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Outline

1. Non-linear Kantorovich operators in analysis.

2. 1-homogenous Kantorovich operators and “zero cost” balayage.

3. Kantorovich operators and Choquet functional capacities.

4. Duality: Kantorovich operators, linear transfers, optimal balayage.

5. Weak KAM solutions/operators associated to Kantorovich operators.

6. Deterministic and stochastic Fathi-Mather theory.

7. Deterministic and stochastic Ergodic optimization.
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Formal definition of Kantorovich operators

A Markov operator is a map T : C (Y )→ C (X ) which is:

1. positive: if g ≥ 0 then Tg ≥ 0.

2. linear: T (λg1 + µg2) = λTg1 + µT−g2.

3. Markovian: T1 = 1.

4. continuous: gn → g in C (Y ),then limn→∞ Tgn = Tg .

A backward Kantorovich operator T− : C (Y )→ USC (X ) which is

1. monotone increasing, i.e., if g1 ≤ g2, then T−g1 ≤ T−g2.

2. affine on the constants, i.e., for any c ∈ R and g ∈ C (Y )
T−(g + c) = T−g + c .

3. convex, i.e., For any λ ∈ [0, 1], we have

T−(λg1 + (1− λ)g2) ≤ λT−g1 + (1− λ)T−g2

4. lower semi-continuous, i.e., If gn → g , then lim inf
n→∞

T−gn ≥ T−g .

A forward Kantorovich operator is a map T+ : C (X )→ LSC (Y ) that
satisfies 1), 2), 3’) (concave) and 4’) (upper-semi-continuous).
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Iterates of Kantorovich operators are omnipresent even in
linear analysis

1. U−g = g ∨ Tg , where T is Markov. Iterates lead to
U−∞g = ĝ the least T -superharmonic function above g .

2. Plurisuperharmonic envelopes

U−g(x) := sup
v∈Rn

{∫ 2π

0
g(x + e iθv)

dθ

2π
; x + ∆̄v ⊂ O

}
,

Iterates lead to

U−∞g(x) = sup

{∫ 2π

0
g(P(e iθ))

dθ

2π
; P polynomial, P(∆̄) ⊂ U, P(0) = x

}
3. Superharmonic envelope and Optimal stopping:

U−g(x) = sup
r≥0

{∫
B
g(x + ry) dm(y); x + rB} ⊂ O

}
,

U−∞g(x) := sup
{
Ex
[
g(Bτ )

]
; τ ≥ 0 stopping time,Ex [τ ] < +∞

}
.

The expectation Ex refers to Brownian motions (Bt)t starting at x .

4. The filling scheme for a Markov operator T , U−g = Tg+ − g−.

All these are positively 1-homogenous Kantorovich operators,

U(λf ) = λU(f ) for all λ ≥ 0.

Nassif Ghoussoub, UBC (based on joint work with Malcolm Bowles) Kantorovich operators and their ergodic properties



Iterates of Kantorovich operators are omnipresent even in
linear analysis

1. U−g = g ∨ Tg , where T is Markov. Iterates lead to
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1-homogenous Kantorovich operators

A typical 1-homogenous operator is

U−g(x) := sup{
∫
X

g dσ; (x , σ) ∈ S},

where g is a reward function, and S ⊂ X ×P(Y ) is a “gambling house”.
• For each x , Sx = {σ ∈ P(X ); (x , σ) ∈ S} 6= ∅ is the collection of
distributions of gains available to a gambler having wealth x
(Dubins-Savage, Dellacherie-Meyer).

• When X = Y , a fair gambling houser is

U−g(x) := sup{
∫
X

g dσ; δx ≺A σ},

where A is the cone of convex l.s.c. functions on X (convex compact):

µ ≺A ν iff
∫
X
φdµ ≤

∫
φdν for all φ ∈ A.

Convex order, Fair game, martingale, etc...
A very particular case, but somewhat characterizes 1-homogenous
Kantorovich operators from Y to X .
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A representation of 1-homogenous Kantorovich operators

Theorem: The following are equivalent:

1. T is a 1-homogenous Kantorovich operator from C (Y ) to USC (X ).
2. There exists a closed convex, stable under finite max, balayage cone
A on the disjoint union X

⊔
Y such that

U−g(x) := sup{
∫
X

g dσ; δx ≺A σ},

where for (µ, ν) ∈ P(X )× P(Y ),

µ ≺A ν iff
∫
X
φXdµ ≤

∫
Y
φY dν for all φ ∈ A. (Restricted balayage).

• The gambling house is then,

S = {(µ, ν) ∈ P(X )×P(Y ); ν ≤ U−#µ} = {(µ, ν) ∈ P(X )×P(Y ); µ ≺A ν},

where U−#µ(g) =
∫
X
U−g dµ for every g ∈ C (Y ).

• If X = Y , then iterating Tu = u ∨ U−u, leads to an idempotent
backward Kantorovich operator U−∞ (i.e., U−∞ ◦ U−∞ = U−∞) and a
balayage cone A ⊂ LSC (X ) such that

U−∞g(x) := inf{φ(x);φ ∈ −A, φ ≥ g on X}.
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Non-homogenous Kantorovich operators

1. Ergodic optimization of symbolic dynamics:

U−g(x) := g ◦ σ(x)− A(x),

A is a given potential and σ is a point transformation. Its iterates lead to
minimizing the action µ 7→

∫
X
Adµ among all σ-invariant measures µ.

2. Optimal mass transport with cost function c(x , y): on X × Y .

U−g(x) = sup
y∈Y
{g(y)− c(x , y)} resp., U+f (y) = inf

x∈X
{f (x) + c(x , y)},

is then a backward (resp., forward Kantorovich operator):

(Brenier transport): U−g = −g∗ resp., U+f = (−f )∗, φ∗ is the
Legendre transform.

3. Entropic regularization and Sinkhorn

T−ν g(x) = ε log

∫
Y

e
g(y)−c(x,y)

ε dν(y),

where ν ∈ P(X ), as well as the composition T−ν ◦ T−µ , where µ is another
probability in P(X ), whose iterates are the building clocks of the Sinkhorn
algorithm.
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Calculus of variations

If L is a Tonelli Lagrangian on TM

U−g(x) := sup
{
g(γ(1))−

∫ 1

0

L(γ(s), γ̇(s)) ds; γ ∈ C 1([0, 1),M); γ(0) = x
}
,

To a state g at time 1, it associates the initial state of the viscosity
solution for the associated backward Hamilton-Jacobi equation,{

∂tV + H(x ,∇xV ) = 0 on (0, 1)×M
V (1, x) = g(x)

All the above have corresponding forward Kantorovich operators.
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One-sided Kantorovich operators

1. Stochastic control: One-sided Kantorovich operators appear in stochastic
mass transfer problems. For example,

T−g(x) = sup
X∈A[0,1]

{
E
[
g(X (1))−

∫ 1

0

L(X (s), βX (s,X ))ds |X (0) = x

]}
,

where A[0,1] := {X : Ω→ U; dXt = β(t,X ) dt + dWt on [0, 1]} .
Wt is Weiner measure and the minimization is taken over all drifts β.

Under some assumptions on the Lagrangian L,

T−g = Jg (0, x) where Jg is the initial state of the backward second order
Hamilton-Jacobi equation{

∂tJ(t, x) + 1
2
∆J(t, x) + H

(
x ,∇J(t, x)

)
= 0 in (0, 1)× Rd ,

J(1, x) = g(x) on Rd .

Where H is the Hamiltonian associated to L.
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Non-linear probability and potential theories?

1. A “non-linear potential theory”?: A cost c : O × O → R ∪ {+∞} is
assigned to moving energy on a convex bounded domain in Rd . The
operator U−g(x) = ug ,x , where ug ,x is the unique minimiser of

inf
{∫

O

∣∣∇u∣∣2dy ; u ≥ g − c(x , ·), u ∈ H1(O)},

is also a backward Kantorovich operator.

2. Optimal stopping with cost: The operator U−g = Jg (0, ·), defined
via the dynamic programming principle

U−g(x) := sup
τ∈Rx

{
Ex
[
g(Bτ )−

∫ τ

0

L(s,Bs)ds
]}
,

If t → L(t, x) is decreasing, then U− is an idempotent Kantorovich
operator (i.e., U2 = U).
U−g(x) is actually a “variational solution” at time 0, for the
quasi-variational Hamilton-Jacobi-Bellman equation:

min

{
J(t, x)− g(x)

− ∂
∂t J(t, x)− 1

2 ∆J(t, x) + L(t, x)

}
= 0.
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A characterization of general Kantorovich operators

Theorem: The following are equivalent:

1. T− is a backward Kantorovich operator from C (Y ) to USC (X ).

2. There exists a l.s.c. cost functional c : X × P(Y )→ R ∪ {+∞}
with σ 7→ c(x , σ) proper and convex for each x ∈ X , and a balayage
cone A ∈ LSC (X t Y ) such that

U−g(x) := sup{
∫
Y

gdσ − c(x , σ) ; σ ∈ P(Y ) and δx ≺A σ},

A gambling house that charges fees: Unlike cost-free gambling houses, a
gambler with wealth x , incurs a cost c(x , σ) each time they choose a
distribution of gains σ.
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Kantorovich operators are functional capacities

Denote by Fb(Y ) (resp., F b(X )) the class of functions on Y (resp., X )
that are bounded above.
Theorem: Let T : C (Y )→ USC (X ) be a backward Kantorovich
operator and let c be its cost. Then

1. T can be extended to a map from F b(Y ) to F b(X ) via the formula

Tg(x) = sup{
∫ ∗
Y

gdν − c(x , ν); ν ∈ P(Y )},

where
∫ ∗
Y
gdν is the outer integral of g with respect to ν.

2. T maps USC (Y ) to USC (X ), and for any g ∈ USC (Y ), we have

T−g(x) := inf{Th(x) ; h ∈ C (Y ), h ≥ g}.

3. If T0 is bounded below, then there is a constant k such that T + k
is a Choquet functional capacity that maps F b

+(Y ) to F b
+(X ).

4. If g is a K -analytic function that is bounded on Y , then

T−g(x) := sup{T−h(x) ; h ∈ USC (Y ) , h ≤ g}.
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operator and let c be its cost. Then

1. T can be extended to a map from F b(Y ) to F b(X ) via the formula

Tg(x) = sup{
∫ ∗
Y

gdν − c(x , ν); ν ∈ P(Y )},

where
∫ ∗
Y
gdν is the outer integral of g with respect to ν.

2. T maps USC (Y ) to USC (X ), and for any g ∈ USC (Y ), we have

T−g(x) := inf{Th(x) ; h ∈ C (Y ), h ≥ g}.

3. If T0 is bounded below, then there is a constant k such that T + k
is a Choquet functional capacity that maps F b

+(Y ) to F b
+(X ).

4. If g is a K -analytic function that is bounded on Y , then

T−g(x) := sup{T−h(x) ; h ∈ USC (Y ) , h ≤ g}.
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Kantorovich envelopes

A Choquet functional capacity is a map T : F+(Y )→ F+(X ) (The set of
all non-negative functions valued in R ∪ {+∞}) such that

1. T is monotone, i.e., f ≤ g ⇒ Tf ≤ Tg .
2. T maps USC (Y ) to USC (X ) and if gn, g ∈ USC (Y ) and gn ↓ g ,

then T−gn ↓ T−g .
3. If gn, g ∈ F+(Y ) with gn ↑ g , then T−gn ↑ T−g .

Theorem: Let T : C (Y )→ USCb(X ) be a standard map. Then,
1. (Kantorovich envelope)

T g(x) := sup
σ∈P(Y )

inf
h∈C(Y )

{
∫
Y

(g − h) dσ + Th(x)}

is the greatest Kantorovich operator S such that S ≤ T on C (Y ).
2. (Choquet-Kantorovich envelope) If T : F+(Y )→ F+(X ) is a

functional capacity, then

Tg(x) := sup
σ∈P(Y )

inf
O open

{
∫
Y

(g − χO) dσ + TχŌ(x)}

is the greatest Kantorovich operator S such that S(χK ) ≤ T (χK )
for every compact K .
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Wish Gustave Choquet was here

Let T : F+(Y )→ F+(X ) be a functional capacity.
Then there exists

1. a l.s.c. cost functional c : X × P(Y )→ R ∪ {+∞} with
σ 7→ c(x , σ) proper and convex for each x ∈ X ,

2. a balayage cone A ∈ LSC (X t Y )

such that

Tg(x) := sup{
∫
Y

gdσ − c(x , σ) ; σ ∈ P(Y ) and δx ≺A σ},

and T is the greatest Choquet-Kantorovich functional capacity S such
that S(χK ) ≤ T (χK ) for every compact K .
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The secret: Linear Transfers

Let T : P(X )×P(Y )→ R∪ {+∞} be a proper convex and weak∗ lower
semi-continuous on M(X )×M(Y ). Write D(T ) for its domain.

I For µ ∈ P(X ), consider the partial maps Tµ : ν → T (µ, ν) on P(Y ),
I For ν ∈ P(Y )), consider the partial map Tν : µ→ T (µ, ν) on P(X ),

1. T is a backward linear Transfer, if there exists an operator
T− : C (Y )→ USC (X ) such that for each µ ∈ P(X ), the Legendre
transform of Tµ on M(Y ) satisfies:

T ∗µ (g) =
∫
X
T−g(x) dµ(x) for any g ∈ C (Y ).

µ→ T ∗µ is linear!

We then have

T (µ, ν) = sup
{∫

Y
g(y) dν(y)−

∫
X
T−g(x) dµ(x); g ∈ C(Y )

}
.

2. T is a forward linear transfer, if there exists an operator T+ : C(X )→ LSC(Y )
such that for each ν ∈ P(Y ),

T ∗ν (f ) = −
∫
Y T+(−f )(y) dν(y) for any f ∈ C(X ).

Hence,

T (µ, ν) = sup
{∫

Y
T+f (y) dν(y)−

∫
X
f (x) dµ(x); f ∈ C(X )

}
.
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Optimal balayage transport

Optimal weak transport (Gozlan et al.) Let c : X × P(Y )→ R ∪ {+∞}
be a l.s.c. function such that for each x ∈ X , the function σ 7→ c(x , σ) is
proper and convex. For µ ∈ P(X ) to ν ∈ P(Y ), it is

Tc(µ, ν) := inf
π
{
∫
X

c(x , πx) dµ(x);π ∈ K(µ, ν)},where

K(µ, ν) =

{
π ∈ P(X × Y );πX = µ, πY = ν, π(A× B) =

∫
A

πx(B) dµ(x)

}

Strassen.bis: If A is a balayage cone in LSC (X t Y ) and µ ≺A ν, then
there exists π ∈ KA(µ, ν) = {π ∈ K(µ, ν); δx ≺A πx µ− a.e.}

Optimal balayage transport

Bc,A(µ, ν) =

{
inf{

∫
X
c(x , πx)dµ(x) ; π ∈ KA(µ, ν)} if µ �A ν,

+∞ otherwise.
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A seminal duality

Theorem: The following are equivalent:

1. T− is a backward Kantorovich operator from C (Y ) to USC (X ).

2. There is a backward linear transfer T : P(X )× P(Y )→ R ∪ {+∞}
such that for all µ ∈ P(X ) and g ∈ C (Y ),

T ∗µ (g) =

∫
X

T−g dµ.

3. There exists an optimal balayage transport Tc,A, which is a
backward linear transfer whose Kantorovich operator is given by

T−g(x) := sup{
∫
Y

gdσ − c(x , σ) ; σ ∈ P(Y ), δx ≺A σ}.

Corollary:T is positively homogenous iff S is a backward transfer set, i.e,

T (µ, ν) =

{
0 if (µ, ν) ∈ S
+∞ otherwise,

is a zero-cost backward linear transfer, in which case

S = {(µ, ν) ∈ P(X )× P(Y ); µ ≺A ν}.
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Iterating a Kantorovich operator

Proposition (Iterations of Kantorovich operators)
Let X1, ....,Xn be n compact spaces, and for each i = 1, ..., n,
• Ti is a backward linear transfer on P(Xi−1)× P(Xi )
•Ti : USC (Xi )→ USC (Xi−1) is the associated Kantorovich operator.

For (µ, ν) ∈ P(X1)× P(Xn), define

T1?T2...?Tn(µ, ν) = inf{T1(µ, σ1)+T2(σ1, σ2)...+Tn(σn−1, ν); σi ∈ P(Xi ), i = 1, n−1}.

Then, T := T1 ? T2... ? Tn is a linear backward transfer with a
Kantorovich operator given by

T = T1 ◦ T2 ◦ ... ◦ Tn.

Denote by Tn the linear transfer T ? T ? ... ? T by iterating n-times. The
corresponding Kantorovich operator is then T n = T ◦ T ◦ ... ◦ T .
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The Mañé constant of a Kantorovich operator

• The self-transfer constant of a backward linear transfer T and its
Kantorovich operator T : C (X )→ USC (X ) is the -possibly infinite-

c(T ) := inf
µ∈P(X )

sup
h∈C(X )

{
∫
X

(h − Th) dµ = inf
µ∈P(X )

T (µ, µ).

• If c(T ) is finite, then there exists µ̄ ∈ P(X ) such that T (µ̄, µ̄) = c(T ).
Such measures will be called minimal measures.

• A backward subsolution (resp., solution) for T at level k ∈ R is a
function g ∈ USC (X ) so that

1. Tg + k ≤ g (resp., Tg + k = g) and

2.
∫
X
gdµ > −∞ for some minimal measure µ ∈ P(X ).

• The Mañé constant c0 is the supremum over all k ∈ R such that
there exists a subsolution g for T at level k.
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The self-transfer constant

Let T : P(X )× P(X )→ R ∪ {+∞} be a backward linear transfer, T its
associated backward Kantorovich operator. Then,

1. c0 = c(T )

2. c(T ) = lim
n→∞

inf
(µ,ν)∈P(X )×P(X )

Tn(µ,ν)

n .

3. If µ̄ is a minimal measure, then for each g ∈ C (X ),

lim
n→∞

1

n

∫
X

T ng d µ̄ = −c(T ).

4. If T is bounded above on P(X )× P(X ), then

Tn(µ, ν)

n
→ c(T ) uniformly on P(X )× P(X ), (1)

and for every g ∈ C (X ),

T ng(x)

n
→ −c(T ) uniformly on X . (2)
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Weak KAM operators associated to Kantorovich operators

Let T : USC (X )→ USC (X ) be a backward Kantorovich operator with a
finite transfer constant c(T ).
Say that a Kantorovich operator T∞ : USC (X )→ USC (X ) is a
backward weak KAM operator associated to T if

1. T∞ is idempotent.

2. TT∞ = T∞T .

3. T∞ maps C (X ) to the class of backward weak KAM solutions for
T , i.e., for any g ∈ C (X ),

TT∞g + c(T ) = T∞g .

The linear transfer associated to T∞ is then

T∞(µ, ν) = sup
g∈C(X )

{
∫
X

g dν −
∫
X

T∞g dµ},

and will be called the Peirls barrier associated to T .
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State of affairs

Three cases where we can prove the existence of a weak KAM operator
associated to a Kantorovich opeartor:

1. When T is a weak∗-continuous backward linear transfer.

2. When c(T ) = inf
(µ,ν)∈P(X )×P(X )

T (µ, ν).

For example, when T is 1-positively homogenous.

3. When T is of bounded oscillation.
A linear transfer T has bounded oscillation if

lim sup
n→∞

{nc(T )− inf
P(X )×P(X )

Tn} < +∞.

For example, when T is bounded above.
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Ergodic properties of continuous linear transfers

Let T be a weak∗-continuous backward linear transfer with backward
Kantorovich operator T . Then, there exists a backward weak KAM operator
T−∞ : C(X )→ C(X ) with a corresponding backward linear transfer T∞ so that

1. (Tn − nc(T )) ? T∞ = T∞ = T∞ ? (Tn − nc(T )) for every n ∈ N.
2. For every µ, ν ∈ P(X ), we have

sup

{∫
X

T−∞gd(ν − µ) ; g ∈ C(X )

}
≤ T∞(µ, ν) ≤ lim inf

n→∞
(Tn(µ, ν)−nc(T )).

3. A := {σ ∈ P(X ); T∞(σ, σ) = 0} contains all minimal measures of T .

4. If T is also a forward linear transfer, then there exists conjugate functions
ψ0, ψ1 for T∞ in the sense that

ψ0 = T−∞ψ1 ψ1 = T+
∞ψ0,

such that
T−ψ0 + c = ψ0, T+ψ1 − c = ψ1,

and ∫
X

ψ0dµ =

∫
X

ψ1dµ for every µ ∈ A.
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Semi-groups of Kantorovich operators

Let {Tt}t≥0 be a family of backward linear transfers on P(X )× P(X )
with associated Kantorovich operators {Tt}t≥0,

(H0) {Tt}t≥0 is a semi-group for inf-convolution: Tt+s = Tt ? Ts (s, t ≥ 0)

(H1) For every t > 0, the transfer Tt is weak∗-continuous.

(H2) For any ε > 0, {Tt}t≥ε has common modulus of continuity δ(ε).

Example: At(x , y) be a semi-group of equicontinuous cost functions on
X × X , that is

At+s(x , y) = At ? As(x , y) := inf{At(x , z) + As(z , y); z ∈ X},

and the associated optimal mass transports

Tt(µ, ν) = inf{
∫
X×X

At(x , y)dπ(x , y) ; π ∈ K(µ, ν)}.

(Tt)t is then a semi-group of linear transfers and there is a backward and
forward linear transfer T∞, and weak KAM operators T−∞, T+

∞ such that:
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Weak KAM theories

If c := c((Tt)t) := lim
t→∞

infµ,ν∈P(X ) Tt (µ,µ)

t
. Then

1. c = min{
∫
X×X A1(x , y)dπ;π ∈ P(X × X ), π1 = π2}

2. A∞(x , y) := lim inf
t→∞

(At(x , y)− ct) is continuous on X × X , and

• T∞(µ, ν) = TA∞ (µ, ν) := inf{
∫
X×X A∞(x , y)dπ(x , y) ; π ∈ K(µ, ν)},

• T−∞f (x) = sup{f (y)−A∞(x , y) ; y ∈ X}, T+
∞f (y) = inf{f (x)+A∞(x , y) ; x ∈ X}.

3. The minimizing measures in (1) are all supported on the set

D := {(x , y) ∈ X × X ; A1(x , y) + A∞(y , x) = c}.

4. There exists conjugate functions u−, u+ for T∞ in the sense that

u−(x) = sup{u+(y)−A∞(x , y) ; y ∈ X}, u+(y) = inf{u−(x)+A∞(x , y) ; x ∈ X},

T−t u− + ct = u−, T+
t u+ − ct = u+) for all t ≥ 0.

u−(x) = u+(x) whenever A∞(x , x) = 0.
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Weak KAM solutions in Lagrangian dynamics

Let L be a time-independent Tonelli Lagrangian on a compact Riemanian
manifold M, and consider Tt to be the cost minimizing transport

Tt(µ, ν) = inf{
∫
M×M

At(x , y)dπ(x , y) ; π ∈ K(µ, ν)},where

At(x , y) := inf{
∫ t

0

L(γ(s), γ̇(s))ds ; γ ∈ C 1([0, t];M); γ(0) = x , γ(t) = y}.

The backward (forward) Lax-Oleinik semi-group is defined for t > 0, via

S−t u(x) = sup{u(γ(t))−
∫ t

0

L(γ(s), γ̇(s))ds ; γ ∈ C 1([0, t];M), γ(0) = x},

S+
t u(x) := inf{u(γ(0))+

∫ t

0

L(γ(s), γ̇(s))ds ; γ ∈ C 1([0, t];M), γ(t) = x}.

A function u ∈ C (M) is said to be a backward (resp., forward) weak
KAM solution if S−t u + ct = u (resp., S+

t u − ct = u) for all t ≥ 0.
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Theorem: There exists a unique constant c ∈ R such that:

1. (Fathi) There exists weak KAM solutions, i.e., u− : M → R (resp. u+) such that
S−t u− + ct = u− (resp. S+

t u− − ct = u−) for t ≥ 0.

2. (Bernard-Buffoni) Let A∞(x , y) := lim inft→∞ At(x , y)− tc denotes the Peierls

barrier function. Then,

inf{
∫
M×M

A∞(x , y)dπ(x , y) ; π ∈ K(µ, ν)} = sup
u+,u−

{
∫
M

u+dν−
∫
M

u−dµ},

and
u+ = u− on A := {x ∈ M ; A∞(x , x) = 0}.

3. (Bernard-Buffoni) c = minπ
∫
M×M A1(x , y)dπ(x , y), over all π ∈ P(M ×M)

with equal first and second marginals.
The minimizing measures are all supported on

D := {(x , y) ∈ M ×M ; A1(x , y) + A∞(y , x) = c}.

4. (Mather) c = infm
∫
TM L(x , v)dm(x , v) over all measures m ∈ P(TM) which

are invariant under the Euler-Lagrange flow.

5. (Fathi) A continuous function u : M → R is a viscosity solution of

H(x ,∇u(x)) = c

if and only if it is Lipschitz and u is a backward weak KAM solution.

Nassif Ghoussoub, UBC (based on joint work with Malcolm Bowles) Kantorovich operators and their ergodic properties



Stochastic (2d order Fathi-Mather theory

(Gomez, Mikami) M = Td := Rd/Zd being the d-dimensional flat torus,
(Ω,F ,P) a complete probability space with normal filtration {Ft}t≥0,
Let A[0,t] be the set of continuous semi-martingales X : Ω× [0, t]→ M such that for

some drift βX : [0, t]× C([0, t])→ Rd ,

dXt = β(t,X )dt + dWt

where Wt is an M-valued Brownian motion.

Tt(µ, ν) := inf

{
E
∫ t

0
L(X (s), βX (s,X ))s. ; X (0) ∼ µ,X (t) ∼ ν,X ∈ A[0,t]

}
,

is then a backward linear transfer, with Kantorovich operator

Tt f (x) := sup
X∈A[0,t]

{
E
[
f (X (t))−

∫ t

0
L(X (s), βX (s,X ))s.

∣∣X (0) = x

]}
.

N0 :=

{
m ∈ P(TM) ;

∫
TM

[
1

2
∆(x)φ+ v · ∇φ(x)] dm(x , v) = 0 for all φ ∈ C2(M)

}
.

(Euler-Lagrange Flow invariant measures on phase space)

1. c := inf{T1(µ, µ) ; µ ∈ P(M)} = inf{
∫
TM L(x , v)m. (x , v); m ∈ N0}.

Infimum is attained by a measure m̄, a stochastic Mather measure.
Its projection µm̄ on P(M) is a minimiser for T1.

2. There exists backward weak KAM solutions Ttu + ct = u for t ≥ 0, u ∈ C(M),

3. The backward weak KAM solutions are exactly the viscosity solutions of the
stationary Hamilton-Jacobi-Bellman equation 1

2
∆u + H(x ,Dxu) = c.
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Symbolic dynamics (Garibaldi-Lopez)

Let M is an r × r transition matrix, whose {0, 1} entries specify allowable transitions.

Σ = {x ∈ {1, ..., r}N ; M(xi , xi+1) = 1, ∀i ≥ 0}
the set of admissible words, and its dual

Σ∗ = {y ∈ {1, ..., r}N ; M(yi+1, yi ) = 1, ∀i ≥ 0}
and consider

Σ̂ = {(y , x) ∈ Σ∗ × Σ ; M(y0, x0) = 1}.
Assume Σ∗x := {y ∈ Σ∗ ; (y , x) ∈ Σ̂} 6= ∅, ∀x ∈ Σ.

Consider the time-evolution map σ : Σ→ Σ and τ : Σ̂→ Σ defined as

σ(x0, x1, ...) = (x1, x2, ...) and τ(y , x) = (y0, x0, x1, ...).

The set of holonomic probability measures is

M0(Σ̂) :=

{
µ ∈ P(Σ̂) ;

∫
Σ̂
f (τy (x))− f (x) dµ(y , x) = 0

}
.

Theorem: Given A ∈ C(Σ̂), define βA := max
µ̂∈M0(Σ̂)

∫
Σ̂ A(y , x)dµ̂(y , x). Then

βA = inf
f∈C(Σ)

max
(y,x)∈Σ̂

{A(y , x) + f (x)− f (τy (x))}.

There exists u ∈ USC(Σ) such that

inf
y∈Σ∗x

{u(τy (x))− A(y , x) + β(A)} = u(x) ∀x ∈ Σ.
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Thank you
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