p-torsion of Jacobians for unramified
$\mathbb{Z} / p \mathbb{Z}$-covers of curves
(joint with Bryden Cais)

March 27, 2023

Douglas Ulmer

University of Arizona
TA The University OF ARIZONA

Number Theory and Combinatorics Seminar
University of Lethbridge

Outline

p-torsion of Jacobians for unramified $\mathbb{Z} / p \mathbb{Z}$-covers of curves

1. p-torsion group schemes
2. Dieudonné theory and de Rham cohomology
3. $\mathrm{E}-\mathrm{O}$ stratification of \mathcal{A}_{g} and the motivating question
4. Previous results
5. New results
6. Making calculations

Group schemes

Group schemes are schemes (algebraic varieties) with group structure.

Group schemes

Group schemes are schemes (algebraic varieties) with group structure. E.g., for a commutative ring R :

$$
\mathbb{G}_{m}(R)=R^{\times} \quad \mathbb{G}_{a}(R)=R_{+}
$$

and

$$
\operatorname{GL}_{n}(R)=n \times n \text { invertible matrices over } R .
$$

Group schemes

Group schemes are schemes (algebraic varieties) with group structure. E.g., for a commutative ring R :

$$
\mathbb{G}_{m}(R)=R^{\times} \quad \mathbb{G}_{a}(R)=R_{+}
$$

and

$$
\operatorname{GL}_{n}(R)=n \times n \text { invertible matrices over } R .
$$

Other examples include elliptic curves and abelian varieties.

p-torsion group schemes

If k is a field of characteristic $p>0$ and R is a k-algebra,

$$
\mu_{p}(R)=\left\{a \in R \mid a^{p}=1\right\} \text { with multiplication as group law }
$$

p-torsion group schemes

If k is a field of characteristic $p>0$ and R is a k-algebra,

$$
\mu_{p}(R)=\left\{a \in R \mid a^{p}=1\right\} \text { with multiplication as group law }
$$

$$
\alpha_{p}(R)=\left\{a \in R \mid a^{p}=0\right\} \text { with addition as group law }
$$

p-torsion group schemes

If k is a field of characteristic $p>0$ and R is a k-algebra,

$$
\mu_{p}(R)=\left\{a \in R \mid a^{p}=1\right\} \text { with multiplication as group law }
$$

$$
\begin{aligned}
& \alpha_{p}(R)=\left\{a \in R \mid a^{p}=0\right\} \text { with addition as group law } \\
& \mathbb{Z} / p \mathbb{Z}(R)=(\mathbb{Z} / p \mathbb{Z})^{\pi_{0}(\operatorname{Spec} R)}=\operatorname{Mor}(\operatorname{Spec} R, \mathbb{Z} / p \mathbb{Z})
\end{aligned}
$$

p-torsion group schemes

If k is a field and E is an elliptic curve over k, then (by definition)

$$
E[p](R)=\{x \in E(R) \mid p x=0\}
$$

If k is a field and E is an elliptic curve over k, then (by definition)

$$
E[p](R)=\{x \in E(R) \mid p x=0\}
$$

If k is algebraically closed (or even perfect) of char $p>0$, then there are two possibilities for $E[p]$:

$$
E[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mu_{p} \quad \text { "ordinary" }
$$

If k is a field and E is an elliptic curve over k, then (by definition)

$$
E[p](R)=\{x \in E(R) \mid p x=0\}
$$

If k is algebraically closed (or even perfect) of char $p>0$, then there are two possibilities for $E[p]$:

$$
E[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mu_{p} \quad \text { "ordinary" }
$$

or there is a non-split exact sequence

$$
0 \rightarrow \alpha_{p} \rightarrow E[p] \rightarrow \alpha_{p} \rightarrow 0
$$

"supersingular".

Still assuming k is algebraically closed of char $p>0$, if A is an abelian variety of dimension g over k, then there are exactly 2^{g} possibilities for $A[p]$.

Still assuming k is algebraically closed of char $p>0$, if A is an abelian variety of dimension g over k, then there are exactly 2^{g} possibilities for $A[p]$. The most common ("ordinary") is

$$
A[p] \cong E_{\text {ord }}[p]^{g} \cong(\mathbb{Z} / p \mathbb{Z})^{g} \oplus\left(\mu_{p}\right)^{g}
$$

Still assuming k is algebraically closed of char $p>0$, if A is an abelian variety of dimension g over k, then there are exactly 2^{g} possibilities for $A[p]$. The most common ("ordinary") is

$$
A[p] \cong E_{\text {ord }}[p]^{g} \cong(\mathbb{Z} / p \mathbb{Z})^{g} \oplus\left(\mu_{p}\right)^{g}
$$

and the most special ("superspecial") is

$$
A[p] \cong E_{s s}[p]^{g}
$$

Still assuming k is algebraically closed of char $p>0$, if A is an abelian variety of dimension g over k, then there are exactly 2^{g} possibilities for $A[p]$. The most common ("ordinary") is

$$
A[p] \cong E_{\text {ord }}[p]^{g} \cong(\mathbb{Z} / p \mathbb{Z})^{g} \oplus\left(\mu_{p}\right)^{g}
$$

and the most special ("superspecial") is

$$
A[p] \cong E_{s s}[p]^{g}
$$

The isomorphism class of $A[p]$ is called its "Ekedahl-Oort type". It's reasonable to think of it as some kind of Lie algebra.

More background on p-torsion group schemes

A group scheme \mathcal{G} over k killed by p has endomorphisms F and V with $F V=V F=0$.
\mathcal{G} is étale if $V=0, F$ bijective (e.g., $\mathbb{Z} / p \mathbb{Z}$).

More background on p-torsion group schemes

A group scheme \mathcal{G} over k killed by p has endomorphisms F and V with $F V=V F=0$.
\mathcal{G} is étale if $V=0, F$ bijective (e.g., $\mathbb{Z} / p \mathbb{Z}$).
\mathcal{G} is multiplicative if $F=0, V$ bijective (e.g., μ_{p}).

More background on p-torsion group schemes

A group scheme \mathcal{G} over k killed by p has endomorphisms F and V with $F V=V F=0$.
\mathcal{G} is étale if $V=0, F$ bijective (e.g., $\mathbb{Z} / p \mathbb{Z}$).
\mathcal{G} is multiplicative if $F=0, V$ bijective (e.g., μ_{p}).
\mathcal{G} is local-local if F and V are nilpotent (e.g., α_{p} or $E_{s s}[p]$).

More background on p-torsion group schemes

A group scheme \mathcal{G} over k killed by p has endomorphisms F and V with $F V=V F=0$.
\mathcal{G} is étale if $V=0, F$ bijective (e.g., $\mathbb{Z} / p \mathbb{Z}$).
\mathcal{G} is multiplicative if $F=0, V$ bijective (e.g., μ_{p}).
\mathcal{G} is local-local if F and V are nilpotent (e.g., α_{p} or $E_{s s}[p]$).
Every \mathcal{G} decomposes canonically into a direct sum of étale, multiplicative and I-I subgroups.

p-torsion of Jacobians

Let X be a curve of genus g over k, let J_{X} be its Jacobian, and let $J_{X}[p]$ be the p-torsion of J_{X}. This is a group scheme of order $p^{2 g}$.

p-torsion of Jacobians

Let X be a curve of genus g over k, let J_{X} be its Jacobian, and let $J_{X}[p]$ be the p-torsion of J_{X}. This is a group scheme of order $p^{2 g}$.

The p-rank (or " f-number") of J_{X} is the largest integer f so that

$$
(\mathbb{Z} / p \mathbb{Z})^{f} \hookrightarrow J_{X}[p]
$$

(or equivalently $\left(\mu_{p}\right)^{f} \hookrightarrow J_{X}[p]$).

Let X be a curve of genus g over k, let J_{X} be its Jacobian, and let $J_{X}[p]$ be the p-torsion of J_{X}. This is a group scheme of order $p^{2 g}$.

The p-rank (or " f-number") of J_{X} is the largest integer f so that

$$
(\mathbb{Z} / p \mathbb{Z})^{f} \hookrightarrow J_{X}[p]
$$

(or equivalently $\left(\mu_{p}\right)^{f} \hookrightarrow J_{X}[p]$).
The a-number of J_{X} is the largest integer so that

$$
\left(\alpha_{p}\right)^{f} \hookrightarrow J_{X}[p] .
$$

Let X be a curve of genus g over k, let J_{X} be its Jacobian, and let $J_{X}[p]$ be the p-torsion of J_{X}. This is a group scheme of order $p^{2 g}$.

The p-rank (or " f-number") of J_{X} is the largest integer f so that

$$
(\mathbb{Z} / p \mathbb{Z})^{f} \hookrightarrow J_{X}[p]
$$

(or equivalently $\left(\mu_{p}\right)^{f} \hookrightarrow J_{X}[p]$).
The a-number of J_{X} is the largest integer so that

$$
\left(\alpha_{p}\right)^{f} \hookrightarrow J_{X}[p] .
$$

We have $0 \leq f \leq g$ and $0 \leq a \leq g$ and $1 \leq a+f \leq g$.
Example: $X=E$ ordinary $\Rightarrow f=1, a=0$

$$
X=E \text { supersingular } \Rightarrow f=0, \quad a=1
$$

Dieudonné theory

Let \mathbb{D} be the k-algebra generated by symbols F and V with relations

$$
F V=V F=0, \quad F \alpha=\alpha^{p} F, \quad \alpha V=V \alpha^{p}
$$

for all $\alpha \in k$. (This is the Dieudonné ring over k.)

Dieudonné theory

Let \mathbb{D} be the k-algebra generated by symbols F and V with relations

$$
F V=V F=0, \quad F \alpha=\alpha^{p} F, \quad \alpha V=V \alpha^{p}
$$

for all $\alpha \in k$. (This is the Dieudonné ring over k.)
There is a contravariant equivalence of categories between finite groups schemes over k killed by p and finite-dimensional \mathbb{D}-modules. Write $M(G)$ for the module associated to a group scheme G.

Dieudonné theory

Examples:

$$
\begin{aligned}
& M(\mathbb{Z} / p \mathbb{Z}) \cong \mathbb{D} /(F-1, V) \cong k \quad \text { with } F=i d, V=0, \\
& M\left(\mu_{p}\right) \cong \mathbb{D} /(F, V-1) \cong k \quad \text { with } F=0, V=i d, \\
& M\left(\alpha_{p}\right) \cong \mathbb{D} /(F, V) \cong k \quad \text { with } F=V=0 .
\end{aligned}
$$

Dieudonné theory

Examples:

$$
\begin{aligned}
M(\mathbb{Z} / p \mathbb{Z}) \cong \mathbb{D} /(F-1, V) \cong k \quad \text { with } F=i d, V=0, \\
M\left(\mu_{p}\right) \cong \mathbb{D} /(F, V-1) \cong k \quad \text { with } F=0, V=i d, \\
M\left(\alpha_{p}\right) \cong \mathbb{D} /(F, V) \cong k \quad \text { with } F=V=0 .
\end{aligned}
$$

If E is a supersingular elliptic curve,

$$
M(E[p]) \cong \mathbb{D} /(F-V) \cong k^{2}
$$

Dieudonné theory

For a curve X, the module $M\left(J_{X}[p]\right)$ is a "self-dual $B T_{1}$ module," meaning that it admits a non-degenerate, alternating pairing, and it satisfies ker $F=\operatorname{Im} V$ and $\operatorname{ker} V=\operatorname{Im} F$.

For a curve X, the module $M\left(J_{X}[p]\right)$ is a "self-dual $B T_{1}$ module," meaning that it admits a non-degenerate, alternating pairing, and it satisfies ker $F=\operatorname{Im} V$ and ker $V=\operatorname{Im} F$.

There are several nice classifications of self-dual $B T_{1}$-modules in terms of words on the alphabet $\{f, v\}$, certain sequences of integers (E-O structures), Weyl group elements, ...

Dieudonné theory

A self-dual $B T_{1}$ module is described by a multi-set of "primitive cyclic words" in $\{f, v\}$ which is invariant under exchanging f and v. E.g.,

$$
M\left(E_{\text {ord }}[p]\right) \leftrightarrow(f),(v)
$$

 and

$$
M\left(E_{s s}[p]\right) \leftrightarrow(f v)
$$

Dieudonné theory

Self-dual $\mathrm{B}=B T_{1}$ modules of dimension $2 g$ are also described by $\mathrm{E}-\mathrm{O}$ structures, namely sequences

$$
n_{0}=0 \leq n_{1} \leq \cdots \leq n_{g}
$$

where $n_{i} \leq n_{i+1} \leq n_{i}+1$. There are 2^{g} of these. E.g.,

$$
\begin{aligned}
& M\left(E_{\text {ord }}[p]\right) \leftrightarrow[1] \\
& M\left(E_{s s}[p]\right) \leftrightarrow[0]
\end{aligned}
$$

Oda's theorem

Oda proved that $M\left(J_{X}[p]\right)$ is the first de Rham cohomology of X.
We'll just recall a concrete description of $H_{d R}^{1}(X)$ with its
\mathbb{D}-module structure.

Oda's theorem

Oda proved that $M\left(J_{X}[p]\right)$ is the first de Rham cohomology of X.
We'll just recall a concrete description of $H_{d R}^{1}(X)$ with its \mathbb{D}-module structure.

If X is covered by two affine open subsets U_{1} and U_{2}, then

$$
H_{d R}^{1}(X) \cong \frac{\left\{\left(\omega_{1}, \omega_{2}, f_{12}\right) \mid d f_{12}=\omega_{1}-\omega_{2}\right\}}{\left\{\left(d g_{1}, d g_{2}, g_{1}-g_{2}\right)\right\}} .
$$

Oda proved that $M\left(J_{X}[p]\right)$ is the first de Rham cohomology of X.
We'll just recall a concrete description of $H_{d R}^{1}(X)$ with its \mathbb{D}-module structure.

If X is covered by two affine open subsets U_{1} and U_{2}, then

$$
H_{d R}^{1}(X) \cong \frac{\left\{\left(\omega_{1}, \omega_{2}, f_{12}\right) \mid d f_{12}=\omega_{1}-\omega_{2}\right\}}{\left\{\left(d g_{1}, d g_{2}, g_{1}-g_{2}\right)\right\}} .
$$

We define

$$
F\left(\omega_{1}, \omega_{2}, f_{12}\right)=\left(0,0, f_{12}^{p}\right) \quad V\left(\omega_{1}, \omega_{2}, f_{12}\right)=\left(\mathcal{C} \omega_{1}, \mathcal{C} \omega_{2}, 0\right)
$$

where \mathcal{C} is the Cartier operator.

Oda proved that $M\left(J_{X}[p]\right)$ is the first de Rham cohomology of X.
We'll just recall a concrete description of $H_{d R}^{1}(X)$ with its \mathbb{D}-module structure.

If X is covered by two affine open subsets U_{1} and U_{2}, then

$$
H_{d R}^{1}(X) \cong \frac{\left\{\left(\omega_{1}, \omega_{2}, f_{12}\right) \mid d f_{12}=\omega_{1}-\omega_{2}\right\}}{\left\{\left(d g_{1}, d g_{2}, g_{1}-g_{2}\right)\right\}}
$$

We define

$$
F\left(\omega_{1}, \omega_{2}, f_{12}\right)=\left(0,0, f_{12}^{p}\right) \quad V\left(\omega_{1}, \omega_{2}, f_{12}\right)=\left(\mathcal{C} \omega_{1}, \mathcal{C} \omega_{2}, 0\right)
$$

where \mathcal{C} is the Cartier operator.
These are things that can be explicitly calculated on a machine (as Bryden and I have done a lot)!

Motivating question

Let \mathcal{A}_{g} be the moduli space of principally polarized abelian varieties over k. Then \mathcal{A}_{g} has a nice stratification by E-O types (the E-O stratification).

Let \mathcal{A}_{g} be the moduli space of principally polarized abelian varieties over k. Then \mathcal{A}_{g} has a nice stratification by $\mathrm{E}-\mathrm{O}$ types (the $\mathrm{E}-\mathrm{O}$ stratification).

Let \mathcal{M}_{g} be the moduli space of curves of genus g. We have a closed immersion

$$
\mathcal{M}_{g} \hookrightarrow \mathcal{A}_{g} \quad X \mapsto J_{X}
$$

and it is of great interest to study how the image of \mathcal{M}_{g} behaves with respect to the $\mathrm{E}-\mathrm{O}$ stratification.

Motivating question

Ample evidence shows that that $\mathcal{M g}_{g}$ is not transverse to this stratification.

Motivating question

Ample evidence shows that that $\mathcal{M g}_{g}$ is not transverse to this stratification.

For example, there are curves of every genus over \mathbb{F}_{2} with $J_{X}[p]$ more special than predicted by dimension considerations.

Ample evidence shows that that \mathcal{M}_{g} is not transverse to this stratification.

For example, there are curves of every genus over \mathbb{F}_{2} with $J_{X}[p]$ more special than predicted by dimension considerations.

Understanding this failure motivates our main question: What are the possibilities for $J_{X}[p]$ for curves X ?

Ample evidence shows that that $\mathcal{M g}_{g}$ is not transverse to this stratification.

For example, there are curves of every genus over \mathbb{F}_{2} with $J_{X}[p]$ more special than predicted by dimension considerations.

Understanding this failure motivates our main question: What are the possibilities for $J_{X}[p]$ for curves X ?

A theme of a lot of contemporary research is to construct curves X where $J_{X}[p]$ is interesting, e.g., more special than expected.

Motivating question

See Pries-Ulmer NYJM 2022 for a survey of E-O structures and many examples. In Proc. AMS 2022, we showed that every self-dual $B T_{1}$ group scheme appears as a direct factor of $J_{X}[p]$ for an explicit curve X (usually a Fermat curve).

See Pries-Ulmer NYJM 2022 for a survey of E-O structures and many examples. In Proc. AMS 2022, we showed that every self-dual $B T_{1}$ group scheme appears as a direct factor of $J_{X}[p]$ for an explicit curve X (usually a Fermat curve).

Note that this says that every $B T_{1}$ appears as a direct factor of some $J_{X}[p]$, but maybe not as $J_{X}[p]$ itself.

Let X be a nice curve over k and let $Y \rightarrow X$ be an unramified Galois cover with an isomorphism $\operatorname{Gal}(Y / X) \cong \mathbb{Z} / p \mathbb{Z}$ (also called an Artin-Schreier cover). What are the relationships between $J_{X}[p]$ and $J_{Y}[p]$?

Let X be a nice curve over k and let $Y \rightarrow X$ be an unramified Galois cover with an isomorphism $\operatorname{Gal}(Y / X) \cong \mathbb{Z} / p \mathbb{Z}$ (also called an Artin-Schreier cover). What are the relationships between $J_{X}[p]$ and $J_{Y}[p]$?

Deuring-Shafarevich: $\quad f_{Y}-1=p\left(f_{X}-1\right)$

Let X be a nice curve over k and let $Y \rightarrow X$ be an unramified Galois cover with an isomorphism $\operatorname{Gal}(Y / X) \cong \mathbb{Z} / p \mathbb{Z}$ (also called an Artin-Schreier cover). What are the relationships between $J_{X}[p]$ and $J_{Y}[p]$?

Deuring-Shafarevich: $\quad f_{Y}-1=p\left(f_{X}-1\right)$

Booher-Cais: $a_{X} \leq a_{Y} \leq p a_{X}$

Let X be a nice curve over k and let $Y \rightarrow X$ be an unramified Galois cover with an isomorphism $\operatorname{Gal}(Y / X) \cong \mathbb{Z} / p \mathbb{Z}$ (also called an Artin-Schreier cover). What are the relationships between $J_{X}[p]$ and $J_{Y}[p]$?

Deuring-Shafarevich: $\quad f_{Y}-1=p\left(f_{X}-1\right)$

Booher-Cais: $\quad a_{X} \leq a_{Y} \leq p a_{X}$
Our goal today is to refine, extend, and give more structure to these results.

G-modules

By Oda, $H_{d R}^{1}(X)$ and $H_{d R}^{1}(Y)$ are the \mathbb{D}-modules associated to $J_{X}[p]$ and $J_{Y}[p]$, and our main question is "how they are related?"

By Oda, $H_{d R}^{1}(X)$ and $H_{d R}^{1}(Y)$ are the \mathbb{D}-modules associated to $J_{X}[p]$ and $J_{Y}[p]$, and our main question is "how they are related?"

There is one more structure on $H_{d R}^{1}(Y)$, namely the action of $G=\operatorname{Gal}(Y / X) \cong \mathbb{Z} / p \mathbb{Z}$.

By Oda, $H_{d R}^{1}(X)$ and $H_{d R}^{1}(Y)$ are the \mathbb{D}-modules associated to $J_{X}[p]$ and $J_{Y}[p]$, and our main question is "how they are related?"

There is one more structure on $H_{d R}^{1}(Y)$, namely the action of $G=\operatorname{Gal}(Y / X) \cong \mathbb{Z} / p \mathbb{Z}$.

Let $R=k[G]$, so that

$$
R=k[G] \cong k[g] /\left(g^{p}-1\right)=k[g] /(g-1)^{p} \cong k[\delta] /\left(\delta^{p}\right) .
$$

By Oda, $H_{d R}^{1}(X)$ and $H_{d R}^{1}(Y)$ are the \mathbb{D}-modules associated to $J_{X}[p]$ and $J_{Y}[p]$, and our main question is "how they are related?"

There is one more structure on $H_{d R}^{1}(Y)$, namely the action of $G=\operatorname{Gal}(Y / X) \cong \mathbb{Z} / p \mathbb{Z}$.

Let $R=k[G]$, so that

$$
R=k[G] \cong k[g] /\left(g^{p}-1\right)=k[g] /(g-1)^{p} \cong k[\delta] /\left(\delta^{p}\right) .
$$

The indecomposable finite-dimensional R-modules are

$$
V_{i}:=k[\delta] /\left(\delta^{i}\right) \quad \text { for } i=1, \ldots, p,
$$

and V_{p} is free over R of rank 1 .

Chevalley-Weil for $H_{d R}^{1}(Y)$

The key result is an isomorphism of $k[G]$-modules:

$$
H_{d R}^{1}(Y) \cong V_{1}^{2} \oplus V_{p}^{2 g_{x}-2}
$$

Chevalley-Weil for $H_{d R}^{1}(Y)$

The key result is an isomorphism of $k[G]$-modules:

$$
H_{d R}^{1}(Y) \cong V_{1}^{2} \oplus V_{p}^{2 g_{x}-2}
$$

Pictorially $(p=5, g x=5)$:

Consequences for $J_{Y}[p]$

Suppose $k=\bar{k}$. Then there are (self-dual $B T_{1}$) group schemes \mathcal{G}_{X} and \mathcal{G}_{Y} over k such that

$$
\begin{aligned}
& J_{X}[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mu_{p} \oplus \mathcal{G}_{X} \\
& J_{Y}[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mu_{p} \oplus \mathcal{G}_{Y}
\end{aligned}
$$

Consequences for $J_{Y}[p]$

Suppose $k=\bar{k}$. Then there are (self-dual $B T_{1}$) group schemes \mathcal{G}_{X} and \mathcal{G}_{Y} over k such that

$$
\begin{aligned}
& J_{X}[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mu_{p} \oplus \mathcal{G}_{X} \\
& J_{Y}[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mu_{p} \oplus \mathcal{G}_{Y}
\end{aligned}
$$

and there is a filtration

$$
0=\mathcal{G}_{0} \subset \mathcal{G}_{1} \subset \cdots \subset \mathcal{G}_{p}=\mathcal{G}_{Y}
$$

by subgroup schemes such that

$$
\mathcal{G}_{X} \cong \mathcal{G}_{i} / \mathcal{G}_{i-1} \quad \text { for } i=1, \ldots, p
$$

Consequences for $J_{Y}[p]$

Suppose $k=\bar{k}$. Then there are (self-dual $B T_{1}$) group schemes \mathcal{G}_{X} and \mathcal{G}_{Y} over k such that

$$
\begin{aligned}
& J_{X}[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mu_{p} \oplus \mathcal{G}_{X}, \\
& J_{Y}[p] \cong \mathbb{Z} / p \mathbb{Z} \oplus \mu_{\rho} \oplus \mathcal{G}_{Y},
\end{aligned}
$$

and there is a filtration

$$
0=\mathcal{G}_{0} \subset \mathcal{G}_{1} \subset \cdots \subset \mathcal{G}_{p}=\mathcal{G}_{Y}
$$

by subgroup schemes such that

$$
\mathcal{G}_{X} \cong \mathcal{G}_{i} / \mathcal{G}_{i-1} \quad \text { for } i=1, \ldots, p .
$$

So we have a filtration on $J_{Y}[p]$ with known associated graded, and "all" we have to do is examine extensions and reassemble $J_{Y}[p]$ from $J_{X}[p]$.

Unfortunately, the category of $B T_{1}$ modules is very badly behaved with respect to extensions. The simples have been classified by Oort, but there is no Jordan-Holder Theorem: A given (self-dual, $B T_{1}$) group scheme G may have two filtrations with different Jordan-Holder factors.

Unfortunately, the category of $B T_{1}$ modules is very badly behaved with respect to extensions. The simples have been classified by Oort, but there is no Jordan-Holder Theorem: A given (self-dual, $B T_{1}$) group scheme G may have two filtrations with different Jordan-Holder factors.
E.g., the module with word $\left(f^{3} v^{3}\right)$ is a repeated extension of three copies of ($f v$) (a simple $B T_{1}$ module), and it is also an extension of $\left(f^{2} v\right)$ by $\left(f v^{2}\right)$ (both of which are simple).

Unfortunately, the category of $B T_{1}$ modules is very badly behaved with respect to extensions. The simples have been classified by Oort, but there is no Jordan-Holder Theorem: A given (self-dual, $B T_{1}$) group scheme G may have two filtrations with different Jordan-Holder factors.
E.g., the module with word $\left(f^{3} v^{3}\right)$ is a repeated extension of three copies of ($f v$) (a simple $B T_{1}$ module), and it is also an extension of $\left(f^{2} v\right)$ by $\left(f v^{2}\right)$ (both of which are simple).
So we have to scale back our ambitions on describing $J_{Y}[p]$ completely as a $B T_{1}$ module with $\mathbb{Z} / p \mathbb{Z}$ action. That said, we have some interesting results.

Applications to $J_{Y}[p]_{e t}$

Suppose $k=\bar{k}$. Then the Deuring-Shafarevich formula refines to an isomorphism of group schemes

$$
J_{Y}[p]_{e ́ t} \cong \mathbb{Z} / p \mathbb{Z} \oplus\left(\mathbb{Z} / p \mathbb{Z} \otimes \mathbb{F}_{p}[G]\right)^{f_{X}-1}
$$

with action of $G=\operatorname{Gal}(Y / X) \cong \mathbb{Z} / p \mathbb{Z}$.

Applications to $J_{Y}[p]_{e t t}$

Suppose $k=\bar{k}$. Then the Deuring-Shafarevich formula refines to an isomorphism of group schemes

$$
J_{Y}[p]_{e ́ t} \cong \mathbb{Z} / p \mathbb{Z} \oplus\left(\mathbb{Z} / p \mathbb{Z} \otimes \mathbb{F}_{p}[G]\right)^{f_{X}-1}
$$

with action of $G=\operatorname{Gal}(Y / X) \cong \mathbb{Z} / p \mathbb{Z}$.
(This has been observed previously by many people and serves mostly as a reality check for us.)

Applications to $J_{Y}[p]_{e t}$

Now suppose k is a general perfect field and define ν_{X} and ν_{Y} by

$$
\left|J_{X}[p](k)\right|=p^{\nu_{X}} \quad \text { and } \quad\left|J_{Y}[p](k)\right|=p^{\nu_{Y}}
$$

So $\nu_{X} \leq f_{X}$ with equality if $k=\bar{k}$.

Applications to $J_{Y}[p]_{e t}$

Now suppose k is a general perfect field and define ν_{X} and ν_{Y} by

$$
\left|J_{X}[p](k)\right|=p^{\nu_{X}} \quad \text { and } \quad\left|J_{Y}[p](k)\right|=p^{\nu_{Y}}
$$

Then we have bounds

$$
\nu_{X} \leq \nu_{Y}
$$

Applications to $J_{Y}[p]_{e t}$

Now suppose k is a general perfect field and define ν_{X} and ν_{Y} by

$$
\left|J_{X}[p](k)\right|=p^{\nu X} \quad \text { and } \quad\left|J_{Y}[p](k)\right|=p^{\nu Y}
$$

Then we have bounds

$$
\nu_{X} \leq \nu_{Y} \leq 1+p\left(\nu_{X}-1\right) \quad \text { (under splitting conditions) }
$$

Applications to $J_{Y}[p]_{e t}$

Now suppose k is a general perfect field and define ν_{X} and ν_{Y} by

$$
\left|J_{X}[p](k)\right|=p^{\nu_{X}} \quad \text { and } \quad\left|J_{Y}[p](k)\right|=p^{\nu_{Y}}
$$

Then we have bounds

$$
\nu_{X} \leq \nu_{Y} \leq \begin{cases}1+p\left(\nu_{X}-1\right) & \text { under splitting conditions } \\ p \nu_{X} & \text { in general }\end{cases}
$$

Applications to $J_{Y}[p]_{e t}$

Now suppose k is a general perfect field and define ν_{X} and ν_{Y} by

$$
\left|J_{X}[p](k)\right|=p^{\nu_{X}} \quad \text { and } \quad\left|J_{Y}[p](k)\right|=p^{\nu_{Y}}
$$

Then we have bounds

$$
\nu_{X} \leq \nu_{Y} \leq \begin{cases}1+p\left(\nu_{X}-1\right) & \text { under splitting conditions } \\ p \nu_{X} & \text { in general }\end{cases}
$$

"Splitting conditions" refers to:

$$
J_{X}[p]_{e ́ t} \rightarrow \mathbb{Z} / p \mathbb{Z}
$$

Applications to $J_{Y}[p]_{\epsilon t}$

Continuing to assume only that k is perfect: If $f_{X}=1$, then $f_{Y}=1$ and $J_{Y}[p]_{e ́ t} \cong \mathbb{Z} / p \mathbb{Z}$. The next case is more interesting:

Applications to $J_{Y}[p]_{\epsilon t}$

Continuing to assume only that k is perfect: If $f_{X}=1$, then $f_{Y}=1$ and $J_{Y}[p]_{e ́ t} \cong \mathbb{Z} / p \mathbb{Z}$. The next case is more interesting:

Suppose that k is finite and $f_{X}=2$. Then we are in one of three cases:
(1a) $f_{X}=f_{Y}=1$
(1b) $f_{X}=1<f_{Y}<p+1$
(2) $f_{X}=2 \leq f_{Y} \leq p+1$

Applications to $J_{Y}[p]_{e t t}$

Continuing to assume only that k is perfect: If $f_{X}=1$, then $f_{Y}=1$ and $J_{Y}[p]_{e ́ t} \cong \mathbb{Z} / p \mathbb{Z}$. The next case is more interesting:

Suppose that k is finite and $f_{X}=2$. Then we are in one of three cases:
(1a) $f_{X}=f_{Y}=1$
(1b) $f_{X}=1<f_{Y}<p+1$
(2) $f_{X}=2 \leq f_{Y} \leq p+1$

Moreover, there is a presentation of $M\left(J_{Y}[p]\right)$ by generators and relations determined just by these numerical invariants, and over an extension of k of degree dividing $p(p-1)$,

$$
J_{Y}[p] \cong(\mathbb{Z} / p \mathbb{Z}) \oplus\left(\mathbb{Z} / p \mathbb{Z} \otimes \mathbb{F}_{p}[G]\right)
$$

Applications to $J_{Y}[p]_{\|}$

There is a lot to say about the local-local part, but we just state two results here.

Applications to $J_{Y}[p]_{\|}$

There is a lot to say about the local-local part, but we just state two results here.

Thm: Suppose that k is algebraically closed and that $f_{X}=g_{X}-1$. (This implies that $a_{X}=1$.) If $p=2$, then a_{Y} is 1 or 2 . If $p>2$, then $a_{Y} \in\{2,4, \ldots, p-1, p\}$. Moreover the local-local part of $J_{Y}[p]$ has an explicit description in terms of generators and relations depending only on a_{Y}.

There is a lot to say about the local-local part, but we just state two results here.

Thm: Suppose that k is algebraically closed and that $f_{X}=g_{X}-1$. (This implies that $a_{X}=1$.) If $p=2$, then a_{Y} is 1 or 2 . If $p>2$, then $a_{Y} \in\{2,4, \ldots, p-1, p\}$. Moreover the local-local part of $J_{Y}[p]$ has an explicit description in terms of generators and relations depending only on a_{Y}.

This is a substantial refinement of Booher-Cais.

Applications to $J_{Y}[p]_{\|}$

Thm: Suppose that $J_{X}[p]_{/ /}$is superspecial, i.e., $J_{X}[p]_{/ /} \cong E_{s s}[p]^{h}$ where $h=g_{X}-f_{X}$. Then the Ekedahl-Oort structure of $J_{Y}[p]_{\|}$ starts with h zeroes, i.e., it has the form $\left[0,0, \ldots, 0, \psi_{h+1}, \ldots, \psi_{p h}\right]$.

Applications to $J_{Y}[p]_{\|}$

Thm: Suppose that $J_{X}[p]_{/ /}$is superspecial, i.e., $J_{X}[p]_{/ /} \cong E_{s s}[p]^{h}$ where $h=g_{X}-f_{X}$. Then the Ekedahl-Oort structure of $J_{Y}[p]_{\|}$ starts with h zeroes, i.e., it has the form $\left[0,0, \ldots, 0, \psi_{h+1}, \ldots, \psi_{p h}\right]$.

The theorem reduces the number of possibilities for $J_{X}[p]_{/ /}$from $2^{p h}$ to $2^{(p-1) h}$.

Variants: More freedom

When X has a k-rational point, Bryden introduced a certain enlargement of $J_{Y}[p]$ which is G-free with associated graded equal to p copies of $J_{X}[p]$.

When X has a k-rational point, Bryden introduced a certain enlargement of $J_{Y}[p]$ which is G-free with associated graded equal to p copies of $J_{X}[p]$.

Roughly speaking, the Dieudonné module of the enlargement is

$$
\mathbb{H}^{1}\left(Y, \mathcal{O}_{Y}(-D) \rightarrow \Omega_{Y}^{1}(D)\right)
$$

where D is the inverse image in Y of the chosen point. (This is the de Rham realization of some 1-motive).

When X has a k-rational point, Bryden introduced a certain enlargement of $J_{Y}[p]$ which is G-free with associated graded equal to p copies of $J_{X}[p]$.
Roughly speaking, the Dieudonné module of the enlargement is

$$
\mathbb{H}^{1}\left(Y, \mathcal{O}_{Y}(-D) \rightarrow \Omega_{Y}^{1}(D)\right)
$$

where D is the inverse image in Y of the chosen point. (This is the de Rham realization of some 1-motive).

The enlargement does depend in an interesting way on the choice of the point.

Variants: Ramified covers

The crucial Chevalley-Weil result is that

$$
H_{d R}^{1}(Y) \cong V_{p}^{2 g x} \oplus V_{p-1}^{r}
$$

Variants: Ramified covers

The crucial Chevalley-Weil result is that

$$
H_{d R}^{1}(Y) \cong V_{p}^{2 g x} \oplus V_{p-1}^{r}
$$

Pictorially $(p=5, g x=2, r=3)$:

Calculations

The cover $\pi: Y \rightarrow X$ can be recovered from X and the sheaf of \mathcal{O}_{X}-algebras $\mathcal{F}:=\pi_{*} \mathcal{O}_{X}$ as a global Spec.

Calculations

The cover $\pi: Y \rightarrow X$ can be recovered from X and the sheaf of \mathcal{O}_{X}-algebras $\mathcal{F}:=\pi_{*} \mathcal{O}_{X}$ as a global Spec.
\mathcal{F} has a p-step filtration, and it satisfies $\mathcal{F} \cong \operatorname{Sym}^{p-1} \mathcal{G}$ where $\mathcal{G}:=\mathrm{Fil}^{2} \mathcal{F}$.

The cover $\pi: Y \rightarrow X$ can be recovered from X and the sheaf of \mathcal{O}_{X}-algebras $\mathcal{F}:=\pi_{*} \mathcal{O}_{X}$ as a global Spec.
\mathcal{F} has a p-step filtration, and it satisfies $\mathcal{F} \cong \operatorname{Sym}^{p-1} \mathcal{G}$ where $\mathcal{G}:=\mathrm{Fil}^{2} \mathcal{F}$.
\mathcal{G} is a rank two vector bundle on X (an extension of \mathcal{O}_{X} by itself), so is described by a class in $H^{1}\left(X, \mathcal{O}_{X}\right)$. It has a very compact description in terms of a transition function. (Need ϵ more to recover the algebra structure on \mathcal{F}.)

The cover $\pi: Y \rightarrow X$ can be recovered from X and the sheaf of \mathcal{O}_{X}-algebras $\mathcal{F}:=\pi_{*} \mathcal{O}_{X}$ as a global Spec.
\mathcal{F} has a p-step filtration, and it satisfies $\mathcal{F} \cong \operatorname{Sym}^{p-1} \mathcal{G}$ where $\mathcal{G}:=\mathrm{Fil}^{2} \mathcal{F}$.
\mathcal{G} is a rank two vector bundle on X (an extension of \mathcal{O}_{X} by itself), so is described by a class in $H^{1}\left(X, \mathcal{O}_{X}\right)$. It has a very compact description in terms of a transition function. (Need ϵ more to recover the algebra structure on \mathcal{F}.)

The upshot is that $H_{d R}^{1}(Y)$ is the cohomology on X of the de Rham complex of X with coefficients in \mathcal{F}, and \mathcal{F} has the compact description above.

Calculations

We now recall how to compute $H^{1}\left(X, \mathcal{O}_{X}\right)$ (with its Frobenius):

Calculations

We now recall how to compute $H^{1}\left(X, \mathcal{O}_{X}\right)$ (with its Frobenius):
Choose a "non-special" divisor D, i.e., $H^{1}\left(X, \mathcal{O}_{X}(D)\right)=0$. Then

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{X}(D) / \mathcal{O}_{X} \rightarrow 0
$$

is an acyclic resolution of \mathcal{O}_{X}.

Calculations

We now recall how to compute $H^{1}\left(X, \mathcal{O}_{X}\right)$ (with its Frobenius):
Choose a "non-special" divisor D, i.e., $H^{1}\left(X, \mathcal{O}_{X}(D)\right)=0$. Then

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{X}(D) / \mathcal{O}_{X} \rightarrow 0
$$

is an acyclic resolution of \mathcal{O}_{X}.
We find that

$$
\frac{H^{0}\left(X, \mathcal{O}_{X}(D) / \mathcal{O}_{X}\right)}{H^{0}\left(X, \mathcal{O}_{X}(D)\right)} \cong H^{1}\left(X, \mathcal{O}_{X}\right)
$$

We now recall how to compute $H^{1}\left(X, \mathcal{O}_{X}\right)$ (with its Frobenius):
Choose a "non-special" divisor D, i.e., $H^{1}\left(X, \mathcal{O}_{X}(D)\right)=0$. Then

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{X}(D) / \mathcal{O}_{X} \rightarrow 0
$$

is an acyclic resolution of \mathcal{O}_{X}.
We find that

$$
\frac{H^{0}\left(X, \mathcal{O}_{X}(D) / \mathcal{O}_{X}\right)}{H^{0}\left(X, \mathcal{O}_{X}(D)\right)} \cong H^{1}\left(X, \mathcal{O}_{X}\right)
$$

The numerator is something purely local, and the denominator is a standard Riemann-Roch space. So machine computation of the LHS is possible.

Calculations

For Frobenius, note that $p D$ is non-special if D is, so we have isomorphisms

$$
\frac{H^{0}\left(X, \mathcal{O}_{X}(D) / \mathcal{O}_{X}\right)}{H^{0}\left(X, \mathcal{O}_{X}(D)\right)} \cong H^{1}\left(X, \mathcal{O}_{X}\right) \cong \frac{H^{0}\left(X, \mathcal{O}_{X}(p D) / \mathcal{O}_{X}\right)}{H^{0}\left(X, \mathcal{O}_{X}(p D)\right)}
$$

Calculations

For Frobenius, note that $p D$ is non-special if D is, so we have isomorphisms

$$
\frac{H^{0}\left(X, \mathcal{O}_{X}(D) / \mathcal{O}_{X}\right)}{H^{0}\left(X, \mathcal{O}_{X}(D)\right)} \cong H^{1}\left(X, \mathcal{O}_{X}\right) \cong \frac{H^{0}\left(X, \mathcal{O}_{X}(p D) / \mathcal{O}_{X}\right)}{H^{0}\left(X, \mathcal{O}_{X}(p D)\right)}
$$

To compute Frobenius, take a representative principal part, raise it to the p-th power, then "reduce" it back to $\mathcal{O}_{X}(D) / \mathcal{O}_{X}$ using global sections of $\mathcal{O}_{X}(p D)$.

For Frobenius, note that $p D$ is non-special if D is, so we have isomorphisms

$$
\frac{H^{0}\left(X, \mathcal{O}_{X}(D) / \mathcal{O}_{X}\right)}{H^{0}\left(X, \mathcal{O}_{X}(D)\right)} \cong H^{1}\left(X, \mathcal{O}_{X}\right) \cong \frac{H^{0}\left(X, \mathcal{O}_{X}(p D) / \mathcal{O}_{X}\right)}{H^{0}\left(X, \mathcal{O}_{X}(p D)\right)}
$$

To compute Frobenius, take a representative principal part, raise it to the p-th power, then "reduce" it back to $\mathcal{O}_{X}(D) / \mathcal{O}_{X}$ using global sections of $\mathcal{O}_{X}(p D)$.

A mild generalization of this method works to compute the hypercohomology of the complex $\mathcal{F} \rightarrow \mathcal{F} \otimes \Omega_{X}^{1}$, i.e., $H_{d R}^{1}(Y)$ with its Frobenius. Recover V using the de Rham pairing.

For Frobenius, note that $p D$ is non-special if D is, so we have isomorphisms

$$
\frac{H^{0}\left(X, \mathcal{O}_{X}(D) / \mathcal{O}_{X}\right)}{H^{0}\left(X, \mathcal{O}_{X}(D)\right)} \cong H^{1}\left(X, \mathcal{O}_{X}\right) \cong \frac{H^{0}\left(X, \mathcal{O}_{X}(p D) / \mathcal{O}_{X}\right)}{H^{0}\left(X, \mathcal{O}_{X}(p D)\right)}
$$

To compute Frobenius, take a representative principal part, raise it to the p-th power, then "reduce" it back to $\mathcal{O}_{X}(D) / \mathcal{O}_{X}$ using global sections of $\mathcal{O}_{X}(p D)$.

A mild generalization of this method works to compute the hypercohomology of the complex $\mathcal{F} \rightarrow \mathcal{F} \otimes \Omega_{X}^{1}$, i.e., $H_{d R}^{1}(Y)$ with its Frobenius. Recover V using the de Rham pairing.

All this is implemented in Magma and we used it to produce many examples and counterexamples.

Thank You

