Kantorovich operators and their ergodic properties

Nassif Ghoussoub, UBC (based on joint work with Malcolm Bowles)

Kantorovich Initiative Seminar, March 2023

- 1. Non-linear Kantorovich operators in analysis.
- 2. 1-homogenous Kantorovich operators and "zero cost" balayage.
- 3. Kantorovich operators and Choquet functional capacities.
- 4. Duality: Kantorovich operators, linear transfers, optimal balayage.
- 5. Weak KAM solutions/operators associated to Kantorovich operators.
- 6. Deterministic and stochastic Fathi-Mather theory.
- 7. Deterministic and stochastic Ergodic optimization.

Formal definition of Kantorovich operators

A Markov operator is a map $T : C(Y) \to C(X)$ which is:

- 1. **positive**: if $g \ge 0$ then $Tg \ge 0$.
- 2. linear: $T(\lambda g_1 + \mu g_2) = \lambda T g_1 + \mu T^- g_2$.
- 3. Markovian: T1 = 1.
- 4. **continuous**: $g_n \to g$ in C(Y), then $\lim_{n\to\infty} Tg_n = Tg$.

∢ 글 ▶ - 글 :

Formal definition of Kantorovich operators

A Markov operator is a map $T : C(Y) \to C(X)$ which is:

- 1. **positive**: if $g \ge 0$ then $Tg \ge 0$.
- 2. linear: $T(\lambda g_1 + \mu g_2) = \lambda T g_1 + \mu T^- g_2$.
- 3. Markovian: T1 = 1.
- 4. continuous: $g_n \to g$ in C(Y), then $\lim_{n\to\infty} Tg_n = Tg$.

A backward Kantorovich operator $T^- : C(Y) \rightarrow USC(X)$ which is

- 1. monotone increasing, i.e., if $g_1 \leq g_2$, then $T^-g_1 \leq T^-g_2$.
- 2. affine on the constants, i.e., for any $c \in \mathbb{R}$ and $g \in C(Y)$ $T^{-}(g+c) = T^{-}g + c$.
- 3. convex, i.e., For any $\lambda \in [0,1]$, we have

$$T^-(\lambda g_1+(1-\lambda)g_2)\leq \lambda T^-g_1+(1-\lambda)T^-g_2$$

A E > A E >

-

4. lower semi-continuous, i.e., If $g_n \to g$, then $\liminf_{n \to \infty} T^-g_n \ge T^-g$.

Formal definition of Kantorovich operators

A Markov operator is a map $T : C(Y) \to C(X)$ which is:

- 1. **positive**: if $g \ge 0$ then $Tg \ge 0$.
- 2. linear: $T(\lambda g_1 + \mu g_2) = \lambda T g_1 + \mu T^- g_2$.
- 3. Markovian: T1 = 1.
- 4. **continuous**: $g_n \to g$ in C(Y), then $\lim_{n\to\infty} Tg_n = Tg$.

A backward Kantorovich operator $T^- : C(Y) \rightarrow USC(X)$ which is

- 1. monotone increasing, i.e., if $g_1 \leq g_2$, then $T^-g_1 \leq T^-g_2$.
- 2. affine on the constants, i.e., for any $c \in \mathbb{R}$ and $g \in C(Y)$ $T^{-}(g+c) = T^{-}g + c$.
- 3. convex, i.e., For any $\lambda \in [0,1]$, we have

$$T^-(\lambda g_1+(1-\lambda)g_2)\leq \lambda T^-g_1+(1-\lambda)T^-g_2$$

4. lower semi-continuous, i.e., If $g_n \to g$, then $\liminf_{n \to \infty} T^-g_n \ge T^-g$.

A forward Kantorovich operator is a map T^+ : $C(X) \rightarrow LSC(Y)$ that satisfies 1), 2), 3') (concave) and 4') (upper-semi-continuous).

1. $U^-g = g \lor Tg$, where T is Markov. Iterates lead to $U^-_{\infty}g = \hat{g}$ the least T-superharmonic function above g.

- 1. $U^-g = g \lor Tg$, where T is Markov. Iterates lead to $U^-_{\infty}g = \hat{g}$ the least T-superharmonic function above g.
- 2. Plurisuperharmonic envelopes

$$U^{-}g(x) := \sup_{v \in \mathbb{R}^n} \bigg\{ \int_0^{2\pi} g(x + e^{i\theta}v) \frac{d\theta}{2\pi}; x + \bar{\Delta}v \subset O \bigg\},$$

Iterates lead to

$$U_{\infty}^{-}g(x) = \sup\left\{\int_{0}^{2\pi} g(P(e^{i\theta}))\frac{d\theta}{2\pi}; \ P \text{ polynomial}, \ P(\bar{\Delta}) \subset U, \ P(0) = x\right\}$$

- 1. $U^-g = g \lor Tg$, where T is Markov. Iterates lead to $U^-_{\infty}g = \hat{g}$ the least T-superharmonic function above g.
- 2. Plurisuperharmonic envelopes

$$U^{-}g(x) := \sup_{v \in \mathbb{R}^n} \bigg\{ \int_0^{2\pi} g(x + e^{i\theta}v) \frac{d\theta}{2\pi}; x + \bar{\Delta}v \subset O \bigg\},$$

Iterates lead to

$$U_{\infty}^{-}g(x) = \sup\left\{\int_{0}^{2\pi} g(P(e^{i\theta}))\frac{d\theta}{2\pi}; \ P \text{ polynomial}, \ P(\bar{\Delta}) \subset U, \ P(0) = x\right\}$$

Image: Second second

3. Superharmonic envelope and Optimal stopping:

$$\begin{split} U^{-}g(x) &= \sup_{r \geq 0} \bigg\{ \int_{B} g(x+ry) \, dm(y); \, x+r\overline{B} \} \subset O \bigg\}, \\ U^{-}_{\infty}g(x) &:= \sup \Big\{ \mathbb{E}^{x} \Big[g(B_{\tau}) \Big]; \, \tau \geq 0 \text{ stopping time}, \mathbb{E}^{x}[\tau] < +\infty \Big\}. \end{split}$$

The expectation \mathbb{E}^{x} refers to Brownian motions $(B_{t})_{t}$ starting at x .

4. The filling scheme for a Markov operator T, $U^-g = Tg^+ - g^-$.

- 1. $U^-g = g \lor Tg$, where T is Markov. Iterates lead to $U^-_{\infty}g = \hat{g}$ the least T-superharmonic function above g.
- 2. Plurisuperharmonic envelopes

$$U^{-}g(x) := \sup_{v \in \mathbb{R}^n} \bigg\{ \int_0^{2\pi} g(x + e^{i\theta}v) \frac{d\theta}{2\pi}; x + \bar{\Delta}v \subset O \bigg\},$$

Iterates lead to

$$U_{\infty}^{-}g(x) = \sup\left\{\int_{0}^{2\pi} g(P(e^{i\theta}))\frac{d\theta}{2\pi}; \ P \text{ polynomial}, \ P(\bar{\Delta}) \subset U, \ P(0) = x\right\}$$

3. Superharmonic envelope and Optimal stopping:

$$\begin{split} U^{-}g(x) &= \sup_{r \geq 0} \bigg\{ \int_{B} g(x + ry) \, dm(y); \, x + r\overline{B} \} \subset O \bigg\}, \\ U^{-}_{\infty}g(x) &:= \sup \Big\{ \mathbb{E}^{x} \Big[g(B_{\tau}) \Big]; \, \tau \geq 0 \text{ stopping time}, \mathbb{E}^{x}[\tau] < +\infty \Big\}. \end{split}$$

The expectation \mathbb{E}^{x} refers to Brownian motions $(B_{t})_{t}$ starting at x .

4. The *filling scheme* for a Markov operator T, $U^-g = Tg^+ - g^-$.

All these are positively 1-homogenous Kantorovich operators,

$$U(\lambda f) = \lambda U(f)$$
 for all $\lambda \ge 0$.

1-homogenous Kantorovich operators

A typical 1-homogenous operator is

$$U^-g(x):=\sup\{\int_X g\,d\sigma;(x,\sigma)\in\mathcal{S}\},$$

where g is a reward function, and $S \subset X \times \mathcal{P}(Y)$ is a "gambling house". • For each x, $S_x = \{\sigma \in \mathcal{P}(X); (x, \sigma) \in S\} \neq \emptyset$ is the collection of distributions of gains available to a gambler having wealth x (Dubins-Savage, Dellacherie-Meyer).

1-homogenous Kantorovich operators

A typical 1-homogenous operator is

$$U^-g(x):=\sup\{\int_X g\,d\sigma;(x,\sigma)\in\mathcal{S}\},$$

where g is a reward function, and $S \subset X \times \mathcal{P}(Y)$ is a "gambling house". • For each x, $S_x = \{\sigma \in \mathcal{P}(X); (x, \sigma) \in S\} \neq \emptyset$ is the collection of distributions of gains available to a gambler having wealth x (Dubins-Savage, Dellacherie-Meyer).

• When X = Y, a fair gambling houser is

$$U^{-}g(x) := \sup\{\int_{X} g \ d\sigma; \ \delta_{x} \prec_{\mathcal{A}} \sigma\},\$$

where A is the cone of convex l.s.c. functions on X (convex compact):

 $\mu \prec_{\mathcal{A}} \nu$ iff $\int_{X} \phi d\mu \leq \int \phi d\nu$ for all $\phi \in \mathcal{A}$.

Convex order, Fair game, martingale, etc... A very particular case, but somewhat characterizes 1-homogenous Kantorovich operators from Y to X.

Nassif Ghoussoub, UBC (based on joint work with Malcolm Bowles)

A representation of 1-homogenous Kantorovich operators

Theorem: The following are equivalent:

- 1. T is a 1-homogenous Kantorovich operator from C(Y) to USC(X).
- There exists a closed convex, stable under finite max, balayage cone A on the disjoint union X ∐ Y such that

$$U^{-}g(x) := \sup\{\int_{X} g \, d\sigma; \, \delta_{x} \prec_{\mathcal{A}} \sigma\},\$$

where for $(\mu, \nu) \in \mathcal{P}(X) imes \mathcal{P}(Y)$,

 $\mu \prec_{\mathcal{A}} \nu \quad \text{iff} \quad \int_{X} \phi_{X} d\mu \leq \int_{Y} \phi_{Y} d\nu \text{ for all } \phi \in \mathcal{A}. \quad (\text{Restricted balayage}).$

A representation of 1-homogenous Kantorovich operators

Theorem: The following are equivalent:

- 1. T is a 1-homogenous Kantorovich operator from C(Y) to USC(X).
- There exists a closed convex, stable under finite max, balayage cone A on the disjoint union X ∐ Y such that

$$U^{-}g(x) := \sup\{\int_{X} g \, d\sigma; \, \delta_{x} \prec_{\mathcal{A}} \sigma\},\$$

where for $(\mu, \nu) \in \mathcal{P}(X) imes \mathcal{P}(Y)$,

 $\mu \prec_{\mathcal{A}} \nu$ iff $\int_{X} \phi_{X} d\mu \leq \int_{Y} \phi_{Y} d\nu$ for all $\phi \in \mathcal{A}$. (*Restricted balayage*).

(注) (美) (美) ()

• The gambling house is then,

 $S = \{(\mu, \nu) \in \mathcal{P}(X) \times \mathcal{P}(Y); \nu \leq U_{\#}^{-}\mu\} = \{(\mu, \nu) \in \mathcal{P}(X) \times \mathcal{P}(Y); \mu \prec_{\mathcal{A}} \nu\},$ where $U_{\#}^{-}\mu(g) = \int_{X} U^{-}g \, d\mu$ for every $g \in C(Y)$.

A representation of 1-homogenous Kantorovich operators

Theorem: The following are equivalent:

- 1. T is a 1-homogenous Kantorovich operator from C(Y) to USC(X).
- There exists a closed convex, stable under finite max, balayage cone A on the disjoint union X ∐ Y such that

$$U^{-}g(x) := \sup\{\int_{X} g \, d\sigma; \, \delta_{x} \prec_{\mathcal{A}} \sigma\},\$$

where for $(\mu, \nu) \in \mathcal{P}(X) imes \mathcal{P}(Y)$,

 $\mu \prec_{\mathcal{A}} \nu$ iff $\int_{X} \phi_{X} d\mu \leq \int_{Y} \phi_{Y} d\nu$ for all $\phi \in \mathcal{A}$. (*Restricted balayage*).

• The gambling house is then,

 $\mathcal{S} = \{(\mu,\nu) \in \mathcal{P}(X) \times \mathcal{P}(Y); \nu \leq U_{\#}^{-}\mu\} = \{(\mu,\nu) \in \mathcal{P}(X) \times \mathcal{P}(Y); \mu \prec_{\mathcal{A}} \nu\},\$

where $U_{\#}^{-}\mu(g) = \int_{X} U^{-}g \, d\mu$ for every $g \in C(Y)$. • If X = Y, then iterating $Tu = u \vee U^{-}u$, leads to an idempotent backward Kantorovich operator U_{∞}^{-} (i.e., $U_{\infty}^{-} \circ U_{\infty}^{-} = U_{\infty}^{-}$) and a balayage cone $\mathcal{A} \subset LSC(X)$ such that

$$U^-_{\infty}g(x) := \inf\{\phi(x); \phi \in -\mathcal{A}, \phi \geq g \text{ on } X\}.$$

Non-homogenous Kantorovich operators

1. Ergodic optimization of symbolic dynamics:

$$U^{-}g(x) := g \circ \sigma(x) - A(x),$$

A is a given potential and σ is a point transformation. Its iterates lead to minimizing the action $\mu \mapsto \int_{\mathbf{x}} A d\mu$ among all σ -invariant measures μ .

Non-homogenous Kantorovich operators

1. Ergodic optimization of symbolic dynamics:

$$U^{-}g(x) := g \circ \sigma(x) - A(x),$$

A is a given potential and σ is a point transformation. Its iterates lead to minimizing the action $\mu \mapsto \int_{\mathbf{x}} A d\mu$ among all σ -invariant measures μ .

2. Optimal mass transport with cost function c(x, y): on $X \times Y$.

$$U^{-}g(x) = \sup_{y \in Y} \{g(y) - c(x, y)\} \text{ resp., } U^{+}f(y) = \inf_{x \in X} \{f(x) + c(x, y)\},$$

is then a backward (resp., forward Kantorovich operator): (Brenier transport): $U^-g = -g^*$ resp., $U^+f = (-f)^*$, ϕ^* is the Legendre transform.

3. Entropic regularization and Sinkhorn

$$T_{\nu}^{-}g(x) = \epsilon \log \int_{Y} e^{\frac{g(y) - c(x,y)}{\epsilon}} d\nu(y),$$

where $\nu \in \mathcal{P}(X)$, as well as the composition $T_{\nu}^{-} \circ T_{\mu}^{-}$, where μ is another probability in $\mathcal{P}(X)$, whose iterates are the building clocks of the Sinkhorn algorithm.

If L is a Tonelli Lagrangian on TM

$$U^{-}g(x):=\sup\Big\{g(\gamma(1))-\int_{0}^{1}L(\gamma(s),\dot{\gamma}(s))\,ds;\gamma\in C^{1}([0,1),M);\gamma(0)=x\Big\},$$

To a state g at time 1, it associates the initial state of the viscosity solution for the associated backward Hamilton-Jacobi equation,

$$\begin{cases} \partial_t V + H(x, \nabla_x V) = 0 \text{ on } (0, 1) \times M \\ V(1, x) = g(x) \end{cases}$$

э

If L is a Tonelli Lagrangian on TM

$$U^{-}g(x):=\sup\Big\{g(\gamma(1))-\int_{0}^{1}L(\gamma(s),\dot{\gamma}(s))\,ds;\gamma\in C^{1}([0,1),M);\gamma(0)=x\Big\},$$

To a state g at time 1, it associates the initial state of the viscosity solution for the associated backward Hamilton-Jacobi equation,

$$\begin{cases} \partial_t V + H(x, \nabla_x V) = 0 \text{ on } (0, 1) \times M \\ V(1, x) = g(x) \end{cases}$$

All the above have corresponding forward Kantorovich operators.

One-sided Kantorovich operators

1. Stochastic control: One-sided Kantorovich operators appear in stochastic mass transfer problems. For example,

$$T^{-}g(x) = \sup_{X \in \mathcal{A}_{[0,1]}} \left\{ \mathbb{E}\left[g(X(1)) - \int_0^1 L(X(s), \beta_X(s, X)) ds \mid X(0) = x\right] \right\},$$

where $\mathcal{A}_{[0,1]} := \{X : \Omega \to U; dX_t = \beta(t, X) dt + dW_t \text{ on } [0,1]\}$. W_t is Weiner measure and the minimization is taken over all drifts β .

Under some assumptions on the Lagrangian L,

 $T^-g = J_g(0,x)$ where J_g is the initial state of the backward second order Hamilton-Jacobi equation

$$\begin{cases} \partial_t J(t,x) + \frac{1}{2}\Delta J(t,x) + H(x,\nabla J(t,x)) &= 0 \text{ in } (0,1) \times \mathbb{R}^d, \\ J(1,x) &= g(x) \text{ on } \mathbb{R}^d. \end{cases}$$

Where H is the Hamiltonian associated to L.

Non-linear probability and potential theories?

1. A "non-linear potential theory" ?: A cost $c : O \times O \to \mathbb{R} \cup \{+\infty\}$ is assigned to moving energy on a convex bounded domain in \mathbb{R}^d . The operator $U^-g(x) = u_{g,x}$, where $u_{g,x}$ is the unique minimiser of

$$\inf\left\{\left.\int_{O}\left|
abla u
ight|^{2}dy;\ u\geq g-c(x,\cdot),\ u\in H^{1}(O)
ight\}
ight\}$$

is also a backward Kantorovich operator.

Non-linear probability and potential theories?

1. A "non-linear potential theory"?: A cost $c : O \times O \to \mathbb{R} \cup \{+\infty\}$ is assigned to moving energy on a convex bounded domain in \mathbb{R}^d . The operator $U^-g(x) = u_{g,x}$, where $u_{g,x}$ is the unique minimiser of

$$\inf\left\{\int_O |\nabla u|^2 dy; \ u \ge g - c(x, \cdot), \ u \in H^1(O)
ight\},$$

is also a backward Kantorovich operator.

2. Optimal stopping with cost: The operator $U^-g = J_g(0, \cdot)$, defined via the dynamic programming principle

$$U^{-}g(x) := \sup_{\tau \in \mathcal{R}^{x}} \Big\{ \mathbb{E}^{x} \Big[g(B_{\tau}) - \int_{0}^{\tau} L(s, B_{s}) ds \Big] \Big\},$$

If $t \to L(t, x)$ is decreasing, then U^- is an idempotent Kantorovich operator (i.e., $U^2 = U$).

 $U^-g(x)$ is actually a "variational solution" at time 0, for the quasi-variational Hamilton-Jacobi-Bellman equation:

$$\min\left\{\begin{array}{c}J(t,x)-g(x)\\-\frac{\partial}{\partial t}J(t,x)-\frac{1}{2}\Delta J(t,x)+L(t,x)\end{array}\right\}=0.$$

Theorem: The following are equivalent:

- 1. T^- is a backward Kantorovich operator from C(Y) to USC(X).
- There exists a l.s.c. cost functional c : X × P(Y) → ℝ ∪ {+∞} with σ ↦ c(x, σ) proper and convex for each x ∈ X, and a balayage cone A ∈ LSC(X ⊔ Y) such that

$$U^{-}g(x) := \sup\{\int_{Y} gd\sigma - c(x,\sigma); \sigma \in \mathcal{P}(Y) \text{ and } \delta_{x} \prec_{\mathcal{A}} \sigma\},$$

A gambling house that charges fees: Unlike cost-free gambling houses, a gambler with wealth x, incurs a cost $c(x, \sigma)$ each time they choose a distribution of gains σ .

Kantorovich operators are functional capacities

Denote by $F_b(Y)$ (resp., $F^b(X)$) the class of functions on Y (resp., X) that are bounded above.

Theorem: Let $T : C(Y) \rightarrow USC(X)$ be a backward Kantorovich operator and let *c* be its cost. Then

1. T can be extended to a map from $F^b(Y)$ to $F^b(X)$ via the formula

$$Tg(x) = \sup\{\int_{Y}^{*} gd\nu - c(x,\nu); \nu \in \mathcal{P}(Y)\},\$$

where $\int_{Y}^{*} g d\nu$ is the outer integral of g with respect to ν .

Kantorovich operators are functional capacities

Denote by $F_b(Y)$ (resp., $F^b(X)$) the class of functions on Y (resp., X) that are bounded above.

Theorem: Let $T : C(Y) \rightarrow USC(X)$ be a backward Kantorovich operator and let *c* be its cost. Then

1. T can be extended to a map from $F^b(Y)$ to $F^b(X)$ via the formula

$$Tg(x) = \sup\{\int_{Y}^{*} gd\nu - c(x,\nu); \nu \in \mathcal{P}(Y)\},\$$

where $\int_{Y}^{*} g d\nu$ is the outer integral of g with respect to ν .

2. T maps USC(Y) to USC(X), and for any $g \in USC(Y)$, we have

 $T^{-}g(x) := \inf\{Th(x); h \in C(Y), h \ge g\}.$

Kantorovich operators are functional capacities

Denote by $F_b(Y)$ (resp., $F^b(X)$) the class of functions on Y (resp., X) that are bounded above.

Theorem: Let $T : C(Y) \rightarrow USC(X)$ be a backward Kantorovich operator and let *c* be its cost. Then

1. T can be extended to a map from $F^b(Y)$ to $F^b(X)$ via the formula

$$Tg(x) = \sup\{\int_{Y}^{*} gd\nu - c(x,\nu); \nu \in \mathcal{P}(Y)\},\$$

where $\int_{Y}^{*} g d\nu$ is the outer integral of g with respect to ν .

2. T maps USC(Y) to USC(X), and for any $g \in USC(Y)$, we have

 $T^{-}g(x) := \inf\{Th(x); h \in C(Y), h \ge g\}.$

If T0 is bounded below, then there is a constant k such that T + k is a Choquet functional capacity that maps F^b₊(Y) to F^b₊(X).
 If g is a K-analytic function that is bounded on Y, then

$$T^{-}g(x) := \sup\{T^{-}h(x); h \in USC(Y), h \le g\}.$$

I ∃ ►

Kantorovich envelopes

A Choquet functional capacity is a map $T : F_+(Y) \to F_+(X)$ (The set of all non-negative functions valued in $\mathbb{R} \cup \{+\infty\}$) such that

- 1. T is monotone, i.e., $f \leq g \Rightarrow Tf \leq Tg$.
- 2. T maps USC(Y) to USC(X) and if $g_n, g \in USC(Y)$ and $g_n \downarrow g$, then $T^-g_n \downarrow T^-g$.
- 3. If $g_n, g \in F_+(Y)$ with $g_n \uparrow g$, then $T^-g_n \uparrow T^-g$.

4 3 b

Kantorovich envelopes

A Choquet functional capacity is a map $T : F_+(Y) \to F_+(X)$ (The set of all non-negative functions valued in $\mathbb{R} \cup \{+\infty\}$) such that

- 1. T is monotone, i.e., $f \leq g \Rightarrow Tf \leq Tg$.
- 2. T maps USC(Y) to USC(X) and if $g_n, g \in USC(Y)$ and $g_n \downarrow g$, then $T^-g_n \downarrow T^-g$.
- 3. If $g_n, g \in F_+(Y)$ with $g_n \uparrow g$, then $T^-g_n \uparrow T^-g$.

Theorem: Let $T : C(Y) \rightarrow USC_b(X)$ be a standard map. Then,

1. (Kantorovich envelope)

$$\underline{T}g(x) := \sup_{\sigma \in \mathcal{P}(Y)} \inf_{h \in C(Y)} \{ \int_{Y} (g-h) \, d\sigma + Th(x) \}$$

is the greatest Kantorovich operator S such that $S \leq T$ on C(Y).

- A 🖻 🕨

Kantorovich envelopes

A Choquet functional capacity is a map $T : F_+(Y) \to F_+(X)$ (The set of all non-negative functions valued in $\mathbb{R} \cup \{+\infty\}$) such that

- 1. T is monotone, i.e., $f \leq g \Rightarrow Tf \leq Tg$.
- 2. T maps USC(Y) to USC(X) and if $g_n, g \in USC(Y)$ and $g_n \downarrow g$, then $T^-g_n \downarrow T^-g$.
- 3. If $g_n, g \in F_+(Y)$ with $g_n \uparrow g$, then $T^-g_n \uparrow T^-g$.

Theorem: Let $T : C(Y) \rightarrow USC_b(X)$ be a standard map. Then,

1. (Kantorovich envelope)

$$\underline{\mathsf{T}}\,g(x) := \sup_{\sigma\in\mathcal{P}(Y)} \inf_{h\in\mathcal{C}(Y)} \{\int_{Y} (g-h)\,d\sigma + Th(x)\}$$

is the greatest Kantorovich operator S such that $S \leq T$ on C(Y).

2. (Choquet-Kantorovich envelope) If $T : F_+(Y) \to F_+(X)$ is a functional capacity, then

$$\overline{\mathsf{T}}g(x) := \sup_{\sigma \in \mathcal{P}(Y)} \inf_{O \text{ open}} \{ \int_{Y} (g - \chi_O) \, d\sigma + T \chi_{\bar{O}}(x) \}$$

is the greatest Kantorovich operator S such that $S(\chi_K) \leq T(\chi_K)$ for every compact K. Let $T: F_+(Y) \to F_+(X)$ be a functional capacity. Then there exists

- 1. a l.s.c. cost functional $c : X \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ with $\sigma \mapsto c(x, \sigma)$ proper and convex for each $x \in X$,
- 2. a balayage cone $\mathcal{A} \in LSC(X \sqcup Y)$

such that

$$\underline{\mathrm{T}}g(x) := \sup\{\int_Y gd\sigma - c(x,\sigma); \sigma \in \mathcal{P}(Y) \text{ and } \delta_x \prec_{\mathcal{A}} \sigma\},\$$

and \underline{T} is the greatest Choquet-Kantorovich functional capacity S such that $S(\chi_{\kappa}) \leq T(\chi_{\kappa})$ for every compact κ .

The secret: Linear Transfers

Let $\mathcal{T} : \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ be a proper convex and weak^{*} lower semi-continuous on $\mathcal{M}(X) \times \mathcal{M}(Y)$. Write $D(\mathcal{T})$ for its domain.

- For $\mu \in \mathcal{P}(X)$, consider the partial maps $\mathcal{T}_{\mu} : \nu \to \mathcal{T}(\mu, \nu)$ on $\mathcal{P}(Y)$,
- ▶ For $\nu \in \mathcal{P}(Y)$), consider the partial map $\mathcal{T}_{\nu} : \mu \to \mathcal{T}(\mu, \nu)$ on $\mathcal{P}(X)$,
- 1. \mathcal{T} is a *backward linear Transfer*, if there exists an operator $T^-: C(Y) \to USC(X)$ such that for each $\mu \in \mathcal{P}(X)$, the Legendre transform of \mathcal{T}_{μ} on $\mathcal{M}(Y)$ satisfies:

 $\mathcal{T}^*_\mu(g) = \int_X T^-g(x) \, d\mu(x) \quad ext{ for any } g \in \mathcal{C}(Y).$

(신문) 문

 $\mu
ightarrow \mathcal{T}^*_\mu$ is linear!

The secret: Linear Transfers

Let $\mathcal{T} : \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ be a proper convex and weak^{*} lower semi-continuous on $\mathcal{M}(X) \times \mathcal{M}(Y)$. Write $D(\mathcal{T})$ for its domain.

- For $\mu \in \mathcal{P}(X)$, consider the partial maps $\mathcal{T}_{\mu} : \nu \to \mathcal{T}(\mu, \nu)$ on $\mathcal{P}(Y)$,
- ▶ For $\nu \in \mathcal{P}(Y)$), consider the partial map $\mathcal{T}_{\nu} : \mu \to \mathcal{T}(\mu, \nu)$ on $\mathcal{P}(X)$,
- 1. \mathcal{T} is a *backward linear Transfer*, if there exists an operator $T^-: C(Y) \to USC(X)$ such that for each $\mu \in \mathcal{P}(X)$, the Legendre transform of \mathcal{T}_{μ} on $\mathcal{M}(Y)$ satisfies:

 $\mathcal{T}^*_\mu(g) = \int_X T^-g(x) \, d\mu(x) \quad ext{ for any } g \in \mathcal{C}(Y).$

 $\mu
ightarrow \mathcal{T}^*_{\mu}$ is linear! We then have

$$\mathcal{T}(\mu,\nu) = \sup\big\{\int_Y g(y)\,d\nu(y) - \int_X T^-g(x)\,d\mu(x);\,g\in C(Y)\big\}.$$

- - I I I

The secret: Linear Transfers

Let $\mathcal{T} : \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ be a proper convex and weak^{*} lower semi-continuous on $\mathcal{M}(X) \times \mathcal{M}(Y)$. Write $D(\mathcal{T})$ for its domain.

- For $\mu \in \mathcal{P}(X)$, consider the partial maps $\mathcal{T}_{\mu} : \nu \to \mathcal{T}(\mu, \nu)$ on $\mathcal{P}(Y)$,
- ▶ For $\nu \in \mathcal{P}(Y)$), consider the partial map $\mathcal{T}_{\nu} : \mu \to \mathcal{T}(\mu, \nu)$ on $\mathcal{P}(X)$,
- 1. \mathcal{T} is a *backward linear Transfer*, if there exists an operator $\mathcal{T}^- : \mathcal{C}(Y) \to USC(X)$ such that for each $\mu \in \mathcal{P}(X)$, the Legendre transform of \mathcal{T}_{μ} on $\mathcal{M}(Y)$ satisfies:

 $\mathcal{T}^*_\mu(g) = \int_X \mathcal{T}^-g(x) \, d\mu(x) \quad ext{ for any } g \in \mathcal{C}(Y).$

 $\mu
ightarrow \mathcal{T}^*_{\mu}$ is linear! We then have

$$\mathcal{T}(\mu,\nu) = \sup\big\{\int_Y g(y)\,d\nu(y) - \int_X T^-g(x)\,d\mu(x);\,g\in C(Y)\big\}.$$

2. \mathcal{T} is a forward linear transfer, if there exists an operator $T^+ : C(X) \to LSC(Y)$ such that for each $\nu \in \mathcal{P}(Y)$,

 $\mathcal{T}^*_{\nu}(f) = -\int_Y \mathcal{T}^+(-f)(y) \, d\nu(y) \quad \text{ for any } f \in \mathcal{C}(X).$

Hence,

$$\mathcal{T}(\mu,\nu) = \sup \left\{ \int_Y T^+ f(y) \, d\nu(y) - \int_X f(x) \, d\mu(x); \, f \in C(X) \right\}.$$

Optimal balayage transport

Optimal weak transport (Gozlan et al.) Let $c : X \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ be a l.s.c. function such that for each $x \in X$, the function $\sigma \mapsto c(x, \sigma)$ is proper and convex. For $\mu \in \mathcal{P}(X)$ to $\nu \in \mathcal{P}(Y)$, it is

 $\mathcal{T}_{c}(\mu,\nu) := \inf_{\pi} \{ \int_{X} c(x,\pi_{x}) d\mu(x); \pi \in \mathcal{K}(\mu,\nu) \}, \text{where}$

$$\mathcal{K}(\mu,\nu) = \left\{ \pi \in \mathcal{P}(X \times Y); \pi_X = \mu, \pi_Y = \nu, \pi(A \times B) = \int_A \pi_x(B) \, d\mu(x) \right\}$$

Optimal balayage transport

Optimal weak transport (Gozlan et al.) Let $c : X \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ be a l.s.c. function such that for each $x \in X$, the function $\sigma \mapsto c(x, \sigma)$ is proper and convex. For $\mu \in \mathcal{P}(X)$ to $\nu \in \mathcal{P}(Y)$, it is

 $\mathcal{T}_{c}(\mu,\nu) := \inf_{\pi} \{ \int_{X} c(x,\pi_{x}) d\mu(x); \pi \in \mathcal{K}(\mu,\nu) \}, \text{where}$

$$\mathcal{K}(\mu,\nu) = \left\{ \pi \in \mathcal{P}(X \times Y); \pi_X = \mu, \pi_Y = \nu, \pi(A \times B) = \int_A \pi_x(B) \, d\mu(x) \right\}$$

Strassen.bis: If \mathcal{A} is a balayage cone in $LSC(X \sqcup Y)$ and $\mu \prec_{\mathcal{A}} \nu$, then there exists $\pi \in \mathcal{K}_{\mathcal{A}}(\mu, \nu) = \{\pi \in \mathcal{K}(\mu, \nu); \delta_x \prec_{\mathcal{A}} \pi_x \mid \mu - a.e.\}$

Optimal balayage transport

$$\mathcal{B}_{c,\mathcal{A}}(\mu,\nu) = \begin{cases} \inf\{\int_X c(x,\pi_x)d\mu(x) \, ; \, \pi \in \mathcal{K}_{\mathcal{A}}(\mu,\nu)\} & \text{if } \mu \preceq_{\mathcal{A}} \nu, \\ +\infty & \text{otherwise.} \end{cases}$$

▲ 臣 ▶ ▲ 臣 ▶ ― 臣

A seminal duality

Theorem: The following are equivalent:

- 1. T^- is a backward Kantorovich operator from C(Y) to USC(X).
- 2. There is a backward linear transfer $\mathcal{T} : \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ such that for all $\mu \in \mathcal{P}(X)$ and $g \in C(Y)$,

$$\mathcal{T}^*_\mu(g) = \int_X T^- g \, d\mu.$$

3. There exists an optimal balayage transport $\mathcal{T}_{c,\mathcal{A}}$, which is a backward linear transfer whose Kantorovich operator is given by

$$T^-g(x) := \sup\{\int_Y gd\sigma - c(x,\sigma); \sigma \in \mathcal{P}(Y), \delta_x \prec_{\mathcal{A}} \sigma\}.$$

A seminal duality

Theorem: The following are equivalent:

- 1. T^- is a backward Kantorovich operator from C(Y) to USC(X).
- 2. There is a backward linear transfer $\mathcal{T} : \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ such that for all $\mu \in \mathcal{P}(X)$ and $g \in C(Y)$,

$$\mathcal{T}^*_\mu(g) = \int_X T^- g \, d\mu.$$

3. There exists an optimal balayage transport $\mathcal{T}_{c,\mathcal{A}}$, which is a backward linear transfer whose Kantorovich operator is given by

$$T^-g(x) := \sup\{\int_Y gd\sigma - c(x,\sigma); \sigma \in \mathcal{P}(Y), \delta_x \prec_{\mathcal{A}} \sigma\}.$$

Corollary: T is positively homogenous iff S is a backward transfer set, i.e,

$$\mathcal{T}(\mu,
u) = \left\{ egin{array}{cc} 0 & ext{if } (\mu,
u) \in \mathcal{S} \ +\infty & ext{otherwise}, \end{array}
ight.$$

is a zero-cost backward linear transfer, in which case

$$\mathcal{S} = \{(\mu,
u) \in \mathcal{P}(X) imes \mathcal{P}(Y); \ \mu \prec_{\mathcal{A}}
u\}.$$

Proposition (Iterations of Kantorovich operators)

Let $X_1, ..., X_n$ be *n* compact spaces, and for each i = 1, ..., n,

- \mathcal{T}_i is a backward linear transfer on $\mathcal{P}(X_{i-1}) \times \mathcal{P}(X_i)$
- $T_i : USC(X_i) \rightarrow USC(X_{i-1})$ is the associated Kantorovich operator. For $(\mu, \nu) \in \mathcal{P}(X_1) \times \mathcal{P}(X_n)$, define

 $\mathcal{T}_1 \star \mathcal{T}_2 \dots \star \mathcal{T}_n(\mu, \nu) = \inf \{ \mathcal{T}_1(\mu, \sigma_1) + \mathcal{T}_2(\sigma_1, \sigma_2) \dots + \mathcal{T}_n(\sigma_{n-1}, \nu); \ \sigma_i \in \mathcal{P}(X_i), i = 1, n-1 \}.$

Then, $\mathcal{T} := \mathcal{T}_1 \star \mathcal{T}_2 ... \star \mathcal{T}_n$ is a linear backward transfer with a Kantorovich operator given by

 $T = T_1 \circ T_2 \circ \ldots \circ T_n.$

Denote by \mathcal{T}_n the linear transfer $\mathcal{T} \star \mathcal{T} \star ... \star \mathcal{T}$ by iterating *n*-times. The corresponding Kantorovich operator is then $T^n = T \circ T \circ ... \circ T$.

-

• The self-transfer constant of a backward linear transfer \mathcal{T} and its Kantorovich operator $\mathcal{T} : C(X) \to USC(X)$ is the -possibly infinite-

$$c(T) := \inf_{\mu \in \mathcal{P}(X)} \sup_{h \in C(X)} \{ \int_X (h - Th) d\mu = \inf_{\mu \in \mathcal{P}(X)} \mathcal{T}(\mu, \mu).$$

• If c(T) is finite, then there exists $\bar{\mu} \in \mathcal{P}(X)$ such that $\mathcal{T}(\bar{\mu}, \bar{\mu}) = c(T)$. Such measures will be called **minimal measures**. • The self-transfer constant of a backward linear transfer \mathcal{T} and its Kantorovich operator $\mathcal{T} : C(X) \to USC(X)$ is the -possibly infinite-

$$c(T) := \inf_{\mu \in \mathcal{P}(X)} \sup_{h \in C(X)} \{ \int_X (h - Th) d\mu = \inf_{\mu \in \mathcal{P}(X)} \mathcal{T}(\mu, \mu).$$

• If c(T) is finite, then there exists $\bar{\mu} \in \mathcal{P}(X)$ such that $\mathcal{T}(\bar{\mu}, \bar{\mu}) = c(T)$. Such measures will be called **minimal measures**.

• A backward subsolution (resp., solution) for T at level $k \in \mathbb{R}$ is a function $g \in USC(X)$ so that

1.
$$Tg + k \leq g$$
 (resp., $Tg + k = g$) and

2. $\int_X gd\mu > -\infty$ for some minimal measure $\mu \in \mathcal{P}(X)$.

• The self-transfer constant of a backward linear transfer \mathcal{T} and its Kantorovich operator $\mathcal{T} : C(X) \to USC(X)$ is the -possibly infinite-

$$c(T) := \inf_{\mu \in \mathcal{P}(X)} \sup_{h \in C(X)} \{ \int_X (h - Th) d\mu = \inf_{\mu \in \mathcal{P}(X)} \mathcal{T}(\mu, \mu).$$

• If c(T) is finite, then there exists $\bar{\mu} \in \mathcal{P}(X)$ such that $\mathcal{T}(\bar{\mu}, \bar{\mu}) = c(T)$. Such measures will be called **minimal measures**.

• A backward subsolution (resp., solution) for T at level $k \in \mathbb{R}$ is a function $g \in USC(X)$ so that

1.
$$Tg + k \leq g$$
 (resp., $Tg + k = g$) and

2. $\int_X gd\mu > -\infty$ for some minimal measure $\mu \in \mathcal{P}(X)$.

• The Mañé constant c_0 is the supremum over all $k \in \mathbb{R}$ such that there exists a subsolution g for T at level k.

The self-transfer constant

Let $\mathcal{T}: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R} \cup \{+\infty\}$ be a backward linear transfer, \mathcal{T} its associated backward Kantorovich operator. Then,

1.
$$c_0 = c(\mathcal{T})$$

2. $c(\mathcal{T}) = \lim_{n \to \infty} \frac{\inf_{(\mu,\nu) \in \mathcal{P}(X) \times \mathcal{P}(X)} \mathcal{T}_n(\mu,\nu)}{n}$.

3. If $\overline{\mu}$ is a minimal measure, then for each $g \in C(X)$,

$$\lim_{n\to\infty}\frac{1}{n}\int_X T^n g\,d\bar{\mu}=-c(\mathcal{T}).$$

4. If \mathcal{T} is bounded above on $\mathcal{P}(X) \times \mathcal{P}(X)$, then

$$\frac{\mathcal{T}_n(\mu,\nu)}{n} \to c(\mathcal{T}) \quad \text{uniformly on } \mathcal{P}(X) \times \mathcal{P}(X), \tag{1}$$

and for every $g \in C(X)$,

$$\frac{T^n g(x)}{n} \to -c(T) \quad \text{uniformly on } X. \tag{2}$$

Weak KAM operators associated to Kantorovich operators

Let $T : USC(X) \rightarrow USC(X)$ be a backward Kantorovich operator with a finite transfer constant c(T). Say that a Kantorovich operator $T_{\infty} : USC(X) \rightarrow USC(X)$ is a backward weak KAM operator associated to T if

- 1. T_{∞} is idempotent.
- 2. $TT_{\infty} = T_{\infty}T$.
- 3. T_{∞} maps C(X) to the class of backward weak KAM solutions for T, i.e., for any $g \in C(X)$,

$$TT_{\infty}g+c(T)=T_{\infty}g.$$

The linear transfer associated to T_∞ is then

$$\mathcal{T}_{\infty}(\mu,\nu) = \sup_{g \in C(X)} \{ \int_X g \, d\nu - \int_X T_{\infty}g \, d\mu \},\,$$

and will be called the Peirls barrier associated to T.

Three cases where we can prove the existence of a weak KAM operator associated to a Kantorovich opeartor:

- 1. When ${\mathcal T}$ is a weak*-continuous backward linear transfer.
- 2. When $c(T) = \inf_{(\mu,\nu)\in\mathcal{P}(X)\times\mathcal{P}(X)} \mathcal{T}(\mu,\nu)$. For example, when T is 1-positively homogenous.
- 3. When \mathcal{T} is of bounded oscillation. A linear transfer \mathcal{T} has bounded oscillation if

$$\limsup_{n\to\infty} \{nc(\mathcal{T}) - \inf_{\mathcal{P}(X)\times\mathcal{P}(X)} \mathcal{T}_n\} < +\infty.$$

For example, when ${\mathcal T}$ is bounded above.

Ergodic properties of continuous linear transfers

Let \mathcal{T} be a weak*-continuous backward linear transfer with backward Kantorovich operator \mathcal{T} . Then, there exists a backward weak KAM operator $\mathcal{T}_{\infty}^-: \mathcal{C}(X) \to \mathcal{C}(X)$ with a corresponding backward linear transfer \mathcal{T}_{∞} so that

1.
$$(\mathcal{T}_n - nc(\mathcal{T})) \star \mathcal{T}_\infty = \mathcal{T}_\infty = \mathcal{T}_\infty \star (\mathcal{T}_n - nc(\mathcal{T}))$$
 for every $n \in \mathbb{N}$.

2. For every $\mu, \nu \in \mathcal{P}(\mathcal{X})$, we have

$$\sup\left\{\int_X T_{\infty}^- gd(\nu-\mu); g \in C(X)\right\} \leq \mathcal{T}_{\infty}(\mu,\nu) \leq \liminf_{n \to \infty} (\mathcal{T}_n(\mu,\nu) - nc(\mathcal{T})).$$

3. $\mathcal{A} := \{ \sigma \in \mathcal{P}(X); \mathcal{T}_{\infty}(\sigma, \sigma) = 0 \}$ contains all minimal measures of \mathcal{T} .

4. If T is also a forward linear transfer, then there exists conjugate functions ψ_0, ψ_1 for T_∞ in the sense that

$$\psi_0 = T_\infty^- \psi_1 \quad \psi_1 = T_\infty^+ \psi_0,$$

such that

$$T^-\psi_0+c=\psi_0,\quad T^+\psi_1-c=\psi_1,$$

and

$$\int_X \psi_0 d\mu = \int_X \psi_1 d\mu \,\,$$
 for every $\mu \in \mathcal{A}.$

(신문) 문

Semi-groups of Kantorovich operators

Let $\{\mathcal{T}_t\}_{t\geq 0}$ be a family of backward linear transfers on $\mathcal{P}(X) \times \mathcal{P}(X)$ with associated Kantorovich operators $\{\mathcal{T}_t\}_{t\geq 0}$,

(H0) $\{\mathcal{T}_t\}_{t\geq 0}$ is a semi-group for inf-convolution: $\mathcal{T}_{t+s} = \mathcal{T}_t \star \mathcal{T}_s \ (s,t\geq 0)$

(H1) For every t > 0, the transfer \mathcal{T}_t is weak*-continuous.

(H2) For any $\epsilon > 0$, $\{\mathcal{T}_t\}_{t \ge \epsilon}$ has common modulus of continuity $\delta(\epsilon)$.

Example: $A_t(x, y)$ be a semi-group of equicontinuous cost functions on $X \times X$, that is

$$A_{t+s}(x,y) = A_t \star A_s(x,y) := \inf\{A_t(x,z) + A_s(z,y); z \in X\},\$$

and the associated optimal mass transports

$$\mathcal{T}_t(\mu,\nu) = \inf\{\int_{X\times X} A_t(x,y)d\pi(x,y); \pi \in \mathcal{K}(\mu,\nu)\}.$$

 $(\mathcal{T}_t)_t$ is then a semi-group of linear transfers and there is a backward and forward linear transfer \mathcal{T}_{∞} , and weak KAM operators \mathcal{T}_{∞}^- , \mathcal{T}_{∞}^+ such that:

Weak KAM theories

If
$$c := c((\mathcal{T}_t)_t) := \lim_{t \to \infty} \frac{\inf_{\mu,\nu \in \mathcal{P}(X)} \mathcal{T}_t(\mu,\mu)}{t}$$
. Then
1. $c = \min\{\int_{X \times X} A_1(x, y) d\pi; \pi \in \mathcal{P}(X \times X), \pi_1 = \pi_2\}$
2. $A_{\infty}(x, y) := \liminf_{t \to \infty} (A_t(x, y) - ct)$ is continuous on $X \times X$, and
• $\mathcal{T}_{\infty}(\mu, \nu) = \mathcal{T}_{A_{\infty}}(\mu, \nu) := \inf\{\int_{X \times X} A_{\infty}(x, y) d\pi(x, y); \pi \in \mathcal{K}(\mu, \nu)\},$
• $\mathcal{T}_{\infty}^- f(x) = \sup\{f(y) - A_{\infty}(x, y); y \in X\}, \ \mathcal{T}_{\infty}^+ f(y) = \inf\{f(x) + A_{\infty}(x, y); x \in X\}.$

3. The minimizing measures in (1) are all supported on the set

$$D := \{(x, y) \in X \times X ; A_1(x, y) + A_{\infty}(y, x) = c\}.$$

4. There exists conjugate functions u^-, u^+ for \mathcal{T}_∞ in the sense that

$$\begin{split} u^{-}(x) &= \sup\{u^{+}(y) - A_{\infty}(x, y); \ y \in X\}, \quad u^{+}(y) = \inf\{u^{-}(x) + A_{\infty}(x, y); \ x \in X\}, \\ T_{t}^{-}u^{-} + ct &= u^{-}, \quad T_{t}^{+}u^{+} - ct = u^{+}) \ \text{for all } t \geq 0. \\ u^{-}(x) &= u^{+}(x) \ \text{whenever } A_{\infty}(x, x) = 0. \end{split}$$

돈 돈 돈

Weak KAM solutions in Lagrangian dynamics

Let L be a time-independent Tonelli Lagrangian on a compact Riemanian manifold M, and consider T_t to be the cost minimizing transport

$$\mathcal{T}_t(\mu,\nu) = \inf\{\int_{M \times M} A_t(x,y) d\pi(x,y); \pi \in \mathcal{K}(\mu,\nu)\}, \text{where}$$

$$A_t(x,y) := \inf\{\int_0^t L(\gamma(s),\dot{\gamma}(s))ds \, ; \, \gamma \in C^1([0,t];M); \gamma(0) = x, \gamma(t) = y\}.$$

The backward (forward) Lax-Oleinik semi-group is defined for t > 0, via

$$S_t^-u(x) = \sup\{u(\gamma(t)) - \int_0^t L(\gamma(s), \dot{\gamma}(s)) ds; \gamma \in C^1([0, t]; M), \gamma(0) = x\},$$

$$S_t^+ u(x) := \inf \{ u(\gamma(0)) + \int_0^t L(\gamma(s), \dot{\gamma}(s)) ds \, ; \, \gamma \in C^1([0, t]; M), \gamma(t) = x \}.$$

A function $u \in C(M)$ is said to be a *backward (resp., forward) weak* KAM solution if $S_t^-u + ct = u$ (resp., $S_t^+u - ct = u$) for all $t \ge 0$. **Theorem:** There exists a unique constant $c \in \mathbb{R}$ such that:

- 1. (Fathi) There exists weak KAM solutions, i.e., $u_-: M \to \mathbb{R}$ (resp. u_+) such that $S_t^- u_- + ct = u_-$ (resp. $S_t^+ u_- ct = u_-$) for $t \ge 0$.
- (Bernard-Buffoni) Let A_∞(x, y) := lim inf_{t→∞} A_t(x, y) tc denotes the Peierls barrier function. Then,

$$\inf\{\int_{M\times M}A_{\infty}(x,y)d\pi(x,y); \pi\in\mathcal{K}(\mu,\nu)\}=\sup_{u_+,u_-}\{\int_{M}u_+d\nu-\int_{M}u_-d\mu\},$$

and

$$u_+ = u_- \text{ on } \mathcal{A} := \{x \in M ; A_\infty(x, x) = 0\}.$$

 (Bernard-Buffoni) c = min_π ∫_{M×M} A₁(x, y)dπ(x, y), over all π ∈ P(M × M) with equal first and second marginals. The minimizing measures are all supported on

$$\mathcal{D}:=\{(x,y)\in M\times M\,;\,A_1(x,y)+A_\infty(y,x)=c\}.$$

- 4. (Mather) $c = \inf_m \int_{TM} L(x, v) dm(x, v)$ over all measures $m \in \mathcal{P}(TM)$ which are invariant under the Euler-Lagrange flow.
- 5. (Fathi) A continuous function $u: M \to \mathbb{R}$ is a viscosity solution of

$$H(x,\nabla u(x))=c$$

Image: Second second

3

if and only if it is Lipschitz and u is a backward weak KAM solution.

Stochastic (2d order Fathi-Mather theory

(Gomez, Mikami) $M = \mathbb{T}^d := \mathbb{R}^d / \mathbb{Z}^d$ being the *d*-dimensional flat torus, $(\Omega, \mathcal{F}, \mathcal{P})$ a complete probability space with normal filtration $\{\mathcal{F}_t\}_{t\geq 0}$, Let $\mathcal{A}_{[0,t]}$ be the set of continuous semi-martingales $X : \Omega \times [0, t] \to M$ such that for some drift $\beta_X : [0, t] \times C([0, t]) \to \mathbb{R}^d$,

$$dX_t = \beta(t, X)dt + dW_t$$

where W_t is an *M*-valued Brownian motion.

$$\mathcal{T}_t(\mu,\nu) := \inf \left\{ \mathbb{E} \int_0^t L(X(s),\beta_X(s,X)) \varsigma; X(0) \sim \mu, X(t) \sim \nu, X \in \mathcal{A}_{[0,t]} \right\},\$$

is then a backward linear transfer, with Kantorovich operator

$$T_t f(x) := \sup_{X \in \mathcal{A}_{[0,t]}} \left\{ \mathbb{E}\left[f(X(t)) - \int_0^t L(X(s), \beta_X(s, X)) \$ | X(0) = x \right] \right\}.$$

$$\mathcal{N}_0 := \left\{ m \in \mathcal{P}(TM); \int_{TM} \left[\frac{1}{2} \Delta(x) \phi + v \cdot \nabla \phi(x) \right] dm(x, v) = 0 \text{ for all } \phi \in C^2(M) \right\}.$$

(Euler-Lagrange Flow invariant measures on phase space)

- 1. $c := \inf \{ \mathcal{T}_1(\mu, \mu) ; \mu \in \mathcal{P}(M) \} = \inf \{ \int_{\mathcal{T}M} L(x, v) m(x, v); m \in \mathcal{N}_0 \}.$ Infimum is attained by a measure \overline{m} , a stochastic Mather measure. Its projection $\mu_{\overline{m}}$ on $\mathcal{P}(M)$ is a minimiser for \mathcal{T}_1 .
- 2. There exists backward weak KAM solutions $T_t u + ct = u$ for $t \ge 0$, $u \in C(M)$,
- 3. The backward weak KAM solutions are exactly the viscosity solutions of the stationary Hamilton-Jacobi-Bellman equation $\frac{1}{2}\Delta u + H(x, D_x u) = c$.

Symbolic dynamics (Garibaldi-Lopez)

Let M is an $r \times r$ transition matrix, whose $\{0,1\}$ entries specify allowable transitions.

$$\Sigma = \{x \in \{1, ..., r\}^{\mathbb{N}} ; M(x_i, x_{i+1}) = 1, \forall i \geq 0\}$$

the set of admissible words, and its dual

$$\Sigma^* = \{y \in \{1, ..., r\}^{\mathbb{N}} ; M(y_{i+1}, y_i) = 1, \forall i \ge 0\}$$

and consider

$$\hat{\Sigma} = \{(y, x) \in \Sigma^* \times \Sigma; M(y_0, x_0) = 1\}.$$

Assume $\Sigma_x^* := \{y \in \Sigma^* ; (y, x) \in \hat{\Sigma}\} \neq \emptyset, \forall x \in \Sigma.$ Consider the time-evolution map $\sigma : \Sigma \to \Sigma$ and $\tau : \hat{\Sigma} \to \Sigma$ defined as

$$\sigma(x_0, x_1, ...) = (x_1, x_2, ...)$$
 and $\tau(y, x) = (y_0, x_0, x_1, ...).$

The set of holonomic probability measures is

$$\mathcal{M}_0(\hat{\Sigma}) := \left\{ \mu \in \mathcal{P}(\hat{\Sigma}) \ ; \ \int_{\hat{\Sigma}} f(\tau_y(x)) - f(x) \ d\mu(y, x) = 0 \right\}.$$

Theorem: Given $A \in C(\hat{\Sigma})$, define $\beta_A := \max_{\hat{\mu} \in \mathcal{M}_0(\hat{\Sigma})} \int_{\hat{\Sigma}} A(y, x) d\hat{\mu}(y, x)$. Then

$$\beta_A = \inf_{f \in C(\Sigma)} \max_{(y,x) \in \hat{\Sigma}} \{A(y,x) + f(x) - f(\tau_y(x))\}.$$

There exists $u \in USC(\Sigma)$ such that

$$\inf_{y\in\Sigma_x^*} \{u(\tau_y(x)) - A(y,x) + \beta(A)\} = u(x) \quad \forall x \in \Sigma.$$

Thank you

< A

∢ 臣 ▶

æ