X_0, f \rangle + \frac{1}{2} \int_0^t \langle X_s, f'' \rangle ds + \int_0^t \int_{0}^{\infty} \int_{\mathbb{R}} \int_{0}^{\infty} X_s - (u)^{p} zf(u) \tilde{N}_0(ds, dz, du, dv), \quad (8)$$

where \(\tilde{N}_0(ds, dz, du, dv) \) is a CPRM.

Similar to Theorem 1.1 (a) and 1.3 (a) in Mytnik and Perkins (2003) we have:
\(X_t(\cdot) \) has a continuous version for fixed \(t \).
Occupation density \(\mathcal{Y}_t(x) := \int_0^t X_s(x) ds \) has a jointly continuous version.

Connecting (8) with a backward doubly SDE, (8) has a pathwise uniqueness solution, which implies the weak uniqueness to (7).
• Equation (6) means:
\[
\langle X_t, f \rangle = \langle X_0, f \rangle + \frac{1}{2} \int_0^t \langle X_s, f'' \rangle ds + \int_0^t \int_{\mathbb{R}} X_{s-}(x)^\beta f(x) L(ds, dx).
\] (7)

• \{X_t\} satisfies SPDE (7) iff it satisfies
\[
\langle X_t, f \rangle = \langle X_0, f \rangle + \frac{1}{2} \int_0^t \langle X_s, f'' \rangle ds + \int_0^t \int_0^\infty \int_{\mathbb{R}} \int_{\mathbb{R}} X_{s-}(u)^p zf(u) \tilde{N}_0(ds, dz, du, dv),
\] (8)

where \(\tilde{N}_0(ds, dz, du, dv)\) is a CPRM.

• Similar to Theorem 1.1 (a) and 1.3 (a) in Mytnik and Perkins (2003) we have:
 \(X_t(\cdot)\) has a continuous version for fixed \(t\).
 Occupation density \(Y_t(x) := \int_0^t X_s(x) ds\) has a jointly continuous version.

• Connecting (8) with a backward doubly SDE, (8) has a pathwise uniqueness solution, which implies the weak uniqueness to (7).
Thanks!

E-mail: xuyang@mail.bnu.edu.cn