p-torsion of Jacobians for unramified $\mathbb{Z}/p\mathbb{Z}$ -covers of curves (joint with Bryden Cais)

March 27, 2023

Douglas Ulmer

University of Arizona

Number Theory and Combinatorics Seminar

University of Lethbridge

p-torsion of Jacobians for unramified $\mathbb{Z}/p\mathbb{Z}\text{-covers}$ of curves

- 1. *p*-torsion group schemes
- 2. Dieudonné theory and de Rham cohomology
- 3. E–O stratification of \mathcal{A}_g and the motivating question
- 4. Previous results
- 5. New results
- 6. Making calculations

Group schemes are schemes (algebraic varieties) with group structure.

Group schemes are schemes (algebraic varieties) with group structure. E.g., for a commutative ring R:

$$\mathbb{G}_m(R)=R^ imes \quad \mathbb{G}_a(R)=R_+$$

and

 $\operatorname{GL}_n(R) = n \times n$ invertible matrices over R.

Group schemes are schemes (algebraic varieties) with group structure. E.g., for a commutative ring R:

$$\mathbb{G}_m(R)=R^ imes \quad \mathbb{G}_a(R)=R_+$$

and

 $\operatorname{GL}_n(R) = n \times n$ invertible matrices over R.

Other examples include elliptic curves and abelian varieties.

If k is a field of characteristic p > 0 and R is a k-algebra,

 $\mu_p(R) = \{a \in R \mid a^p = 1\}$ with multiplication as group law

If k is a field of characteristic p > 0 and R is a k-algebra,

 $\mu_p(R) = \{a \in R \mid a^p = 1\}$ with multiplication as group law

 $\alpha_p(R) = \{a \in R \mid a^p = 0\}$ with addition as group law

If k is a field of characteristic p > 0 and R is a k-algebra,

 $\mu_p(R) = \{a \in R \mid a^p = 1\}$ with multiplication as group law

 $\alpha_p(R) = \{a \in R \mid a^p = 0\}$ with addition as group law

 $\mathbb{Z}/p\mathbb{Z}(R) = (\mathbb{Z}/p\mathbb{Z})^{\pi_0(\operatorname{Spec} R)} = \operatorname{Mor}(\operatorname{Spec} R, \mathbb{Z}/p\mathbb{Z}).$

If k is a field and E is an elliptic curve over k, then (by definition)

$$E[p](R) = \{x \in E(R) \mid px = 0\}$$

If k is a field and E is an elliptic curve over k, then (by definition)

$$E[p](R) = \{x \in E(R) \mid px = 0\}$$

If k is algebraically closed (or even perfect) of char p > 0, then there are two possibilities for E[p]:

$$E[p] \cong \mathbb{Z}/p\mathbb{Z} \oplus \mu_p$$
 "ordinary"

If k is a field and E is an elliptic curve over k, then (by definition)

$$E[p](R) = \{x \in E(R) \mid px = 0\}$$

If k is algebraically closed (or even perfect) of char p > 0, then there are two possibilities for E[p]:

$$E[p] \cong \mathbb{Z}/p\mathbb{Z} \oplus \mu_p$$
 "ordinary"

or there is a non-split exact sequence

$$0 \to \alpha_{p} \to E[p] \to \alpha_{p} \to 0$$

"supersingular".

Still assuming k is algebraically closed of char p > 0, if A is an abelian variety of dimension g over k, then there are exactly 2^{g} possibilities for A[p].

Still assuming k is algebraically closed of char p > 0, if A is an abelian variety of dimension g over k, then there are exactly 2^{g} possibilities for A[p]. The most common ("ordinary") is

$$A[p] \cong E_{ord}[p]^g \cong (\mathbb{Z}/p\mathbb{Z})^g \oplus (\mu_p)^g$$

Still assuming k is algebraically closed of char p > 0, if A is an abelian variety of dimension g over k, then there are exactly 2^{g} possibilities for A[p]. The most common ("ordinary") is

$$A[p] \cong E_{ord}[p]^g \cong (\mathbb{Z}/p\mathbb{Z})^g \oplus (\mu_p)^g$$

and the most special ("superspecial") is

$$A[p] \cong E_{ss}[p]^g$$

Still assuming k is algebraically closed of char p > 0, if A is an abelian variety of dimension g over k, then there are exactly 2^{g} possibilities for A[p]. The most common ("ordinary") is

$$A[p] \cong E_{ord}[p]^g \cong (\mathbb{Z}/p\mathbb{Z})^g \oplus (\mu_p)^g$$

and the most special ("superspecial") is

$$A[p] \cong E_{ss}[p]^g$$

The isomorphism class of A[p] is called its "Ekedahl–Oort type". It's reasonable to think of it as some kind of Lie algebra.

 \mathcal{G} is étale if V = 0, F bijective (e.g., $\mathbb{Z}/p\mathbb{Z}$).

- \mathcal{G} is étale if V = 0, F bijective (e.g., $\mathbb{Z}/p\mathbb{Z}$).
- \mathcal{G} is multiplicative if F = 0, V bijective (e.g., μ_p).

- \mathcal{G} is étale if V = 0, F bijective (e.g., $\mathbb{Z}/p\mathbb{Z}$).
- \mathcal{G} is multiplicative if F = 0, V bijective (e.g., μ_p).
- \mathcal{G} is local-local if F and V are nilpotent (e.g., α_p or $E_{ss}[p]$).

 \mathcal{G} is étale if V = 0, F bijective (e.g., $\mathbb{Z}/p\mathbb{Z}$).

 \mathcal{G} is multiplicative if F = 0, V bijective (e.g., μ_p).

 \mathcal{G} is local-local if F and V are nilpotent (e.g., α_p or $E_{ss}[p]$).

Every \mathcal{G} decomposes canonically into a direct sum of étale, multiplicative and I-I subgroups.

Let X be a curve of genus g over k, let J_X be its Jacobian, and let $J_X[p]$ be the p-torsion of J_X . This is a group scheme of order p^{2g} .

Let X be a curve of genus g over k, let J_X be its Jacobian, and let $J_X[p]$ be the p-torsion of J_X . This is a group scheme of order p^{2g} . The p-rank (or "f-number") of J_X is the largest integer f so that

$$(\mathbb{Z}/p\mathbb{Z})^f \hookrightarrow J_X[p]$$

(or equivalently $(\mu_p)^f \hookrightarrow J_X[p]$).

Let X be a curve of genus g over k, let J_X be its Jacobian, and let $J_X[p]$ be the p-torsion of J_X . This is a group scheme of order p^{2g} . The p-rank (or "f-number") of J_X is the largest integer f so that

$$(\mathbb{Z}/p\mathbb{Z})^f \hookrightarrow J_X[p]$$

(or equivalently $(\mu_p)^f \hookrightarrow J_X[p]$).

The *a*-number of J_X is the largest integer so that

$$(\alpha_p)^f \hookrightarrow J_X[p].$$

Let X be a curve of genus g over k, let J_X be its Jacobian, and let $J_X[p]$ be the p-torsion of J_X . This is a group scheme of order p^{2g} . The p-rank (or "f-number") of J_X is the largest integer f so that

$$(\mathbb{Z}/p\mathbb{Z})^f \hookrightarrow J_X[p]$$

(or equivalently $(\mu_p)^f \hookrightarrow J_X[p]$).

The *a*-number of J_X is the largest integer so that

$$(\alpha_p)^f \hookrightarrow J_X[p].$$

We have $0 \le f \le g$ and $0 \le a \le g$ and $1 \le a + f \le g$. Example: X = E ordinary $\Rightarrow f = 1, a = 0$ X = E supersingular $\Rightarrow f = 0, a = 1$. Let $\mathbb D$ be the k-algebra generated by symbols F and V with relations

$$FV = VF = 0,$$
 $F\alpha = \alpha^{p}F,$ $\alpha V = V\alpha^{p}$

for all $\alpha \in k$. (This is the Dieudonné ring over k.)

Let $\mathbb D$ be the k-algebra generated by symbols F and V with relations

$$FV = VF = 0, \qquad F\alpha = \alpha^{p}F, \qquad \alpha V = V\alpha^{p}$$

for all $\alpha \in k$. (This is the Dieudonné ring over k.)

There is a contravariant equivalence of categories between finite groups schemes over k killed by p and finite-dimensional \mathbb{D} -modules. Write M(G) for the module associated to a group scheme G.

Examples:

$$\begin{split} M(\mathbb{Z}/p\mathbb{Z}) &\cong \mathbb{D}/(F-1,V) \cong k \quad \text{with } F = id, V = 0, \\ M(\mu_p) &\cong \mathbb{D}/(F, V-1) \cong k \quad \text{with } F = 0, V = id, \\ M(\alpha_p) &\cong \mathbb{D}/(F, V) \cong k \quad \text{with } F = V = 0. \end{split}$$

Examples:

$$\begin{split} & \mathcal{M}(\mathbb{Z}/p\mathbb{Z}) \cong \mathbb{D}/(F-1,V) \cong k \quad \text{with } F = id, V = 0, \\ & \mathcal{M}(\mu_p) \cong \mathbb{D}/(F,V-1) \cong k \quad \text{with } F = 0, V = id, \\ & \mathcal{M}(\alpha_p) \cong \mathbb{D}/(F,V) \cong k \quad \text{with } F = V = 0. \end{split}$$

If E is a supersingular elliptic curve,

$$M(E[p]) \cong \mathbb{D}/(F - V) \cong k^2.$$

For a curve X, the module $M(J_X[p])$ is a "self-dual BT_1 module," meaning that it admits a non-degenerate, alternating pairing, and it satisfies ker F = Im V and ker V = Im F.

For a curve X, the module $M(J_X[p])$ is a "self-dual BT_1 module," meaning that it admits a non-degenerate, alternating pairing, and it satisfies ker F = Im V and ker V = Im F.

There are several nice classifications of self-dual BT_1 -modules in terms of words on the alphabet $\{f, v\}$, certain sequences of integers (E-O structures), Weyl group elements, ...

A self-dual BT_1 module is described by a multi-set of "primitive cyclic words" in $\{f, v\}$ which is invariant under exchanging f and v. E.g.,

_

and

Self-dual $B=BT_1$ modules of dimension 2g are also described by E-O structures, namely sequences

 $n_0 = 0 \le n_1 \le \cdots \le n_g$

where $n_i \leq n_{i+1} \leq n_i + 1$. There are 2^g of these. E.g.,

 $M(E_{ord}[p]) \leftrightarrow [1]$

 $M(E_{ss}[p]) \leftrightarrow [0]$

Oda proved that $M(J_X[p])$ is the first de Rham cohomology of X. We'll just recall a concrete description of $H^1_{dR}(X)$ with its \mathbb{D} -module structure.

Oda proved that $M(J_X[p])$ is the first de Rham cohomology of X. We'll just recall a concrete description of $H^1_{dR}(X)$ with its \mathbb{D} -module structure.

If X is covered by two affine open subsets U_1 and U_2 , then

$$H^{1}_{dR}(X) \cong \frac{\{(\omega_{1}, \omega_{2}, f_{12}) | df_{12} = \omega_{1} - \omega_{2}\}}{\{(dg_{1}, dg_{2}, g_{1} - g_{2})\}}$$

Oda proved that $M(J_X[p])$ is the first de Rham cohomology of X. We'll just recall a concrete description of $H^1_{dR}(X)$ with its \mathbb{D} -module structure.

If X is covered by two affine open subsets U_1 and U_2 , then

$$H^{1}_{dR}(X) \cong \frac{\{(\omega_{1}, \omega_{2}, f_{12}) | df_{12} = \omega_{1} - \omega_{2}\}}{\{(dg_{1}, dg_{2}, g_{1} - g_{2})\}}$$

We define

 $F(\omega_1, \omega_2, f_{12}) = (0, 0, f_{12}^P) \qquad V(\omega_1, \omega_2, f_{12}) = (\mathcal{C}\omega_1, \mathcal{C}\omega_2, 0)$ where \mathcal{C} is the Cartier operator.

Oda proved that $M(J_X[p])$ is the first de Rham cohomology of X. We'll just recall a concrete description of $H^1_{dR}(X)$ with its \mathbb{D} -module structure.

If X is covered by two affine open subsets U_1 and U_2 , then

$$H^1_{dR}(X) \cong rac{\{(\omega_1, \omega_2, f_{12}) \mid df_{12} = \omega_1 - \omega_2\}}{\{(dg_1, dg_2, g_1 - g_2)\}}.$$

We define

 $F(\omega_1, \omega_2, f_{12}) = (0, 0, f_{12}^p) \qquad V(\omega_1, \omega_2, f_{12}) = (\mathcal{C}\omega_1, \mathcal{C}\omega_2, 0)$

where \mathcal{C} is the Cartier operator.

These are things that can be explicitly calculated on a machine (as Bryden and I have done a lot)!

Let A_g be the moduli space of principally polarized abelian varieties over k. Then A_g has a nice stratification by E–O types (the E–O stratification).

Let A_g be the moduli space of principally polarized abelian varieties over k. Then A_g has a nice stratification by E–O types (the E–O stratification).

Let \mathcal{M}_g be the moduli space of curves of genus g. We have a closed immersion

$$\mathcal{M}_g \hookrightarrow \mathcal{A}_g \qquad X \mapsto J_X$$

and it is of great interest to study how the image of \mathcal{M}_g behaves with respect to the E–O stratification.

Ample evidence shows that that \mathcal{M}_{g} is not transverse to this stratification.

Ample evidence shows that that \mathcal{M}_g is not transverse to this stratification.

For example, there are curves of every genus over \mathbb{F}_2 with $J_X[p]$ more special than predicted by dimension considerations.

Ample evidence shows that that \mathcal{M}_g is not transverse to this stratification.

For example, there are curves of every genus over \mathbb{F}_2 with $J_X[p]$ more special than predicted by dimension considerations.

Understanding this failure motivates our main question: What are the possibilities for $J_X[p]$ for curves X?

Ample evidence shows that that \mathcal{M}_g is not transverse to this stratification.

For example, there are curves of every genus over \mathbb{F}_2 with $J_X[p]$ more special than predicted by dimension considerations.

Understanding this failure motivates our main question: What are the possibilities for $J_X[p]$ for curves X?

A theme of a lot of contemporary research is to construct curves X where $J_X[p]$ is interesting, e.g., more special than expected.

See Pries-Ulmer NYJM 2022 for a survey of E–O structures and many examples. In Proc. AMS 2022, we showed that every self-dual BT_1 group scheme appears as a direct factor of $J_X[p]$ for an explicit curve X (usually a Fermat curve).

See Pries-Ulmer NYJM 2022 for a survey of E–O structures and many examples. In Proc. AMS 2022, we showed that every self-dual BT_1 group scheme appears as a direct factor of $J_X[p]$ for an explicit curve X (usually a Fermat curve).

Note that this says that every BT_1 appears as a *direct factor* of some $J_X[p]$, but maybe not as $J_X[p]$ itself.

Let X be a nice curve over k and let $Y \to X$ be an unramified Galois cover with an isomorphism $\operatorname{Gal}(Y/X) \cong \mathbb{Z}/p\mathbb{Z}$ (also called an Artin–Schreier cover). What are the relationships between $J_X[p]$ and $J_Y[p]$? Let X be a nice curve over k and let $Y \to X$ be an unramified Galois cover with an isomorphism $Gal(Y/X) \cong \mathbb{Z}/p\mathbb{Z}$ (also called an Artin–Schreier cover). What are the relationships between $J_X[p]$ and $J_Y[p]$?

Deuring–Shafarevich: $f_Y - 1 = p(f_X - 1)$

Let X be a nice curve over k and let $Y \to X$ be an unramified Galois cover with an isomorphism $Gal(Y/X) \cong \mathbb{Z}/p\mathbb{Z}$ (also called an Artin–Schreier cover). What are the relationships between $J_X[p]$ and $J_Y[p]$?

Deuring–Shafarevich:
$$f_Y - 1 = p(f_X - 1)$$

Booher–Cais: $a_X \leq a_Y \leq pa_X$

Let X be a nice curve over k and let $Y \to X$ be an unramified Galois cover with an isomorphism $Gal(Y/X) \cong \mathbb{Z}/p\mathbb{Z}$ (also called an Artin–Schreier cover). What are the relationships between $J_X[p]$ and $J_Y[p]$?

Deuring–Shafarevich:
$$f_Y - 1 = p(f_X - 1)$$

Booher–Cais:
$$a_X \leq a_Y \leq pa_X$$

Our goal today is to refine, extend, and give more structure to these results.

By Oda, $H^1_{dR}(X)$ and $H^1_{dR}(Y)$ are the \mathbb{D} -modules associated to $J_X[p]$ and $J_Y[p]$, and our main question is "how they are related?"

By Oda, $H_{dR}^1(X)$ and $H_{dR}^1(Y)$ are the \mathbb{D} -modules associated to $J_X[p]$ and $J_Y[p]$, and our main question is "how they are related?" There is one more structure on $H_{dR}^1(Y)$, namely the action of $G = \text{Gal}(Y/X) \cong \mathbb{Z}/p\mathbb{Z}$.

By Oda, $H_{dR}^1(X)$ and $H_{dR}^1(Y)$ are the \mathbb{D} -modules associated to $J_X[p]$ and $J_Y[p]$, and our main question is "how they are related?" There is one more structure on $H_{dR}^1(Y)$, namely the action of $G = \operatorname{Gal}(Y/X) \cong \mathbb{Z}/p\mathbb{Z}$.

Let R = k[G], so that

 $R = k[G] \cong k[g]/(g^p - 1) = k[g]/(g - 1)^p \cong k[\delta]/(\delta^p).$

By Oda, $H_{dR}^1(X)$ and $H_{dR}^1(Y)$ are the \mathbb{D} -modules associated to $J_X[p]$ and $J_Y[p]$, and our main question is "how they are related?" There is one more structure on $H_{dR}^1(Y)$, namely the action of $G = \operatorname{Gal}(Y/X) \cong \mathbb{Z}/p\mathbb{Z}$.

Let R = k[G], so that

$$R = k[G] \cong k[g]/(g^p - 1) = k[g]/(g - 1)^p \cong k[\delta]/(\delta^p).$$

The indecomposable finite-dimensional R-modules are

$$V_i := k[\delta]/(\delta^i)$$
 for $i = 1, \dots, p$,

and V_p is free over R of rank 1.

Chevalley-Weil for $H^1_{dR}(Y)$

The key result is an isomorphism of k[G]-modules: $H^1_{dR}(Y)\cong V^2_1\oplus V^{2g_X-2}_p$

Chevalley-Weil for $H^1_{dR}(Y)$

The key result is an isomorphism of k[G]-modules: $H^1_{dR}(Y) \cong V^2_1 \oplus V^{2g_X-2}_p$

Pictorially $(p = 5, g_X = 5)$:

20

Consequences for $J_Y[p]$

Suppose $k = \overline{k}$. Then there are (self-dual BT_1) group schemes \mathcal{G}_X and \mathcal{G}_Y over k such that

 $J_X[p] \cong \mathbb{Z}/p\mathbb{Z} \oplus \mu_p \oplus \mathcal{G}_X,$ $J_Y[p] \cong \mathbb{Z}/p\mathbb{Z} \oplus \mu_p \oplus \mathcal{G}_Y,$

Consequences for $J_Y[p]$

Suppose $k = \overline{k}$. Then there are (self-dual BT_1) group schemes \mathcal{G}_X and \mathcal{G}_Y over k such that

$$\begin{aligned} J_X[p] &\cong \mathbb{Z}/p\mathbb{Z} \oplus \mu_p \oplus \mathcal{G}_X, \\ J_Y[p] &\cong \mathbb{Z}/p\mathbb{Z} \oplus \mu_p \oplus \mathcal{G}_Y, \end{aligned}$$

and there is a filtration

$$0 = \mathcal{G}_0 \subset \mathcal{G}_1 \subset \cdots \subset \mathcal{G}_p = \mathcal{G}_Y$$

by subgroup schemes such that

$$\mathcal{G}_X \cong \mathcal{G}_i / \mathcal{G}_{i-1}$$
 for $i = 1, \dots, p$.

Consequences for $J_Y[p]$

Suppose $k = \overline{k}$. Then there are (self-dual BT_1) group schemes \mathcal{G}_X and \mathcal{G}_Y over k such that

$$\begin{aligned} J_X[p] &\cong \mathbb{Z}/p\mathbb{Z} \oplus \mu_p \oplus \mathcal{G}_X, \\ J_Y[p] &\cong \mathbb{Z}/p\mathbb{Z} \oplus \mu_p \oplus \mathcal{G}_Y, \end{aligned}$$

and there is a filtration

$$0 = \mathcal{G}_0 \subset \mathcal{G}_1 \subset \cdots \subset \mathcal{G}_p = \mathcal{G}_Y$$

by subgroup schemes such that

$$\mathcal{G}_X \cong \mathcal{G}_i / \mathcal{G}_{i-1}$$
 for $i = 1, \dots, p$.

So we have a filtration on $J_Y[p]$ with known associated graded, and "all" we have to do is examine extensions and reassemble $J_Y[p]$ from $J_X[p]$.

Unfortunately, the category of BT_1 modules is very badly behaved with respect to extensions. The simples have been classified by Oort, but there is no Jordan-Holder Theorem: A given (self-dual, BT_1) group scheme G may have two filtrations with different Jordan-Holder factors. Unfortunately, the category of BT_1 modules is very badly behaved with respect to extensions. The simples have been classified by Oort, but there is no Jordan-Holder Theorem: A given (self-dual, BT_1) group scheme G may have two filtrations with different Jordan-Holder factors.

E.g., the module with word (f^3v^3) is a repeated extension of three copies of (fv) (a simple BT_1 module), and it is also an extension of (f^2v) by (fv^2) (both of which are simple).

Unfortunately, the category of BT_1 modules is very badly behaved with respect to extensions. The simples have been classified by Oort, but there is no Jordan-Holder Theorem: A given (self-dual, BT_1) group scheme G may have two filtrations with different Jordan-Holder factors.

E.g., the module with word (f^3v^3) is a repeated extension of three copies of (fv) (a simple BT_1 module), and it is also an extension of (f^2v) by (fv^2) (both of which are simple).

So we have to scale back our ambitions on describing $J_Y[p]$ completely as a BT_1 module with $\mathbb{Z}/p\mathbb{Z}$ action. That said, we have some interesting results.

Suppose $k = \overline{k}$. Then the Deuring–Shafarevich formula refines to an isomorphism of group schemes

 $J_{Y}[p]_{\acute{e}t} \cong \mathbb{Z}/p\mathbb{Z} \oplus (\mathbb{Z}/p\mathbb{Z} \otimes \mathbb{F}_{p}[G])^{f_{\chi}-1}$

with action of $G = \operatorname{Gal}(Y/X) \cong \mathbb{Z}/p\mathbb{Z}$.

Suppose $k = \overline{k}$. Then the Deuring–Shafarevich formula refines to an isomorphism of group schemes

$$J_{Y}[p]_{\acute{e}t}\cong \mathbb{Z}/p\mathbb{Z}\oplus \left(\mathbb{Z}/p\mathbb{Z}\otimes \mathbb{F}_{p}[G]
ight)^{f_{X}-1}$$

with action of $G = \operatorname{Gal}(Y/X) \cong \mathbb{Z}/p\mathbb{Z}$.

(This has been observed previously by many people and serves mostly as a reality check for us.)

Now suppose k is a general perfect field and define ν_X and ν_Y by $|J_X[p](k)| = p^{\nu_X}$ and $|J_Y[p](k)| = p^{\nu_Y}$ So $\nu_X \leq f_X$ with equality if $k = \overline{k}$.

$$|J_X[p](k)|=p^{
u_X}$$
 and $|J_Y[p](k)|=p^{
u_Y}$

Then we have bounds

 $\nu_X \leq \nu_Y$

$$|J_X[p](k)| = p^{
u_X}$$
 and $|J_Y[p](k)| = p^{
u_Y}$

Then we have bounds

 $\nu_X \leq \nu_Y \leq 1 + p(\nu_X - 1)$ (under splitting conditions)

$$|J_X[p](k)|=p^{
u_X}$$
 and $|J_Y[p](k)|=p^{
u_Y}$

Then we have bounds

$$u_X \le
u_Y \le egin{cases} 1+p(
u_X-1) & ext{under splitting conditions,} \\ p
u_X & ext{ in general} \end{cases}$$

$$|J_X[p](k)| = p^{\nu_X}$$
 and $|J_Y[p](k)| = p^{\nu_Y}$

Then we have bounds

$$u_X \le
u_Y \le \begin{cases} 1 + p(
u_X - 1) & ext{under splitting conditions,} \\ p
u_X & ext{in general} \end{cases}$$

"Splitting conditions" refers to:

$$J_X[p]_{\acute{e}t} \twoheadrightarrow \mathbb{Z}/p\mathbb{Z}$$

Applications to $J_Y[p]_{\acute{e}t}$

Continuing to assume only that k is perfect: If $f_X = 1$, then $f_Y = 1$ and $J_Y[p]_{\acute{e}t} \cong \mathbb{Z}/p\mathbb{Z}$. The next case is more interesting:

Applications to $J_Y[p]_{\acute{e}t}$

Continuing to assume only that k is perfect: If $f_X = 1$, then $f_Y = 1$ and $J_Y[p]_{\acute{e}t} \cong \mathbb{Z}/p\mathbb{Z}$. The next case is more interesting:

Suppose that k is finite and $f_X = 2$. Then we are in one of three cases:

(1a)
$$f_X = f_Y = 1$$

(1b) $f_X = 1 < f_Y < p + 1$
(2) $f_X = 2 \le f_Y \le p + 1$

Applications to $J_Y[p]_{\acute{e}t}$

Continuing to assume only that k is perfect: If $f_X = 1$, then $f_Y = 1$ and $J_Y[p]_{\acute{e}t} \cong \mathbb{Z}/p\mathbb{Z}$. The next case is more interesting:

Suppose that k is finite and $f_X = 2$. Then we are in one of three cases:

(1a)
$$f_X = f_Y = 1$$

(1b) $f_X = 1 < f_Y < p + 1$
(2) $f_X = 2 \le f_Y \le p + 1$

Moreover, there is a presentation of $M(J_Y[p])$ by generators and relations determined just by these numerical invariants, and over an extension of k of degree dividing p(p-1),

 $J_{\mathbf{Y}}[p] \cong (\mathbb{Z}/p\mathbb{Z}) \oplus (\mathbb{Z}/p\mathbb{Z} \otimes \mathbb{F}_p[G]).$

There is a lot to say about the local-local part, but we just state two results here.

There is a lot to say about the local-local part, but we just state two results here.

Thm: Suppose that k is algebraically closed and that $f_X = g_X - 1$. (This implies that $a_X = 1$.) If p = 2, then a_Y is 1 or 2. If p > 2, then $a_Y \in \{2, 4, ..., p - 1, p\}$. Moreover the local-local part of $J_Y[p]$ has an explicit description in terms of generators and relations depending only on a_Y . There is a lot to say about the local-local part, but we just state two results here.

Thm: Suppose that k is algebraically closed and that $f_X = g_X - 1$. (This implies that $a_X = 1$.) If p = 2, then a_Y is 1 or 2. If p > 2, then $a_Y \in \{2, 4, \ldots, p - 1, p\}$. Moreover the local-local part of $J_Y[p]$ has an explicit description in terms of generators and relations depending only on a_Y .

This is a substantial refinement of Booher-Cais.

Thm: Suppose that $J_X[p]_{II}$ is superspecial, i.e., $J_X[p]_{II} \cong E_{ss}[p]^h$ where $h = g_X - f_X$. Then the Ekedahl–Oort structure of $J_Y[p]_{II}$ starts with h zeroes, i.e., it has the form $[0, 0, \dots, 0, \psi_{h+1}, \dots, \psi_{ph}]$. Thm: Suppose that $J_X[p]_{II}$ is superspecial, i.e., $J_X[p]_{II} \cong E_{ss}[p]^h$ where $h = g_X - f_X$. Then the Ekedahl–Oort structure of $J_Y[p]_{II}$ starts with h zeroes, i.e., it has the form $[0, 0, \dots, 0, \psi_{h+1}, \dots, \psi_{ph}]$. The theorem reduces the number of possibilities for $J_X[p]_{II}$ from 2^{ph} to $2^{(p-1)h}$. When X has a k-rational point, Bryden introduced a certain enlargement of $J_Y[p]$ which is G-free with associated graded equal to p copies of $J_X[p]$. When X has a k-rational point, Bryden introduced a certain enlargement of $J_Y[p]$ which is G-free with associated graded equal to p copies of $J_X[p]$.

Roughly speaking, the Dieudonné module of the enlargement is

$$\mathbb{H}^1(Y, \mathcal{O}_Y(-D) \to \Omega^1_Y(D))$$

where D is the inverse image in Y of the chosen point. (This is the de Rham realization of some 1-motive).

When X has a k-rational point, Bryden introduced a certain enlargement of $J_Y[p]$ which is G-free with associated graded equal to p copies of $J_X[p]$.

Roughly speaking, the Dieudonné module of the enlargement is

$$\mathbb{H}^1(Y, \mathcal{O}_Y(-D) \to \Omega^1_Y(D))$$

where D is the inverse image in Y of the chosen point. (This is the de Rham realization of some 1-motive).

The enlargement *does depend* in an interesting way on the choice of the point.

Variants: Ramified covers

The crucial Chevalley-Weil result is that

$$H^1_{dR}(Y) \cong V^{2g_X}_p \oplus V^r_{p-1}$$

Variants: Ramified covers

The crucial Chevalley-Weil result is that

$$H^1_{dR}(Y)\cong V^{2g_X}_p\oplus V^r_{p-1}$$

Pictorially $(p = 5, g_X = 2, r = 3)$:

The cover $\pi: Y \to X$ can be recovered from X and the sheaf of \mathcal{O}_X -algebras $\mathcal{F} := \pi_* \mathcal{O}_X$ as a global Spec.

The cover $\pi: Y \to X$ can be recovered from X and the sheaf of \mathcal{O}_X -algebras $\mathcal{F} := \pi_* \mathcal{O}_X$ as a global Spec.

 \mathcal{F} has a *p*-step filtration, and it satisfies $\mathcal{F} \cong \operatorname{Sym}^{p-1} \mathcal{G}$ where $\mathcal{G} := \operatorname{Fil}^2 \mathcal{F}$.

The cover $\pi: Y \to X$ can be recovered from X and the sheaf of \mathcal{O}_X -algebras $\mathcal{F} := \pi_* \mathcal{O}_X$ as a global Spec.

 \mathcal{F} has a *p*-step filtration, and it satisfies $\mathcal{F} \cong \operatorname{Sym}^{p-1} \mathcal{G}$ where $\mathcal{G} := \operatorname{Fil}^2 \mathcal{F}$.

 \mathcal{G} is a rank two vector bundle on X (an extension of \mathcal{O}_X by itself), so is described by a class in $H^1(X, \mathcal{O}_X)$. It has a very compact description in terms of a transition function. (Need ϵ more to recover the algebra structure on \mathcal{F} .)

The cover $\pi: Y \to X$ can be recovered from X and the sheaf of \mathcal{O}_X -algebras $\mathcal{F} := \pi_* \mathcal{O}_X$ as a global Spec.

 \mathcal{F} has a *p*-step filtration, and it satisfies $\mathcal{F} \cong \operatorname{Sym}^{p-1} \mathcal{G}$ where $\mathcal{G} := \operatorname{Fil}^2 \mathcal{F}$.

 \mathcal{G} is a rank two vector bundle on X (an extension of \mathcal{O}_X by itself), so is described by a class in $H^1(X, \mathcal{O}_X)$. It has a very compact description in terms of a transition function. (Need ϵ more to recover the algebra structure on \mathcal{F} .)

The upshot is that $H^1_{dR}(Y)$ is the cohomology on X of the de Rham complex of X with coefficients in \mathcal{F} , and \mathcal{F} has the compact description above.

We now recall how to compute $H^1(X, \mathcal{O}_X)$ (with its Frobenius):

We now recall how to compute $H^1(X, \mathcal{O}_X)$ (with its Frobenius): Choose a "non-special" divisor D, i.e., $H^1(X, \mathcal{O}_X(D)) = 0$. Then

$$0
ightarrow \mathcal{O}_X
ightarrow \mathcal{O}_X(D)
ightarrow \mathcal{O}_X(D)/\mathcal{O}_X
ightarrow 0$$

is an acyclic resolution of \mathcal{O}_X .

We now recall how to compute $H^1(X, \mathcal{O}_X)$ (with its Frobenius): Choose a "non-special" divisor D, i.e., $H^1(X, \mathcal{O}_X(D)) = 0$. Then

$$0 o \mathcal{O}_X o \mathcal{O}_X(D) o \mathcal{O}_X(D)/\mathcal{O}_X o 0$$

is an acyclic resolution of \mathcal{O}_X .

We find that

$$\frac{H^0(X,\mathcal{O}_X(D)/\mathcal{O}_X)}{H^0(X,\mathcal{O}_X(D))} \cong H^1(X,\mathcal{O}_X).$$

We now recall how to compute $H^1(X, \mathcal{O}_X)$ (with its Frobenius): Choose a "non-special" divisor D, i.e., $H^1(X, \mathcal{O}_X(D)) = 0$. Then

$$0 o \mathcal{O}_X o \mathcal{O}_X(D) o \mathcal{O}_X(D)/\mathcal{O}_X o 0$$

is an acyclic resolution of \mathcal{O}_X .

We find that

$$\frac{H^0(X,\mathcal{O}_X(D)/\mathcal{O}_X)}{H^0(X,\mathcal{O}_X(D))} \cong H^1(X,\mathcal{O}_X).$$

The numerator is something purely local, and the denominator is a standard Riemann-Roch space. So machine computation of the LHS is possible.

For Frobenius, note that pD is non-special if D is, so we have isomorphisms

$$\frac{H^0(X,\mathcal{O}_X(D)/\mathcal{O}_X)}{H^0(X,\mathcal{O}_X(D))} \cong H^1(X,\mathcal{O}_X) \cong \frac{H^0(X,\mathcal{O}_X(pD)/\mathcal{O}_X)}{H^0(X,\mathcal{O}_X(pD))}.$$

For Frobenius, note that pD is non-special if D is, so we have isomorphisms

$$\frac{H^0(X,\mathcal{O}_X(D)/\mathcal{O}_X)}{H^0(X,\mathcal{O}_X(D))} \cong H^1(X,\mathcal{O}_X) \cong \frac{H^0(X,\mathcal{O}_X(pD)/\mathcal{O}_X)}{H^0(X,\mathcal{O}_X(pD))}.$$

To compute Frobenius, take a representative principal part, raise it to the *p*-th power, then "reduce" it back to $\mathcal{O}_X(D)/\mathcal{O}_X$ using global sections of $\mathcal{O}_X(pD)$.

For Frobenius, note that pD is non-special if D is, so we have isomorphisms

$$rac{H^0(X,\mathcal{O}_X(D)/\mathcal{O}_X)}{H^0(X,\mathcal{O}_X(D))}\cong H^1(X,\mathcal{O}_X)\cong rac{H^0(X,\mathcal{O}_X(pD)/\mathcal{O}_X)}{H^0(X,\mathcal{O}_X(pD))}.$$

To compute Frobenius, take a representative principal part, raise it to the *p*-th power, then "reduce" it back to $\mathcal{O}_X(D)/\mathcal{O}_X$ using global sections of $\mathcal{O}_X(pD)$.

A mild generalization of this method works to compute the hypercohomology of the complex $\mathcal{F} \to \mathcal{F} \otimes \Omega^1_X$, i.e., $H^1_{dR}(Y)$ with its Frobenius. Recover V using the de Rham pairing.

For Frobenius, note that pD is non-special if D is, so we have isomorphisms

$$rac{H^0(X,\mathcal{O}_X(D)/\mathcal{O}_X)}{H^0(X,\mathcal{O}_X(D))}\cong H^1(X,\mathcal{O}_X)\cong rac{H^0(X,\mathcal{O}_X(pD)/\mathcal{O}_X)}{H^0(X,\mathcal{O}_X(pD))}.$$

To compute Frobenius, take a representative principal part, raise it to the *p*-th power, then "reduce" it back to $\mathcal{O}_X(D)/\mathcal{O}_X$ using global sections of $\mathcal{O}_X(pD)$.

A mild generalization of this method works to compute the hypercohomology of the complex $\mathcal{F} \to \mathcal{F} \otimes \Omega^1_X$, i.e., $H^1_{dR}(Y)$ with its Frobenius. Recover V using the de Rham pairing.

All this is implemented in Magma and we used it to produce many examples and counterexamples.

Thank You