Filtrations, Mild groups and Arithmetic in an Equivariant context

O. R. Hamza

Department of Mathematics
Western University, London Ontario

NTC Seminar, January 2023

Introduction

- Class group of cyclotomic fields, UFD and Fermat's last theorem

Introduction

- Class group of cyclotomic fields, UFD and Fermat's last theorem - Kummer 1847, $K:=\mathbb{Q}\left(\zeta_{23}\right)$.

Introduction

－Class group of cyclotomic fields，UFD and Fermat＇s last theorem
－Kummer 1847，$K:=\mathbb{Q}\left(\zeta_{23}\right)$ ．
－Hilbert Class field tower

Introduction

- Class group of cyclotomic fields, UFD and Fermat's last theorem
- Kummer 1847, $K:=\mathbb{Q}\left(\zeta_{23}\right)$.
- Hilbert Class field tower
- Golod-Shafarevich 1962

$$
K:=\mathbb{Q}(\sqrt{-2 * 3 * 5 * 7 * 11 * 13}) .
$$

Introduction

- Class group of cyclotomic fields, UFD and Fermat's last theorem
- Kummer 1847, $K:=\mathbb{Q}\left(\zeta_{23}\right)$.
- Hilbert Class field tower
- Golod-Shafarevich 1962

$$
K:=\mathbb{Q}(\sqrt{-2 * 3 * 5 * 7 * 11 * 13}) .
$$

- Current proof, Roquette-Wingberg.

Table of Contents

(1) Notions on pro-p groups
(2) Filtrations, Gocha's series and Mild groups
(3) Results on Equivariant case

4 Examples

Table of Contents

（1）Notions on pro－p groups
（2）Filtrations，Gocha＇s series and Mild groups
（3）Results on Equivariant case
（4）Examples

Pro-p groups and presentations

- Let p be a prime, and G be a pro- p group: a projective limit of p-groups.

Pro-p groups and presentations

- Let p be a prime, and G be a pro- p group: a projective limit of p-groups.
- Equivalently: topological group, compact Hausdorff, totally disconnected and $x^{p^{n}} \rightarrow 1$, for x in G.

Pro-p groups and presentations

- Let p be a prime, and G be a pro- p group: a projective limit of p-groups.
- Equivalently: topological group, compact Hausdorff, totally disconnected and $x^{p^{n}} \rightarrow 1$, for x in G.
- d is the minimal number of topological generators of G.
- F free pro-p group with d generators.

Pro-p groups and presentations

- Let p be a prime, and G be a pro- p group: a projective limit of p-groups.
- Equivalently: topological group, compact Hausdorff, totally disconnected and $x^{p^{n}} \rightarrow 1$, for x in G.
- d is the minimal number of topological generators of G.
- F free pro- p group with d generators.
- Surjection $F \rightarrow G$, with kernel R.
- r is the minimal number of generators of R as a closed normal subgroup of F.

Pro-p groups and presentations

- Let p be a prime, and G be a pro- p group: a projective limit of p-groups.
- Equivalently: topological group, compact Hausdorff, totally disconnected and $x^{p^{n}} \rightarrow 1$, for x in G.
- d is the minimal number of topological generators of G.
- F free pro- p group with d generators.
- Surjection $F \rightarrow G$, with kernel R.
- r is the minimal number of generators of R as a closed normal subgroup of F.
- $d=\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(G ; \mathbb{F}_{p}\right)=\operatorname{dim}_{\mathbb{F}_{p}}\left(G / G^{p}[G ; G]\right)$ and $r=\operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(G ; \mathbb{F}_{p}\right)=\operatorname{dim}_{\mathbb{F}_{p}}\left(R / R^{p}[R ; F]\right)$.

Groups examples

Example

－Finite examples are p－groups．

Groups examples

Example

- Finite examples are p-groups.
- Infinite examples: $\mathbb{Z}_{p}, \mathbb{Z}_{p}^{d}, F$.

Groups examples

Example

- Finite examples are p-groups.
- Infinite examples: $\mathbb{Z}_{p}, \mathbb{Z}_{p}^{d}, F$.
- Pro-p completion of a group: Take G a group, introduce:

$$
\hat{G}:={\underset{\lim }{N}} G / N
$$

Groups examples

Example

- Finite examples are p-groups.
- Infinite examples: $\mathbb{Z}_{p}, \mathbb{Z}_{p}^{d}, F$.
- Pro- p completion of a group: Take G a group, introduce:
- We have $F_{1}=\mathbb{Z}_{p}$, and $F_{n}=\widehat{F_{n-1} * \mathbb{Z}_{p}}$.

Galois Theoretical examples

Example

- K a field, \hat{K} its maximal p-extension, consider $\operatorname{Gal}(\hat{K} / K)$.

Galois Theoretical examples

Example

－K a field，\hat{K} its maximal p－extension，consider $\operatorname{Gal}(\hat{K} / K)$ ．
－K a finite field， $\operatorname{Gal}(\hat{K} / K) \simeq \mathbb{Z}_{p}$ ．

Galois Theoretical examples

Example

- K a field, \hat{K} its maximal p-extension, consider $\operatorname{Gal}(\hat{K} / K)$.
- K a finite field, $\operatorname{Gal}(\hat{K} / K) \simeq \mathbb{Z}_{p}$.
- K a local field, T_{K} its p-maximal unramified extension: $\operatorname{Gal}\left(T_{K} / K\right) \simeq \mathbb{Z}_{p}$.

Galois Theoretical examples

Example

－K a field，\hat{K} its maximal p－extension，consider $\operatorname{Gal}(\hat{K} / K)$ ．
－K a finite field， $\operatorname{Gal}(\hat{K} / K) \simeq \mathbb{Z}_{p}$ ．
－K a local field，T_{K} its p－maximal unramified extension：
$\operatorname{Gal}\left(T_{K} / K\right) \simeq \mathbb{Z}_{p}$ ．
－K a local field，$\chi(\kappa) \neq p$ and $\mu_{p} \subset K$ ．Then

$$
\operatorname{Gal}(\hat{K} / K) \simeq \mathbb{Z}_{p} \rtimes \mathbb{Z}_{p}:=\left\langle\sigma ; \tau \mid \quad \tau^{|\kappa|-1}=[\sigma ; \tau]\right\rangle
$$

Galois Theoretical examples

Example

- K a field, \hat{K} its maximal p-extension, consider $\operatorname{Gal}(\hat{K} / K)$.
- K a finite field, $\operatorname{Gal}(\hat{K} / K) \simeq \mathbb{Z}_{p}$.
- K a local field, T_{K} its p-maximal unramified extension:
$\operatorname{Gal}\left(T_{K} / K\right) \simeq \mathbb{Z}_{p}$.
- K a local field, $\chi(\kappa) \neq p$ and $\mu_{p} \subset K$. Then

$$
\operatorname{Gal}(\hat{K} / K) \simeq \mathbb{Z}_{p} \rtimes \mathbb{Z}_{p}:=\left\langle\sigma ; \tau \mid \quad \tau^{|\kappa|-1}=[\sigma ; \tau]\right\rangle
$$

σ is a Frobenius, τ is a generator of the inertia subgroup and exact sequence:

$$
1 \rightarrow \operatorname{Gal}\left(\hat{K} / T_{K}\right) \rightarrow \operatorname{Gal}(\hat{K} / K) \rightarrow \operatorname{Gal}\left(T_{K} / K\right) \rightarrow 1
$$

Table of Contents

(1) Notions on pro-p groups
(2) Filtrations, Gocha's series and Mild groups
(3) Results on Equivariant case

4 Examples

Notations

- Alp $(G):=\lim _{N} \mathbb{F}_{p}[G / N]$ is the completed group algebra of G.
- $\left\{A / p_{n}(G)\right\}_{n \in \mathbb{N}}$ the n-th power of augmentation of $\operatorname{Alp}(G)$.

Notations

- Alp $(G):=\lim _{N} \mathbb{F}_{p}[G / N]$ is the completed group algebra of G.
- $\left\{A / p_{n}(G)\right\}_{n \in \mathbb{N}}$ the n-th power of augmentation of $\operatorname{Alp}(G)$.
- Define:

$$
c_{n}:=\operatorname{dim}_{\mathbb{F}_{p}}\left(A l p_{n}(G) / A l p_{n+1}(G)\right), \quad \operatorname{gocha}(G, t):=\sum_{n \in \mathbb{N}} c_{n} t^{n}
$$

Notations

- Alp $(G):=\lim _{N} \mathbb{F}_{p}[G / N]$ is the completed group algebra of G.
- $\left\{A / p_{n}(G)\right\}_{n \in \mathbb{N}}$ the n-th power of augmentation of $\operatorname{Alp}(G)$.
- Define:

$$
c_{n}:=\operatorname{dim}_{\mathbb{F}_{p}}\left(A l p_{n}(G) / A l p_{n+1}(G)\right), \quad \operatorname{gocha}(G, t):=\sum_{n \in \mathbb{N}} c_{n} t^{n}
$$

- $G_{n}:=\left\{g \in G ; g-1 \in A / p_{n}(G)\right\}:$ Zassenhaus filtration of G,

$$
\operatorname{Grad}(G):=\bigoplus_{n \in \mathbb{N}} G_{n} / G_{n+1}, \quad a_{n}:=\operatorname{dim}_{\mathbb{F}_{p}}\left(G_{n} / G_{n+1}\right)
$$

Other filtrations

Sometimes, we are interested in other filtrations, let us cite

Other filtrations

Sometimes, we are interested in other filtrations, let us cite :
(1) Lower central series: $G_{n}:=\left[G_{n-1} ; G\right]$

Other filtrations

Sometimes, we are interested in other filtrations, let us cite :
(1) Lower central series: $G_{n}:=\left[G_{n-1} ; G\right]$
(2) p-lower central series: $G_{n}:=G_{n-1}^{p}\left[G_{n-1} ; G\right]$

Other filtrations

Sometimes, we are interested in other filtrations, let us cite :
(1) Lower central series: $G_{n}:=\left[G_{n-1} ; G\right]$
(2) p-lower central series: $G_{n}:=G_{n-1}^{p}\left[G_{n-1} ; G\right]$
(3) we also have an implicit characterisation of Zassenhaus filtrations:

$$
G_{n}:=G_{\lceil n / p\rceil}^{p} \prod_{i+j=n}\left[G_{i} ; G_{j}\right] .
$$

Other filtrations

Sometimes, we are interested in other filtrations, let us cite :
(1) Lower central series: $G_{n}:=\left[G_{n-1} ; G\right]$
(2) p-lower central series: $G_{n}:=G_{n-1}^{p}\left[G_{n-1} ; G\right]$
(3) we also have an implicit characterisation of Zassenhaus filtrations:

$$
G_{n}:=G_{\lceil n / p\rceil}^{p} \prod_{i+j=n}\left[G_{i} ; G_{j}\right] .
$$

We can quote [Labute 1985] and [Mináč-Tân 2015], who studied these filtrations for some pro- p groups (free, one relators...).

Example

－If $G:=\mathbb{Z} / p \mathbb{Z}$ ，then $\operatorname{Alp}(G) \simeq \mathbb{F}_{p}[X] /\left(X^{p}-1\right)$ ，and：

$$
\operatorname{gocha}(G, t)=P_{1}(t):=\frac{1-t^{p}}{1-t}
$$

Example

－If $G:=\mathbb{Z} / p \mathbb{Z}$ ，then $\operatorname{Alp}(G) \simeq \mathbb{F}_{p}[X] /\left(X^{p}-1\right)$ ，and：

$$
\operatorname{gocha}(G, t)=P_{1}(t):=\frac{1-t^{p}}{1-t}
$$

－If $G:=\mathbb{Z}_{p}$ ，then $\operatorname{Alp}(G) \simeq \mathbb{F}_{p} \llbracket X \rrbracket$ ，and

$$
\operatorname{gocha}(G, t):=\frac{1}{1-t}
$$

Example

- If $G:=\mathbb{Z} / p \mathbb{Z}$, then $\operatorname{Alp}(G) \simeq \mathbb{F}_{p}[X] /\left(X^{p}-1\right)$, and:

$$
\operatorname{gocha}(G, t)=P_{1}(t):=\frac{1-t^{p}}{1-t} .
$$

- If $G:=\mathbb{Z}_{p}$, then $\operatorname{Alp}(G) \simeq \mathbb{F}_{p} \llbracket X \rrbracket$, and

$$
\operatorname{gocha}(G, t):=\frac{1}{1-t}
$$

- If G is free with d generators, then $A l p(G) \simeq \mathbb{F}_{p}\left\langle\left\langle X_{1} ; \ldots ; X_{d}\right\rangle\right\rangle$, and

$$
\operatorname{gocha}(G, t):=\frac{1}{1-d t}
$$

Example

- If $G:=\mathbb{Z}_{p}^{d}$, then $\operatorname{Alp}(G) \simeq \mathbb{F}_{p} \llbracket X_{1} ; \ldots ; X_{d} \rrbracket$, and

$$
\operatorname{gocha}(G, t):=\frac{1}{(1-t)^{d}} .
$$

Example

- If $G:=\mathbb{Z}_{p}^{d}$, then $\operatorname{Alp}(G) \simeq \mathbb{F}_{p} \llbracket X_{1} ; \ldots ; X_{d} \rrbracket$, and

$$
\operatorname{gocha}(G, t):=\frac{1}{(1-t)^{d}}
$$

- We can also compute $\operatorname{gocha}(G, t)$, when $\operatorname{cd}(G) \leq 2$.

Magnus isomorphism

- Let G be a finitely presented pro- p group.
- Minimal presentation: $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$.

Magnus isomorphism

- Let G be a finitely presented pro- p group.
- Minimal presentation: $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$.
- Name \mathscr{R} the kernel of the functorial epimorphism $\operatorname{Alp}(F) \rightarrow \operatorname{Alp}(G)$.

Magnus isomorphism

- Let G be a finitely presented pro- p group.
- Minimal presentation: $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$.
- Name \mathscr{R} the kernel of the functorial epimorphism $\operatorname{Alp}(F) \rightarrow A / p(G)$.
- Fix $\left\{x_{j}\right\}_{1 \leq j \leq d}$ a lift in F of a basis of $\left(F / F^{P}[F ; F]\right)$, and $\left\{I_{j}\right\}$ a lift in F of a minimal system of generators of $R / R^{p}[R ; F]$.

Magnus isomorphism

- Let G be a finitely presented pro-p group.
- Minimal presentation: $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$.
- Name \mathscr{R} the kernel of the functorial epimorphism $\operatorname{Alp}(F) \rightarrow \operatorname{Alp}(G)$.
- Fix $\left\{x_{j}\right\}_{1 \leq j \leq d}$ a lift in F of a basis of $\left(F / F^{P}[F ; F]\right)$, and $\left\{I_{j}\right\}$ a lift in F of a minimal system of generators of $R / R^{p}[R ; F]$.
- Magnus' isomorphism:

$$
\begin{aligned}
\phi: A l p(F) & \simeq \mathbb{F}_{p}\left\langle\left\langle X_{j} ; 1 \leq j \leq d\right\rangle\right\rangle \\
x_{j} & \mapsto X_{j}+1
\end{aligned}
$$

Working on quotient of Series

- Define E the algebra $\mathbb{F}_{p}\left\langle\left\langle X_{j} ; 1 \leq j \leq d\right\rangle\right\rangle$ filtered by $\operatorname{deg}\left(X_{j}\right)=1$, $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ its filtration.

Working on quotient of Series

- Define E the algebra $\mathbb{F}_{p}\left\langle\left\langle X_{j} ; 1 \leq j \leq d\right\rangle\right\rangle$ filtered by $\operatorname{deg}\left(X_{j}\right)=1$, $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ its filtration.
- Denote $I(R):=\left\langle\rho_{j}:=\phi\left(I_{j}-1\right)\right\rangle$.
- $E(G)$ the quotient filtered algebra $E / I(R)$, filtration $\left\{E_{n}(G)\right\}_{n \in \mathbb{N}}$.

Working on quotient of Series

- Define E the algebra $\mathbb{F}_{p}\left\langle\left\langle X_{j} ; 1 \leq j \leq d\right\rangle\right\rangle$ filtered by $\operatorname{deg}\left(X_{j}\right)=1$, $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ its filtration.
- Denote $I(R):=\left\langle\rho_{j}:=\phi\left(I_{j}-1\right)\right\rangle$.
- $E(G)$ the quotient filtered algebra $E / I(R)$, filtration $\left\{E_{n}(G)\right\}_{n \in \mathbb{N}}$.
- Observe that:

$$
\begin{aligned}
\phi\left(A l p_{n}(G)\right) & =E_{n}(G) \\
G_{n} & :=\left\{g \in G ; \phi(g-1) \in E_{n}(G)\right\},
\end{aligned}
$$

Working on quotient of Series

- Define E the algebra $\mathbb{F}_{p}\left\langle\left\langle X_{j} ; 1 \leq j \leq d\right\rangle\right\rangle$ filtered by $\operatorname{deg}\left(X_{j}\right)=1$, $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ its filtration.
- Denote $I(R):=\left\langle\rho_{j}:=\phi\left(I_{j}-1\right)\right\rangle$.
- $E(G)$ the quotient filtered algebra $E / I(R)$, filtration $\left\{E_{n}(G)\right\}_{n \in \mathbb{N}}$.
- Observe that:

$$
\begin{aligned}
\phi\left(A l p_{n}(G)\right) & =E_{n}(G) \\
G_{n} & :=\left\{g \in G ; \phi(g-1) \in E_{n}(G)\right\},
\end{aligned}
$$

Here G_{n} denotes the Zassenhaus filtration of G.

Gradation and polynomials

- Denote $\mathscr{E}:=\mathbb{F}_{p}\left\langle X_{1} ; \ldots ; X_{d}\right\rangle=\bigoplus_{n} E_{n} / E_{n+1}$.

Gradation and polynomials

－Denote $\mathscr{E}:=\mathbb{F}_{p}\left\langle X_{1} ; \ldots ; X_{d}\right\rangle=\bigoplus_{n} E_{n} / E_{n+1}$ ．
－Then we can see $\mathscr{E}(G):=\bigoplus_{n} E_{n}(G) / E_{n+1}(G)$ as a quotient of \mathscr{E} ．
－However，the kernel of $\mathscr{E} \rightarrow \mathscr{E}(G)$ ，that we call $\mathscr{I}(R)$ is difficult to understand．

Gradation and polynomials

- Denote $\mathscr{E}:=\mathbb{F}_{p}\left\langle X_{1} ; \ldots ; X_{d}\right\rangle=\bigoplus_{n} E_{n} / E_{n+1}$.
- Then we can see $\mathscr{E}(G):=\bigoplus_{n} E_{n}(G) / E_{n+1}(G)$ as a quotient of \mathscr{E}.
- However, the kernel of $\mathscr{E} \rightarrow \mathscr{E}(G)$, that we call $\mathscr{I}(R)$ is difficult to understand.
- Let n_{j} be the weight of ρ_{j}, i.e $\rho_{j} \in E_{n_{j}} \backslash E_{n_{j}+1}$. Define $\overline{\rho_{j}}$ the image of ρ_{j} in $E_{n_{j}} / E_{n_{j}+1} \subset \mathscr{E}$.

Gradation and polynomials

－Denote $\mathscr{E}:=\mathbb{F}_{p}\left\langle X_{1} ; \ldots ; X_{d}\right\rangle=\bigoplus_{n} E_{n} / E_{n+1}$ ．
－Then we can see $\mathscr{E}(G):=\bigoplus_{n} E_{n}(G) / E_{n+1}(G)$ as a quotient of \mathscr{E} ．
－However，the kernel of $\mathscr{E} \rightarrow \mathscr{E}(G)$ ，that we call $\mathscr{I}(R)$ is difficult to understand．
－Let n_{j} be the weight of ρ_{j} ，i．e $\rho_{j} \in E_{n_{j}} \backslash E_{n_{j}+1}$ ．Define $\overline{\rho_{j}}$ the image of ρ_{j} in $E_{n_{j}} / E_{n_{j}+1} \subset \mathscr{E}$ ．
－Observe $\left\langle\overline{\rho_{j}}\right\rangle \subset \mathscr{I}(R)$ ．Mild criterion gives equality．

Gradation and polynomials

- Denote $\mathscr{E}:=\mathbb{F}_{p}\left\langle X_{1} ; \ldots ; X_{d}\right\rangle=\bigoplus_{n} E_{n} / E_{n+1}$.
- Then we can see $\mathscr{E}(G):=\bigoplus_{n} E_{n}(G) / E_{n+1}(G)$ as a quotient of \mathscr{E}.
- However, the kernel of $\mathscr{E} \rightarrow \mathscr{E}(G)$, that we call $\mathscr{I}(R)$ is difficult to understand.
- Let n_{j} be the weight of ρ_{j}, i.e $\rho_{j} \in E_{n_{j}} \backslash E_{n_{j}+1}$. Define $\overline{\rho_{j}}$ the image of ρ_{j} in $E_{n_{j}} / E_{n_{j}+1} \subset \mathscr{E}$.
- Observe $\left\langle\overline{\rho_{j}}\right\rangle \subset \mathscr{I}(R)$. Mild criterion gives equality.
- Define $r(t):=\sum_{j} t^{n_{j}}$.
- Result:

$$
\operatorname{gocha}(G, t)(1-d t+r(t)) \geq 1
$$

Consequence Golod-Shafarevich criterion

Golod-Shafarevich Theorem

G finite implies for every $t \in[0 ; 1]$:

$$
1-d t+r(t)>0
$$

Consequence Golod-Shafarevich criterion

Golod-Shafarevich Theorem

G finite implies for every $t \in[0 ; 1]$:

$$
1-d t+r(t)>0
$$

Corollary
If G is finite, then

$$
d^{2}<4 r .
$$

Known results

Computing a_{n} is in general more difficult.

Known results

Computing a_{n} is in general more difficult．
Proposition（Jennings－Lazard Formula，Proposition 3.10 in Appendice A［Lazard 1965］）

$$
\begin{equation*}
\operatorname{gocha}(G, t)=\prod_{n \in \mathbb{N}} P_{n}(t)^{a_{n}}, \quad \text { where } P_{n}(t):=\left(\frac{1-t^{p n}}{1-t^{n}}\right) . \tag{1}
\end{equation*}
$$

Known results

Computing a_{n} is in general more difficult.
Proposition (Jennings-Lazard Formula, Proposition 3.10 in Appendice A [Lazard 1965])

$$
\begin{equation*}
\operatorname{gocha}(G, t)=\prod_{n \in \mathbb{N}} P_{n}(t)^{a_{n}}, \quad \text { where } P_{n}(t):=\left(\frac{1-t^{p n}}{1-t^{n}}\right) . \tag{1}
\end{equation*}
$$

Let us deduce some consequences of Formula (1):

Consequences of Formula 1

Gocha's alternative, Theorem 3.11 of Appendice A. 3 [Lazard 1965]

We have the following alternative:

- Either G is an analytic pro-p group, i.e Lie group over \mathbb{Q}_{p}, so there exists an integer n such that $a_{n}=0$ and the sequence $\left(c_{n}\right)_{n \in \mathbb{N}}$ has polynomial growth with n.

Consequences of Formula 1

Gocha's alternative, Theorem 3.11 of Appendice A. 3 [Lazard 1965]

We have the following alternative:

- Either G is an analytic pro-p group, i.e Lie group over \mathbb{Q}_{p}, so there exists an integer n such that $a_{n}=0$ and the sequence $\left(c_{n}\right)_{n \in \mathbb{N}}$ has polynomial growth with n.
- Or G is not an analytic pro- p group, then for every $n \in \mathbb{N}, a_{n} \neq 0$, and the sequence $\left(c_{n}\right)_{n \in \mathbb{N}}$ does admit an exponential growth with n.

Consequences of Formula 1

In 2016，Mináč，Rogelstad and Tân gave an explicit formula relating a_{n} and c_{n} ，by introducing：

$$
\log (\operatorname{gocha}(G, t)):=-\sum_{n \in \mathbb{N}} \frac{(1-\operatorname{gocha}(G, t))^{n}}{n}:=\sum_{n \in \mathbb{N}} b_{n} t^{n} .
$$

Consequences of Formula 1

In 2016, Mináč, Rogelstad and Tân gave an explicit formula relating a_{n} and c_{n}, by introducing:

$$
\log (\operatorname{gocha}(G, t)):=-\sum_{n \in \mathbb{N}} \frac{(1-\operatorname{gocha}(G, t))^{n}}{n}:=\sum_{n \in \mathbb{N}} b_{n} t^{n} .
$$

Proposition (Proposition 3.4 of [Mináč, Rogelstad and Tân 2016])

If we write $n=m p^{k}$, with m coprime to p, then

$$
\begin{equation*}
a_{n}=w_{m}+w_{m p}+\cdots+w_{m p^{k}} \tag{2}
\end{equation*}
$$

where $w_{n}:=\frac{1}{n} \sum_{m \mid n} \mu(n / m) m b_{m} \quad$ and $\quad \mu$ is the Möbius function.

Cohomological dimension

- We denote $\operatorname{cd}(G)$ the cohomological dimension of G.

Cohomological dimension

- We denote $\operatorname{cd}(G)$ the cohomological dimension of G.
- $c d(G)=1$ if and only if G is free, if and only if $\operatorname{gocha}(G, t):=\frac{1}{1-d t}$.

Cohomological dimension

－We denote $c d(G)$ the cohomological dimension of G ．
－$c d(G)=1$ if and only if G is free，if and only if $\operatorname{gocha}(G, t):=\frac{1}{1-d t}$ ．

$$
\operatorname{gocha}(G, t):=\frac{1}{1-d t+r(t)},
$$

implies

Cohomological dimension

- We denote $c d(G)$ the cohomological dimension of G.
- $c d(G)=1$ if and only if G is free, if and only if $\operatorname{gocha}(G, t):=\frac{1}{1-d t}$.

$$
\operatorname{gocha}(G, t):=\frac{1}{1-d t+r(t)},
$$

implies

$$
c d(G)=2 \quad \text { and } \quad \operatorname{dim}_{\mathbb{F}_{p}}\left(H^{2}\left(G, \mathbb{F}_{p}\right)\right)=r(1)
$$

Table of Contents

（1）Notions on pro－p groups
（2）Filtrations，Gocha＇s series and Mild groups
（3）Results on Equivariant case

4 Examples

Eigenspaces

- Assume $\operatorname{Aut}(G)$ contains a subgroup Δ of order q, where q is a prime divisor of $p-1$.

Eigenspaces

- Assume $\operatorname{Aut}(G)$ contains a subgroup Δ of order q, where q is a prime divisor of $p-1$.
- We denote by χ, the elements of $\operatorname{Irr}\left(\Delta, \mathbb{F}_{p}\right): \mathbb{F}_{p}$-irreducible characters of Δ; and $\mathbb{1}$ the trivial character.

Eigenspaces

- Assume $\operatorname{Aut}(G)$ contains a subgroup Δ of order q, where q is a prime divisor of $p-1$.
- We denote by χ, the elements of $\operatorname{Irr}\left(\Delta, \mathbb{F}_{p}\right): \mathbb{F}_{p}$-irreducible characters of Δ; and $\mathbb{1}$ the trivial character.
- For M a $\mathbb{F}_{p}[\Delta]$-module:

$$
M_{\chi}:=\{x \in M ; \quad \forall \sigma \in \Delta, \quad \sigma(x)=\chi(\sigma) x\} .
$$

Eigenspaces

- Assume $\operatorname{Aut}(G)$ contains a subgroup Δ of order q, where q is a prime divisor of $p-1$.
- We denote by χ, the elements of $\operatorname{Irr}\left(\Delta, \mathbb{F}_{p}\right): \mathbb{F}_{p}$-irreducible characters of Δ; and $\mathbb{1}$ the trivial character.
- For M a $\mathbb{F}_{p}[\Delta]$-module:

$$
M_{\chi}:=\{x \in M ; \quad \forall \sigma \in \Delta, \quad \sigma(x)=\chi(\sigma) x\} .
$$

Focus on the graded set $\operatorname{Grad}(G)_{\chi}:=\bigoplus_{n}\left(G_{n} / G_{n+1}\right)_{\chi}$ and

$$
a_{n}^{\chi}:=\operatorname{dim}_{\mathbb{F}_{p}}\left(\left(G_{n} / G_{n+1}\right)_{\chi}\right), \quad c_{n}^{\chi}:=\operatorname{dim}_{\mathbb{F}_{p}}\left(\left(A l p_{n}(G) / A l p_{n+1}(G)\right)_{\chi}\right)
$$

New results

Following ideas of [Filip 2011], we introduce:

$$
\operatorname{gocha}^{*}(G, t):=\sum_{n \in \mathbb{N}}\left(\sum_{\chi} c_{n}^{\chi} \chi\right) t^{n} \in R_{\mathbb{F}_{p}}[\Delta][[t]] .
$$

Where $R_{\mathbb{F}_{p}}[\Delta]$ is the semi-ring generated by χ 's over \mathbb{Z}.

New results

Following ideas of [Filip 2011], we introduce:

$$
\operatorname{gocha}^{*}(G, t):=\sum_{n \in \mathbb{N}}\left(\sum_{\chi} c_{n}^{\chi} \chi\right) t^{n} \in R_{\mathbb{F}_{p}}[\Delta][[t]] .
$$

Where $R_{\mathbb{F}_{p}}[\Delta]$ is the semi-ring generated by χ 's over \mathbb{Z}.
Theorem: [H. 2022, Theorem A]

$$
\begin{aligned}
& \quad \operatorname{gocha}^{*}(G, t)=\prod_{n \in \mathbb{N}} \prod_{\chi} P_{n ; \chi}(t)^{a_{n}^{\chi}}, \\
& \text { where } \quad P_{n ; \chi}(t):=\frac{1-\left(\chi t^{n}\right)^{p}}{1-\chi t^{n}}
\end{aligned}
$$

Consequences

Denominate:

$$
\log \left(\operatorname{gocha}^{*}(G, t)\right):=-\sum_{n \in \mathbb{N}} \frac{\left(1-\operatorname{gocha}^{*}(G, t)\right)^{n}}{n}:=\sum_{n \in \mathbb{N}}\left(\sum_{\chi} b_{n}^{\chi} \chi\right) t^{n}
$$

Logarithm of series with coefficients in $R_{\mathbb{F}_{p}}[\Delta] \otimes_{\mathbb{Z}} \mathbb{Q}$ were first studied by [Filip 2011]. We infer:

Consequences

Denominate:

$$
\log \left(\operatorname{gocha}^{*}(G, t)\right):=-\sum_{n \in \mathbb{N}} \frac{\left(1-\operatorname{goch}^{*}(G, t)\right)^{n}}{n}:=\sum_{n \in \mathbb{N}}\left(\sum_{\chi} b_{n}^{\chi} \chi\right) t^{n}
$$

Logarithm of series with coefficients in $R_{\mathbb{F}_{p}}[\Delta] \otimes_{\mathbb{Z}} \mathbb{Q}$ were first studied by [Filip 2011]. We infer:

Proposition: [H. 2022, Formula 2]

Write $n:=m p^{k}$, with m coprime to p, and assume q is coprime with n. Then:

$$
a_{n}^{\chi}=w_{m}^{\chi}+w_{m p}^{\chi}+\cdots+w_{m p^{k}}^{\chi}
$$

where $\quad w_{n}^{\chi}:=\frac{1}{n} \sum_{m \mid n} \mu(n / m) m b_{m}^{\chi_{m / n}^{m}} \in \mathbb{Q}$.

Properties of \log

Proposition

Note that the log function enjoys the following properties:

Properties of \log

Proposition

Note that the log function enjoys the following properties:

- If P and Q are in $1+t R_{\mathbb{F}_{p}}[\Delta][[t]]$, then:

$$
\begin{gathered}
\log (P Q)=\log (P)+\log (Q), \quad \text { and } \\
\log (1 / P)=-\log (P) .
\end{gathered}
$$

Properties of \log

Proposition

Note that the log function enjoys the following properties:

- If P and Q are in $1+t R_{\mathbb{F}_{p}}[\Delta][[t]]$, then:

$$
\begin{gathered}
\log (P Q)=\log (P)+\log (Q), \quad \text { and } \\
\log (1 / P)=-\log (P)
\end{gathered}
$$

- If u is in $t R_{\mathbb{F}_{p}}[\Delta][[t]]$, then

$$
\log \left(\frac{1}{1-u(t)}\right)=\sum_{\nu=1}^{\infty} \frac{u(t)^{\nu}}{\nu}
$$

Question

Assume G infinite, then Pigeonhole principle: There exists at least one χ such that $\operatorname{Grad}(G)_{\chi}$ is infinite.

Question

Assume G infinite, then Pigeonhole principle: There exists at least one χ such that $\operatorname{Grad}(G)_{\chi}$ is infinite.

Main Question: For which χ, is $\operatorname{Grad}(G)_{\chi}$ infinite ?

Question

Assume G infinite, then Pigeonhole principle: There exists at least one χ such that $\operatorname{Grad}(G)_{\chi}$ is infinite.

Main Question: For which χ, is $\operatorname{Grad}(G)_{\chi}$ infinite ?
Partial answer when G is not analytic.

Table of Contents

(1) Notions on pro-p groups
(2) Filtrations, Gocha's series and Mild groups
(3) Results on Equivariant case
(4) Examples

G is free

Theorem C

Assume that G is a noncommutative free pro- p group. Then for every χ, the graded set $\operatorname{Grad}(G)_{\chi}$ is infinite.

G is free

Example

- $\Delta:=\langle\sigma\rangle$ of order 2 , and χ_{0} the unique nontrivial character.
- G is free generated by $\left\{x_{1} ; \ldots ; x_{d}\right\}$, and $\sigma\left(x_{i}\right):=x_{i}^{-1}$.

G is free

Example

- $\Delta:=\langle\sigma\rangle$ of order 2 , and χ_{0} the unique nontrivial character.
- G is free generated by $\left\{x_{1} ; \ldots ; x_{d}\right\}$, and $\sigma\left(x_{i}\right):=x_{i}^{-1}$.
- Observe:

$$
\begin{aligned}
\operatorname{gocha}^{*}(G, t) & :=\frac{1}{1-d \chi_{0} t}, \quad \text { and } \\
\log \left(g o c h a^{*}(G, t)\right) & :=\sum_{n} \frac{\left(d \chi_{0}\right)^{n}}{n} t^{n} .
\end{aligned}
$$

- Then $c_{2 n}^{1}=d^{2 n}, \quad c_{2 n+1}^{1}=0, \quad c_{2 n}^{\chi 0}=0, \quad c_{2 n+1}^{\chi 0}=d^{2 n+1}$.
- $b_{2 n+1}^{\chi 0}:=d^{2 n+1} /(2 n+1), \quad b_{2 n}^{\chi_{0}}=0$, $b_{2 n+1}^{\chi_{0}}=0, \quad b_{2 n}^{\mathbb{1}}=d^{2 n} /(2 n)$.

G is free

Example

- $\Delta:=\langle\sigma\rangle$ of order 2 , and χ_{0} the unique nontrivial character.
- G is free generated by $\left\{x_{1} ; \ldots ; x_{d}\right\}$, and $\sigma\left(x_{i}\right):=x_{i}^{-1}$.
- Observe:

$$
\begin{aligned}
\operatorname{gocha}^{*}(G, t) & :=\frac{1}{1-d \chi_{0} t}, \quad \text { and } \\
\log \left(g o c h a^{*}(G, t)\right) & :=\sum_{n} \frac{\left(d \chi_{0}\right)^{n}}{n} t^{n} .
\end{aligned}
$$

- Then $c_{2 n}^{1}=d^{2 n}, \quad c_{2 n+1}^{1}=0, \quad c_{2 n}^{\chi 0}=0, \quad c_{2 n+1}^{\chi 0}=d^{2 n+1}$.
- $b_{2 n+1}^{\chi 0}:=d^{2 n+1} /(2 n+1), \quad b_{2 n}^{\chi 0}=0$,
$b_{2 n+1}^{\chi 0}=0, \quad b_{2 n}^{1}=d^{2 n} /(2 n)$.
- From [H. 2022, Formula 2], one obtains when $p \neq 3$:

$$
a_{3}^{\chi_{0}}=w_{3}^{\chi_{0}}=\frac{d^{3}-d}{3}, \text { and } a_{3}^{\mathbb{1}}=0
$$

$\operatorname{cd}(G)=2$

Theorem: [H. 2022, Theorem B]
Assume that the polynomial $\chi_{\text {eul }, \chi_{0}}(t)$ admits a unique root of minimal absolute value, which is real in $] 0 ; 1[$.

$\operatorname{cd}(G)=2$

Theorem: [H. 2022, Theorem B]

Assume that the polynomial $\chi_{\text {eul }, \chi_{0}}(t)$ admits a unique root of minimal absolute value, which is real in $] 0 ; 1[$. Then for every χ, the graded set $\operatorname{Grad}(G)_{\chi}$ is infinite.

Complete example when $\operatorname{cd}(G)=2$

Example

- Take $p=103$ and $q=17$. Fix the character $\chi_{0}: \Delta \rightarrow \mathbb{F}_{103}^{\times} ; \sigma \mapsto \overline{8}$.

Complete example when $\operatorname{cd}(G)=2$

Example

- Take $p=103$ and $q=17$. Fix the character $\chi_{0}: \Delta \rightarrow \mathbb{F}_{103}^{\times} ; \sigma \mapsto \overline{8}$.
- Consider the pro-103 group G, generated by three generators x, y, z and the two relations $u=[x ; y]$ and $v=[x ; z]$.

Complete example when $\operatorname{cd}(G)=2$

Example

- Take $p=103$ and $q=17$. Fix the character $\chi_{0}: \Delta \rightarrow \mathbb{F}_{103}^{\times} ; \sigma \mapsto \overline{8}$.
- Consider the pro-103 group G, generated by three generators x, y, z and the two relations $u=[x ; y]$ and $v=[x ; z]$.
- Then $\operatorname{cd}(G)=2$ and

$$
\operatorname{gocha}(G, t):=1 /\left(1-3 t+2 t^{2}\right)
$$

Complete example when $\operatorname{cd}(G)=2$

Example

- Take $p=103$ and $q=17$. Fix the character $\chi_{0}: \Delta \rightarrow \mathbb{F}_{103}^{\times} ; \sigma \mapsto \overline{8}$.
- Consider the pro-103 group G, generated by three generators x, y, z and the two relations $u=[x ; y]$ and $v=[x ; z]$.
- Then $\operatorname{cd}(G)=2$ and

$$
\operatorname{gocha}(G, t):=1 /\left(1-3 t+2 t^{2}\right)
$$

- Automorphism σ on G, by:

$$
\sigma(x):=x^{8}, \sigma(y):=y^{8^{2}} \text { and } \sigma(z):=z^{8^{3}}
$$

Some computations

Example

One obtains from Formula (2): $a_{2}=1$ and $a_{3}=2$.

Some computations

Example

One obtains from Formula（2）：$a_{2}=1$ and $a_{3}=2$.
We compute：

$$
\operatorname{gocha}^{*}(G, t):=\frac{1}{1-\left(\chi_{0}+\chi_{0}^{2}+\chi_{0}^{3}\right) t+\left(\chi_{0}^{3}+\chi_{0}^{4}\right) t^{2}}, \quad \text { and }
$$

$$
\log \left(g o c h a^{*}(G, t)\right)=\left(\chi_{0}+\chi_{0}^{2}+\chi_{0}^{3}\right) t+\left(\chi_{0}{ }^{6} / 2+\chi_{0}^{5}+\chi_{0}^{4} / 2+\chi_{0}{ }^{2} / 2\right) t^{2}+
$$

$$
\left(\chi_{0}{ }^{9} / 3+\chi_{0}{ }^{8}+\chi_{0}{ }^{7}+\chi_{0}{ }^{6} / 3+\chi_{0}{ }^{3} / 3\right) t^{3}+\ldots
$$

Some computations

Example

One obtains from Formula (2): $a_{2}=1$ and $a_{3}=2$.
We compute:

$$
\operatorname{gocha}^{*}(G, t):=\frac{1}{1-\left(\chi_{0}+\chi_{0}^{2}+\chi_{0}^{3}\right) t+\left(\chi_{0}^{3}+\chi_{0}^{4}\right) t^{2}}, \quad \text { and }
$$

$$
\log \left(\operatorname{gocha}^{*}(G, t)\right)=\left(\chi_{0}+\chi_{0}^{2}+\chi_{0}{ }^{3}\right) t+\left(\chi_{0}{ }^{6} / 2+\chi_{0}{ }^{5}+\chi_{0}{ }^{4} / 2+\chi_{0}{ }^{2} / 2\right) t^{2}+
$$

$$
\left(\chi_{0}{ }^{9} / 3+\chi_{0}{ }^{8}+\chi_{0}{ }^{7}+\chi_{0}{ }^{6} / 3+\chi_{0}{ }^{3} / 3\right) t^{3}+\ldots
$$

[H. 2022, Formula 2] gives us:

- $a_{2}^{\chi_{0}^{5}}=1$, so we conclude that $a_{2}^{\chi_{0}^{i}}=0$ when $i \neq 5$.
- $a_{3}^{\chi_{0}^{7}}=a_{3}^{11}=1$. Then if $i \notin\{0,7\}, a_{3}^{\chi_{0}^{i}}=0$.

Example
Here:

$$
\chi_{\text {eul }, \chi_{0}}(t):=1-t-t^{2}+t^{4} .
$$

The minimal root of $1-t-t^{2}+t^{4}$ is real, around 0.75 .

Example

Here：

$$
\chi_{\text {eul }, \chi_{0}}(t):=1-t-t^{2}+t^{4} .
$$

The minimal root of $1-t-t^{2}+t^{4}$ is real，around 0.75 ．
Then by $[H .2022$ ，Theorem $B]$ ，for every $\chi, \operatorname{Grad}(G)_{\chi}$ is infinite．

Arithmetic examples: Notations

- Let p be an odd prime.
- K a number field, with class number coprime to p and S a finite set of prime ideals.

Arithmetic examples: Notations

- Let p be an odd prime.
- K a number field, with class number coprime to p and S a finite set of prime ideals.
- S is tame, i.e for all $\mathfrak{p} \in S, N_{K / \mathbb{Q}}(\mathfrak{p}) \equiv 1(\bmod p)$.

Arithmetic examples: Notations

- Let p be an odd prime.
- K a number field, with class number coprime to p and S a finite set of prime ideals.
- S is tame, i.e for all $\mathfrak{p} \in S, N_{K / \mathbb{Q}}(\mathfrak{p}) \equiv 1(\bmod p)$.
- K_{S} is the p-maximal extension unramified outside S, and $G_{S}:=\operatorname{Gal}\left(K_{S} / K\right)$.

Koch＇s computations

Theorem［Koch 2002］

Let $S:=\left\{\mathfrak{p}_{i}\right\}$ be a finite tame set of places of a number field K with class number coprime to p ，then $G_{S}:=\operatorname{Gal}\left(\mathrm{K}_{S} / \mathrm{K}\right)$ admits a presentation with $|S|$ generators and $|S|$ relations．

Koch's computations

Theorem [Koch 2002]

Let $S:=\left\{\mathfrak{p}_{i}\right\}$ be a finite tame set of places of a number field K with class number coprime to p, then $G_{S}:=\operatorname{Gal}\left(\mathrm{K}_{S} / \mathrm{K}\right)$ admits a presentation with $|S|$ generators and $|S|$ relations. Relations are defined modulo F_{3} :

$$
I_{i} \equiv \prod_{j \neq i}\left[x_{i} ; x_{j}\right]^{l_{i, j}} \quad\left(\bmod F_{3}\right)
$$

The coefficient $l_{i, j}$ is the linking number of \mathfrak{p}_{i} and \mathfrak{p}_{j}.

Examples

－Consider［Koch 2002，Example 11．15］，take $p=3$ and $S_{0}:=\{229,41\}$ ．Then the group $G_{S_{0}}:=\operatorname{Gal}\left(\mathbb{Q}_{s_{0}} / \mathbb{Q}\right)$ is finite．

Examples

- Consider [Koch 2002, Example 11.15], take $p=3$ and $S_{0}:=\{229,41\}$. Then the group $G_{S_{0}}:=\operatorname{Gal}\left(\mathbb{Q}_{s_{0}} / \mathbb{Q}\right)$ is finite.
- If we consider $K:=\mathbb{Q}(i)$, the primes in S_{0} totally split in K. Here $G_{S}:=\operatorname{Gal}\left(K_{S} / K\right)$ admits 4 generators and 4 relations, so G_{S} is infinite (by GS theorem).

Examples

- Consider [Koch 2002, Example 11.15], take $p=3$ and $S_{0}:=\{229,41\}$. Then the group $G_{S_{0}}:=\operatorname{Gal}\left(\mathbb{Q}_{s_{0}} / \mathbb{Q}\right)$ is finite.
- If we consider $K:=\mathbb{Q}(i)$, the primes in S_{0} totally split in K. Here $G_{S}:=\operatorname{Gal}\left(K_{S} / K\right)$ admits 4 generators and 4 relations, so G_{S} is infinite (by GS theorem).
In fact, $\operatorname{cd}\left(G_{S}\right)=2$.

FAB example

- FAB, i.e every open subgroup has finite abelianization.

FAB example

- FAB, i.e every open subgroup has finite abelianization.
- Take $p=3$, and consider $\mathrm{K}:=\mathbb{Q}(\sqrt{-163})$.
- Define $\Delta:=\operatorname{Gal}(\mathrm{K} / \mathbb{Q})=\mathbb{Z} / 2 \mathbb{Z}$, and χ_{0} the nontrivial irreducible character of Δ over \mathbb{F}_{p}.

FAB example

- FAB, i.e every open subgroup has finite abelianization.
- Take $p=3$, and consider $K:=\mathbb{Q}(\sqrt{-163})$.
- Define $\Delta:=\operatorname{Gal}(\mathrm{K} / \mathbb{Q})=\mathbb{Z} / 2 \mathbb{Z}$, and χ_{0} the nontrivial irreducible character of Δ over \mathbb{F}_{p}.
- Put $\left\{p_{1}:=31, p_{2}:=19, p_{3}:=13, p_{4}:=337, p_{5}:=7, p_{6}:=43\right\}$.
- The class group of K is trivial, the primes $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ are inert in K , and the prime p_{6} totally splits in K.

FAB example

- FAB, i.e every open subgroup has finite abelianization.
- Take $p=3$, and consider $K:=\mathbb{Q}(\sqrt{-163})$.
- Define $\Delta:=\operatorname{Gal}(\mathrm{K} / \mathbb{Q})=\mathbb{Z} / 2 \mathbb{Z}$, and χ_{0} the nontrivial irreducible character of Δ over \mathbb{F}_{p}.
- Put $\left\{p_{1}:=31, p_{2}:=19, p_{3}:=13, p_{4}:=337, p_{5}:=7, p_{6}:=43\right\}$.
- The class group of K is trivial, the primes $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ are inert in K , and the prime p_{6} totally splits in K.
- Define S the primes above the previous set in K , and K_{S} the maximal p-extension unramified outside S.

FAB example

- Then Δ acts on $G:=\operatorname{Gal}\left(\mathrm{K}_{S} / \mathrm{K}\right)$, which is FAB by Class Field Theory.
- We can show that the pro-p group G is mild, so we obtain

$$
\operatorname{gocha}\left(\mathbb{F}_{p}, t\right):=\frac{1}{1-7 t+7 t^{2}}
$$

FAB example

- Then Δ acts on $G:=\operatorname{Gal}\left(\mathrm{K}_{S} / \mathrm{K}\right)$, which is FAB by Class Field Theory.
- We can show that the pro-p group G is mild, so we obtain

$$
\operatorname{gocha}\left(\mathbb{F}_{p}, t\right):=\frac{1}{1-7 t+7 t^{2}}
$$

- Furthermore:

$$
\begin{aligned}
\operatorname{gocha}^{*}\left(\mathbb{F}_{p}, t\right) & :=\frac{1}{1-\left(6+\chi_{0}\right) t+\left(6+\chi_{0}\right) t^{2}} \\
\operatorname{gocha}_{\chi_{0}}\left(\mathbb{F}_{p}, t\right) & :=\frac{1}{1-t-5 t^{2}+6 t^{4}}
\end{aligned}
$$

FAB example

- Then Δ acts on $G:=\operatorname{Gal}\left(\mathrm{K}_{S} / \mathrm{K}\right)$, which is FAB by Class Field Theory.
- We can show that the pro-p group G is mild, so we obtain

$$
\operatorname{gocha}\left(\mathbb{F}_{p}, t\right):=\frac{1}{1-7 t+7 t^{2}}
$$

- Furthermore:

$$
\begin{aligned}
\operatorname{gocha}^{*}\left(\mathbb{F}_{p}, t\right) & :=\frac{1}{1-\left(6+\chi_{0}\right) t+\left(6+\chi_{0}\right) t^{2}} \\
\operatorname{gocha}_{\chi_{0}}\left(\mathbb{F}_{p}, t\right) & :=\frac{1}{1-t-5 t^{2}+6 t^{4}}
\end{aligned}
$$

- The graded spaces $\operatorname{Grad}(G)_{\mathbb{1}}$ and $\operatorname{Grad}(G)_{\chi_{0}}$ are both infinite dimensional.

FAB example

- Then Δ acts on $G:=\operatorname{Gal}\left(\mathrm{K}_{S} / \mathrm{K}\right)$, which is FAB by Class Field Theory.
- We can show that the pro-p group G is mild, so we obtain

$$
\operatorname{gocha}\left(\mathbb{F}_{p}, t\right):=\frac{1}{1-7 t+7 t^{2}}
$$

- Furthermore:

$$
\begin{aligned}
\operatorname{gocha}^{*}\left(\mathbb{F}_{p}, t\right) & :=\frac{1}{1-\left(6+\chi_{0}\right) t+\left(6+\chi_{0}\right) t^{2}} \\
\operatorname{gocha}_{\chi_{0}}\left(\mathbb{F}_{p}, t\right) & :=\frac{1}{1-t-5 t^{2}+6 t^{4}}
\end{aligned}
$$

- The graded spaces $\operatorname{Grad}(G)_{\mathbb{1}}$ and $\operatorname{Grad}(G)_{\chi_{0}}$ are both infinite dimensional.
- Moreover, we obtain for instance:

$$
a_{3}^{\chi 0}=24, \quad \text { and } \quad a_{3}^{1}=39
$$

References

固 Helmut Koch（2002）
Galois Theory of p－extensions
Springer
（ Christian Maire（2014）
Some examples of FAB and mild pro－p－group with trivial cup－product
Kyushu Journal of Mathematics
囯 Oussama Hamza and Christian Maire（2020）
A note on asymptotically good extensions in which infinitely many primes split completely
Archiv der Mathematik 115（2020），523－534．
國 Oussama Hamza（2022）
Isotypical study of Zassenhaus and lower central filtrations on pro－p groups．
arXiv preprint arXiv：2207．12372，Submitted（2022）．

References

- David Anick (1982)

Non-commutative graded algebras and their Hilbert series
Journal of Algebra 78.1(1982), 120 - 140.
Tichel Lazard (1965)
Groupes analytiques p-adiques.
Publications Mathématiques de l'IHÉS 26(1965).
國 Ján Mináč, Michael Rogelstad, Nguyen Duy Tân (2016)
Dimensions of Zassenhaus filtration subquotients of some pro-p-groups. Israel Journal of Mathematics 212.2(2016), 825 - 855.

Simion Filip (2013)
The Lie algebra of the fundamental group of a surface as a symplectic module. arXiv preprint arXiv:1308.1529 (2013).

圊 John Dixon, Marcus Du Sautoy, Avinoam Mann and Dan Segal (2003)
Analytic pro-p groups.
Cambridge University Press 61(2003).

References

Tohn Labute（2006）
Mild pro－p groups and Galois groups of p－extensions of \mathbb{Q}
J REINE ANGEW MATH（2006），155－182．
－John Labute and Ján Mináč（2011）
Mild pro－2 groups and 2－extensions of \mathbb{Q} with restricted ramification Journal of Algebra 332．1（2011）， 136 － 158.

國 Patrick Forré（2011）
Strongly free sequences and pro－p groups of cohomological dimension 2
J REINE ANGEW MATH（2011）， 173 － 192.
國 Ján Mináč and Nguyên Duy Tân（2015）
The kernel unipotent conjecture and the vanishing of Massey products for odd rigid fields
Advances in Mathematics 273（2015）， 242 － 270.
國 John Labute（1985）
The Determination of the Lie Algebra Associated to the Lower Central Series of a Group
Transactions of the American Mathematical Society 288（1985）， 51 － 57.

