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Testing for symmetry

e Data: {X;}/_; iid X ~ P (abs. cont.) on R

o Test the hypothesis of symmetry, i.e.,
Hp: X 4 _x versus H; : not Hp

Distribution-free testing for symmetry

@ Sign test [Arbuthnot (1710)]: "...the first use of significance tests..."
(first nonparametric test)

@ Wilcoxon signed-rank (WSR) test [Wilcoxon (1945)]: Created the
field of (classical) nonparametrics

@ Arises with paired (matched) data; when normality can be violated

Long history: Arbuthnot (1710), Wilcoxon (1945), Hodges & Lehmann
(1956), Chernoff & Savage (1958), McWilliams (1990) ...

Goal: Develop distribution-free testing for multivariate symmetry
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There are many notions of symmetry in RP, for p > 2

o Central: Test Hp: X 4 x
o Sign: Test Ho: X < DX, D = diag(£1,...,+1) € RPXP

@ Spherical: Test Hp : X 4 QX, @ € RP*P is any orthogonal matrix

@ O(p): group of all orthogonal matrices on RP*P
@ G: compact subgroup of O(p)

@ Goal: Develop distribution-free testing for G-symmetry, i.e.,

Hp: X 4 RX VQeg, versus H; : not Hy

Long history: Weyl (1952), Hodges (1955), Watson (1961), Bickel
(1965), Randles (1989), Baringhaus (1991), Chaudhuri & Sengupta
(1993), Beran & Millar (1997), Marden (1999), Zuo & Serfling (2000),
Hallin & Paindaveine (2002), Oja (2010), Serfling (2014), ...
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Data: Xi,..., X, iid X ~ P (X abs. cont.) on R (i.e., p = 1)

Goal: Distribution-free testing of Hg : X 4 _x
Sign test [Arbuthnot (1710)]

+1 ifX;>0

iid
Under Hy, S; ~ +1 w.p. £
“1 X <0 neer Ho WP 3

e Sign: S, = {

o Rejects Hy when >"" . S; s significantly different from 0

Under Ho: 237 ,(Si + 1) ~ Bin(n, 3)

Distribution-freeness: The null distribution of > " | S; is universal
— does not depend on the underlying distribution of the data

Leads to an exact and distribution-free test valid for all sample sizes

o Issue: Actually testing for Hp : P(X > 0) = %; does not take into

account the magnitude of the X;'s
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Wilcoxon signed-rank test [Wilcoxon (1945)]

o Let R be the absolute rank of X, i.e., the rank of |X;| in the
sample of absolute values |Xi|,...,|Xy]

o Rejects Ho when Y7, SR s significantly different from 0
o Under Hy, the distribution of Y7 | ;R is completely known

Distribution-freeness

° (Rf, e R;r) are uniform over all n! permutations of {%, cee %}

o (51,...,5,) independent of (R, ..., Ry) under Hy : X 4 _x

n

@ Leads to an exact and distribution-free test valid for all sample sizes

o Consistent against location shift alternatives: Xi,..., X, iid (- — 0);
here f (unknown) is symmetric (Hg : X 2. X o Hy:0= 0)

@ Powerful for heavy-tailed data, robust to outliers & contamination
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© Distribution-freeness:
e Si's are iid uniform over {—1,1}, under Hp : X 4 _x
o (Rf,...,Ry) are uniform over all n! permutations of {%,...,2}

@ Independence: (Si,...,S,) independent of (R, ..., R;) under Ho

© Asymptotic normality: Both > 7 | S; and Y7, S;R" are
asymptotically normal under Hg

@ Asymptotic relative efficiency (ARE) for location shift alternatives
o Hodges-Lehmann (1956): ARE of WSR test w.r.t. t-test > 0.864

o Chernoff-Savage (1958): ARE of a Gaussian score transformed WSR
test against the t-test is lower bounded by 1

@ Obtain distribution-free confidence sets for the “center” of X

Question: Can we derive tests with analogous properties when p > 17
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The distribution-free nature of signs and absolute ranks (under Hg) were
crucial to developing distribution-free inference for symmetry when p =1

Question: Can we define distribution-free (generalized) signs and ranks
and develop distribution-free multivariate tests for G-symmetry?

(Multivariate) ranks defined via optimal transport (OT) [Hallin (2017)]
lead to distribution-free testing

Chernozhukov et al. (2017), De Valk & Segers (2018), Hallin, del Barrio,
Cuesta-Albertos, Matran (2018), Shi, Drton & Han (2019), Deb &

S. (2019), Ghosal & S. (2019), Hallin, La Vecchia & Liu (2019), Hallin,
Hlubinka, & Hudecova (2020), Deb, Ghosal & S. (2020), Shi, Hallin,
Drton & Han (2020), Deb, Bhattacharya & S. (2021) ...



© Generalized Signs and Ranks
@ Connection to Optimal Transport
o Generalized Signs, Ranks and Signed-ranks
@ Population Analogues

© Multivariate Distribution-free tests for Symmetry
o Generalized Sign test and Wilcoxon Signed-rank test
@ Lower bounds on Asymptotic (Pitman) Relative Efficiency
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Optimal Transport: Monge's problem

Gaspard Monge (1781): What is the cheapest way to transport a pile of
sand to cover a sinkhole?

x y=T0)

Goal: T:T|(r)1(f)w Ep[c(X, T(X))] X~ P
e P (“data” dist.) and v (“reference” dist.)

@ c(x,y) > 0: cost of transporting x toy (e.g., c(x,y) = ||x — y||?)

e T transports P to v: TxP = v (i.e.,, T(X) ~ v where X ~ P)



Sample Ranks as Optimal Transport (OT) maps
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Sample Ranks as Optimal Transport (OT) maps

o Data: Xi,..., X, iid P
(cont. dist.) on R SR

o Let P,:=1%"§x and

i=1
1 n
Vy = " Z (Sj 5 3
’-:1 n o o 0z 03 04 05 06 07 08 09 kS
e Sample rank map: I%:{Xl.Xz,.. X}—>{n n,...,%} solves
o 1o
i.e.,, R:= argmin Xi— T(X)|° = arg max — Xy T(Xi
T:TyPpy=v, Z:l ( T:T4Pr=vn n Z 2 ( (’))
o 5:=argmin 137 | X, ﬁ|2 where S, is the set of all
gES,
permutations of {1,...,n}

o Sample rank map: R(X;) =



Multivariate Ranks as OT maps in RP (p > 1)
e Data: Xy,...,X, iid P (abs. cont.); v ~ Unif([0,1]?) or N(O, I,)

o Empirical rank map R: {X1,...,X,} = {hy,...,h,} € [0,1]¢ —
sequence of “uniform-like” points (or quasi-Monte Carlo sequence)




Multivariate Ranks as OT maps in RP (p > 1)
e Data: Xy,...,X, iid P (abs. cont.); v ~ Unif([0,1]?) or N(O, I,)

o Empirical rank map R: {X1,...,X,} = {hy,...,h,} € [0,1]¢ —
sequence of “uniform-like” points (or quasi-Monte Carlo sequence)

@ Sample multivariate rank map [Hallin (2017), Deb & S. (2019)] is
defined as the OT map s.t.

& =arg r;nn = Z X001y — hill; R(X;) := hs—1(i)
(4SS

@ Assignment problem (can be reduced to a linear program — O(n?))
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@ Generalized Signs, Ranks and Signed-ranks

© Multivariate Distribution-free tests for Symmetry
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e Data: Xj,..., X, iid P (cont. dist.) on R
0o Ho: XL QX VQeG={+1,-1}

o Signtest: Y I | S [recall: S; := sign(X;)]
o WSR test: 7 | S;R"

Question: Can the signs and absolute ranks be obtained via OT?

o Consider the optimization problem:

Q2
qiXo (i) — .

(Q,6) := argmin {Z
i=1

@ The signs and absolute ranks are then given by:
A1/
Si = Qs-1(iys R =2 0

1

D Q= (q)iy € {1}, 0 € Sn}

n
@ The signed-rank for X; is then defined as 5,-/-?,-+
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e Data: Xy,..., X, iid P (abs. cont.) on R? (p > 1); G C O(p)
o Consider the following optimization problem:

(Q,8) := argmin {ZQ,TXU(,-) ~hi|?:QegG,oe sn} (%)
i=1

where {hy, ..., h,} is discretization of the reference dist. v
Question: Can the above be seen as an OT problem?
Define the cost function:

c(x,h) := E?nlg 1QTx — h|?, for x,h € RP.
€

Monge's problem (OT): (x) = Lpinf LS e(Xi, T(X)))

n
where T transports P, := 1 z to v, =136



(@,&) ‘= arg min { ZHQ,—TXU(,) — h,-||2 :Qieg,o€ Sn} (%)

i=1
Figure: Data points (“e") and their ranks (“+"). Here G = {—1,,1,}.
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(@,&) ‘= arg min { ZHQ,—TXU(,) — h,-||2 :Qieg,o€ Sn} (%)

i=1
Figure: Data points (“e") and their ranks (“+"). Here G = {—1,,1,}.

(Q,8) :=argmin { > | X,() — Qhi|*: @ € G, 0 € Sy}

i=1

@ Define the generalized sign and generalized rank as:

~

S5n(Xi) == Qs-1(i), Ra(X;) = hg-a(;y

@ The generalized signed-rank of X; is S,(X;)R,(X;) — it is the
closest point to X; in the orbit of R,(X;) (i.e., {QR,(X;) : Q@ € G})
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Uniqueness of generalized ranks & signed-ranks [Huang & S. (2023+)]

@ The generalized rank — R,(X;) — is a.s. unique,® Vi € [n]

@ The signed-rank — S,(X;)R,(X;) — is a.s. unique, Vi € [n]

@ Recall: the signed-rank is the point in the orbit of R,(X;) (i.e.,
{QR,(X;) : Q € G}) that is closest to X;

?We assume that no two h;’s lie on a same orbit of G.

3 3 3

2 2 . 2 ke
e

1 1 : 1

0 4 : o

-1 *4 1 : 1

-2 2 -2

Figure: Data point (“e"), its rank (“+") and its signed-rank (*'x").

Left: G = {—1,, I} (central sym.). Center: G corresponds to sign symmetry.
Right: G = O(2); the signed-rank ("x") is the (unique) point in

{x € R? : ||x|| = 2} that is closest to the data point.



The sign S,(X;) = argmin || X; — QR,(X;)||?> may be not unique
Qeg

If G is the group corresponding to central/sign symmetry, then the
(generalized) sign S,(X;) is unique a.s.

3 3
.
2 2 Yo
v,
1 1
0 0
.
-1 * -1
-2 -2
-3 -3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure: Data point (“e"), its rank (“+") and its signed-rank ("x"). Left: Here
G = {—1, I} and sign is uniquel Right: Here G = O(2) and sign is not unique!



The sign S,(X;) = argmin || X; — QR,(X;)||?> may be not unique
Qeg

If G is the group corresponding to central/sign symmetry, then the
(generalized) sign S,(X;) is unique a.s.

3 3
.
2 2 Yo
>,
1 1
0 0
.
-1 * -1
-2 -2
-3 -3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure: Data point ("e"), its rank (“-+") and its signed-rank (“+"). Left: Here
G = {—1, I} and sign is uniquel Right: Here G = O(2) and sign is not unique!

Can choose S,(X;) ‘uniformly’ over all possible minimizing values
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Qeg Qeg

Question: When can we identify the (generalized) sign?



Sa(X;) = argmin |QTX; — R,(X;)||?> = arg min ||X; — QR,(X;)||?
Qeg Qeg

Question: When can we identify the (generalized) sign?
@ G acts freely if for x € RP and @1, Q> € G,

Qix=Qx = Q=G

(i.e., for any x in RP, we can identify the unique element in G that
maps x — Qx)

@ Free group action is available for central / sign symmetry

@ For infinite groups G we may not have a free group action

Proposition [Huang & S. (2023+)]

Suppose that G acts freely and suppose no two h;'s lie on a same orbit of
G. Then S,(-) is a.s. unique.




Computational complexity

e Cost function: ¢ ; = c(X;,h)) = gng |QTX; —h;||2,  Vi,j€[n]
€

@ OT problem: min{>7_; ¢ »(j) : ¢ € Sy} — assignment problem

o If G is a finite group then ¢;; can be computed in O(1) time

o {R,(X;)}"; can be found by solving the assignment problem of
{Xi,...,X,} to {hy,...,h,} under cost c(:,-) — complexity O(n?)

o Sign: S,(X;) = Sp(Xi, Ra(X;)) := argmin || QT X; — R,(X;)]|?
Qeg



Computational complexity

e Cost function: ¢ ; = c(X;,h)) = S"B |QTX; —h;||2,  Vi,j€[n]
€

@ OT problem: min{>7_; ¢ »(j) : ¢ € Sy} — assignment problem

o If G is a finite group then ¢;; can be computed in O(1) time

o {R,(X;)}"; can be found by solving the assignment problem of
{Xi,...,X,} to {hy,...,h,} under cost c(:,-) — complexity O(n?)

o Sign: S,(X;) = Sp(Xi, Ra(X;)) := argmin || QT X; — R,(X;)]|?
Qeg

For some group G, the computation can be much faster!
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Spherical symmetry (G = O(p))

@ The computation time of the ranks (and signed-ranks): O(nlogn)
2
o c(x,h) = [|x|[* — 2maxgeg x" Qh + [[h]|> = (|[x|| — [|h])

o If X; has the j-th largest Euclidean norm among Xy,..., X, and
||| < ... < |hy]|, then X; will have h; as its rank

@ The signed-rank of X; is simply the vector in the direction of X;
with length [|R,(X;)|], i.e.,

5.(X))Ra(X)) = ||Rn(x,-)||”)’§j”



Given Xy,...,X,iid Pon RP (p>1); G C O(p)
{h1,...,h,} is discretization of the reference dist. v

oT: (@,6) ;= argmin {Z,'-'ZIHQITXU(,-) ~hi|?:Q€g,o€ S,,}
Define the generalized sign and generalized rank as:

Sn(Xi) == @671(;)7 Ra(Xi) := hg-1(j)



Given Xy,...,X,iid Pon RP (p>1); G C O(p)
{h1,...,h,} is discretization of the reference dist. v

oT: (@,6) ;= argmin {ZLIHQITXU(,-) ~hi|?:Q€g,o€ S,,}
@ Define the generalized sign and generalized rank as:

Sn(Xi) == @gﬂ(;y Ra(Xi) := hg-1(j)

Theorem [Huang & S. (2023+)]

Result: (R,(X1),..., Ra(X,)) is uniformly distributed over the set of all
n! permutations of {hy,... h,}

Under Ho: X £ QX VQ €,
Q S,(X1),...,Sn(Xp,) are iid Uniform(G)

Q (Rn(X1),...,Ra(X;)) and (S,(X1),...,S5,(X,)) are independent



e Given Xy,...,X,iid PonRP (p>1); G CO(p)
@ {hy,...,h,} is discretization of the reference dist. v
e OT: (Q,5) := argmin {1 Q Xy —hil?: Qe G o €8s}

@ Define the generalized sign and generalized rank as:
Sa(X) = Q103 Ra(Xi) = hg-1(jy

Theorem [Huang & S. (2023+)]

Result: (R,(X1),..., Ra(X,)) is uniformly distributed over the set of all
n! permutations of {hy,... h,}

Under Ho: X £ QX VQ €,
Q S,(X1),...,Sn(Xp,) are iid Uniform(G)

Q (Rn(X1),...,Ra(X;)) and (S,(X1),...,S5,(X,)) are independent

Generalizes the distribution-freeness of signs and ranks beyond p = 1!

(Generalized) Wilcoxon signed-rank test: W, := >""_; S,(X;)Ra(X;)



@ Generalized Signs and Ranks

@ Population Analogues

© Multivariate Distribution-free tests for Symmetry



X ~ P (abs. cont.) on RP; v: reference dist.; G C O(p)

Population OT problem [Kantorovich's relaxation]

inf E[c(X,H h) := mi Tx — hll2
o Xeipain, P LGOIl et h) = g @ =

and (X, H) runs over all joint dist. with marginals X ~ P and H ~ v.
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Population OT problem [Kantorovich's relaxation]

inf E[c(X,H h) := mi Tx — hll2
o Xeipain, P LGOIl et h) = g @ =

and (X, H) runs over all joint dist. with marginals X ~ P and H ~ v.

Assumption (A) (On v and G): 3 B C RP with v(B) = 1 such that, for
any h € RP, the orbit {Qh : Q € G} intersects B at one point at most.

@ Central symmetry: h and —h cannot both be in B; we can take
B = (0,00) x RP1;
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Population OT problem [Kantorovich's relaxation]

inf E[c(X,H h) := mi Tx — hll2
o Xeipain, P LGOIl et h) = g @ =

and (X, H) runs over all joint dist. with marginals X ~ P and H ~ v.

Assumption (A) (On v and G): 3 B C RP with v(B) = 1 such that, for
any h € RP, the orbit {Qh : Q € G} intersects B at one point at most.

@ Central symmetry: h and —h cannot both be in B; we can take
B = (0,00) x RP~1: when p = 1, B =(0,1) and v = Unif(0,1)



X ~ P (abs. cont.) on RP; v: reference dist.; G C O(p)

Population OT problem [Kantorovich's relaxation]

inf E[c(X,H h) := mi Tx — hll2
o Xeipain, P LGOIl et h) = g @ =

and (X, H) runs over all joint dist. with marginals X ~ P and H ~ v.

Assumption (A) (On v and G): 3 B C RP with v(B) = 1 such that, for
any h € RP, the orbit {Qh : Q € G} intersects B at one point at most.

@ Central symmetry: h and —h cannot both be in B; we can take
B = (0,00) x RP~1: when p = 1, B =(0,1) and v = Unif(0,1)

@ Sign symmetry: We can take B = (0, c0)P

@ Spherical symmetry (G = O(p)): We can take B = (0,00) x {0}P~L;



X ~ P (abs. cont.) on RP; v: reference dist.; G C O(p)

Population OT problem [Kantorovich's relaxation]

inf E[c(X,H h) := mi Tx — hll2
o Xeipain, P LGOIl et h) = g @ =

and (X, H) runs over all joint dist. with marginals X ~ P and H ~ v.

Assumption (A) (On v and G): 3 B C RP with v(B) = 1 such that, for
any h € RP, the orbit {Qh : Q € G} intersects B at one point at most.

@ Central symmetry: h and —h cannot both be in B; we can take
B = (0,00) x RP~1: when p = 1, B =(0,1) and v = Unif(0,1)

@ Sign symmetry: We can take B = (0, c0)P

@ Spherical symmetry (G = O(p)): We can take B = (0,00) x {0}P~L;
thus v is not abs. cont. here



Quotient map for cost c(x, h) := mingeg [|x — Qh||?

@ Orbit of his {Qh: Q € G}; every point in an orbit has the same cost



Quotient map for cost c(x, h) := mingeg [|x — Qh||?

@ Orbit of his {Qh: Q € G}; every point in an orbit has the same cost
@ Image of group action of Gon B: GB={Qh: Qe G,he B} CRP
For any point in GB, quotient map picks the representative point in B:
qg:GB— B where g(Qh)=h for he B,Q € G.

If Assumption (A) holds, then g(-) is well-defined

3 3

2 -~ 2
1 / 1
0 / 0

1 / -1
- / -

Figure: Shows the action of the quotient map g on: (i) (Left) 3 points when G
corresponds to the group for sign symmetry, and (ii) (Right) on 2 points for G

corresponding to the group for spherical symmetry (here g(x) = (||x||,0))




Population generalized rank map [Huang & S. (2023+)]
Let X ~ P (abs. cont.), H ~ v and suppose Assumption (A) holds.

Then, 3 (P-a.e.) unique map R : RP — RP that solves the OT problem
of transporting P to v (RyP = v), i.e., Monge's problem =
Kantorovich's relaxation:

inf E. [c(X,H)] = Ep [c(X, R(X h) := mi — Qh|]?
(x,H)J?en(P,u) = [c(X, H)] p[c(X, R(X))], c(x,h) ol [x — Qh|



Population generalized rank map [Huang & S. (2023+)]

Let X ~ P (abs. cont.), H ~ v and suppose Assumption (A) holds.

Then, 3 (P-a.e.) unique map R : RP — RP that solves the OT problem
of transporting P to v (RyP = v), i.e., Monge's problem =
Kantorovich's relaxation:

inf E. [c(X,H)] = Ep [c(X, R(X h) := mi — Qh|]?
(x,H)J?en(P,u) = [c(X, H)] p[c(X, R(X))], c(x,h) ol [x — Qh|

Even if P and v do not have second order moments, the following hold:

(i) 3 a P-a.e. unique map R : RP — RP s.t. (X, R(X)) has the unique
distribution in MN(P, v) with a c-cyclically monotone support.

(i) 3 a l.s.c. convex function v such that R(x) = g(V(x)) (P-a.e.)



X ~ P (abs. cont.), H ~ v and suppose Assumption (A) holds.

Cost function: c(x, h) := mingeg ||x — Qh|2

Population rank and signed-rank maps [Huang & S. (2023+)]

(i) 3 a P-a.e. unique map R : R? — RP s.t. (X, R(X)) has the unique
distribution in M(P, v) with a c-cyclically monotone support.

(ii) 3 a l.s.c. convex function ¢ such that R(x) = g(V(x)) (P-a.e.)

(iii) Here, V4(-) is the P-a.e. unique gradient of a convex function
s.t. Vio(GX) ~ GH, where G ~ Uniform(G) is indep. of X & H



X ~ P (abs. cont.), H ~ v and suppose Assumption (A) holds.

Cost function: c(x, h) := mingeg ||x — Qh|2

Population rank and signed-rank maps [Huang & S. (2023+)]

(i) 3 a P-a.e. unique map R : R? — RP s.t. (X, R(X)) has the unique
distribution in M(P, v) with a c-cyclically monotone support.

(ii) 3 a l.s.c. convex function ¢ such that R(x) = g(V(x)) (P-a.e.)

(iii) Here, V4(-) is the P-a.e. unique gradient of a convex function
s.t. Vio(GX) ~ GH, where G ~ Uniform(G) is indep. of X & H

(iv) V(X)) 2 S(X, R(X))R(X) — the (generalized) signed-rank; here
S(x,h) := argmin |x — Qh||?
Qeg
(v) V(:) is equivariant under the group action of G, i.e.,

Vi(Qx) = QV(x) forall Qe g, and x (a.e.)



Convergence of generalized signs, ranks and signed-ranks

Fix some k > 0. Assume: (i) v, := 23" | 6y, % 1 as n — oo;
(i) for H, ~ v, E[||H,|| ]—>E[\\H||k] as n — o0.

@ (Convergence of signed-ranks)

1«
- Z [1Sa(Xi)Ra(X;) — Vp(X7)||* 22 0.
=1



Convergence of generalized signs, ranks and signed-ranks

Fix some k > 0. Assume: (i) v, := 23" | 6y, % 1 as n — oo;
(i) for H, ~ v, E[||H,|| ]—>E[\\H||k] as n — o0.

@ (Convergence of signed-ranks)

fZIIS — Vy(X)|* 25 0.

@ (Convergence of ranks) If g(-) is continuous, then

1 n
=3 1IR(Xi) = ROX) 225 0.
i=1



Convergence of generalized signs, ranks and signed-ranks

Fix some k > 0. Assume: (i) v, := 23" | 6y, % 1 as n — oo;
(ii) for H, ~ v,, E[|[H,|/*] — E[HHH‘(] as n — o0.

@ (Convergence of signed-ranks)
IR
- D ISa(Xi)Ra(Xi) = Vo (X)[* 22 0.
i=1
@ (Convergence of ranks) If g(-) is continuous, then
1< .
;ZHRn(X,’)— Xj)|I* == 0.
i=1
@ (Convergence of signs) If G acts freely? on GB, then

1
- D 1ISa(Xi) = S(Xi, R(X))IIE =5 0,

where S(x,h) := argmin||Q"x — - || is the Frobenius norm.
Qeg

2§ acts freely on GB, ifforhe Band Q€ G, Qh=h = Q=



© Multivariate Distribution-free tests for Symmetry



Data: {X;}7_; iid X ~ P (abs. cont.) on RP; test Hy : X LQX VQeg
Under Hy, the generalized signs S,(X1), ..., S,(X,) are iid Uniform(G)

Generalized sign test: When G is finite

Suppose G = {g1,.-.,8m} is a finite group of size m which acts freely.
Let

Y= 1S,(X)=g) Jj=1...,m.
i=1

Under Hy, 1
(Y1,-.., Ym) ~ Multinomial (n, Elm) .

Distribution-free: Generalizes the usual sign test beyond p = 1!



Data: {X;}7_; iid X ~ P (abs. cont.) on RP; test Hy : X LQX VQeg
Under Hy, the generalized signs S,(X1), ..., S,(X,) are iid Uniform(G)

Generalized sign test: When G is finite

Suppose G = {g1,.-.,8m} is a finite group of size m which acts freely.
Let

Y= 1S,(X)=g) Jj=1...,m.
i=1

Under Hy, 1
(Y1,-.., Ym) ~ Multinomial (n, Elm) .

Distribution-free: Generalizes the usual sign test beyond p = 1!
If mis large, take generalized sign test based on V,, := % Sor 1 Sa(X))

Central symmetry: %H Va2 42
Sign symmetry: ||V,||2 LS Xf,

Spherical symmetry: p||V,[|2 X2



Generalized Wilcoxon Signed-rank test

@ The generalized Wilcoxon signed-rank statistic is
1 n
W,, = —= S,,(X,)R,,(X,)
i

e W, is distribution-free under Hg : X 4 RX VQReg



Generalized Wilcoxon Signed-rank test

@ The generalized Wilcoxon signed-rank statistic is
1 n
W,, = —— S,,(X,)R,,(X,)
i

e W, is distribution-free under Hg : X 4 RX VQReg
Asymptotic normality of W,, [Huang & S. (2023+)]

Suppose: (i) v, := 237 | O, % v & 2nd moment convergence;
(ii) E[G] = 0,xp where G ~ Uniform(G);
Then:

W, % N (0, Zan),

where Yy be the covariance matrix of GH, with G L. H (here H ~ v).



Generalized Wilcoxon Signed-rank test

@ The generalized Wilcoxon signed-rank statistic is
1 n
W,, = —— S,,(X,)R,,(X,)
i

e W, is distribution-free under Hg : X 4 RX VQReg
Asymptotic normality of W,, [Huang & S. (2023+)]

Suppose: (i) v, := 237 | O, % v & 2nd moment convergence;
(ii) E[G] = 0,xp where G ~ Uniform(G);
Then:

W, % N (0, Zan),

where Yy be the covariance matrix of GH, with G L. H (here H ~ v).
@ The Wilcoxon signed-rank test rejects Hy for

W, Yo i W, > ¢,

@ ¢, is the universal cut-off; well-approximable by the x,%-quantile



The generalized Wilcoxon signed-rank statistic is
1 n
W,7 = —= Sn(X,)R,,(X,)
i

Test for G-symmetry:  Hp: X 4 RX VQRQedg, vs. H;p:not Hg

Consistency of WSR for testing G-symmetry [Huang & S. (2023+)]

Assume: (i) v, := 1377 | O, L (i) 1st moment convergence
Then, the Wilcoxon signed-rank test which rejects Hg for

Ts—1
W, LgW, > ¢,
is consistent against all alternatives for which

E[V(X)] # 0.2

AE[V4(X)] # 0 holds for location shift models if () is strictly convex & —1I, € G.




Asymptotics under local alternatives [Huang & S. (2023+)]

Let Xy,...,X, beiid f(- — 0) on RP; here f is G-symmetric distribution.
Consider testing:

Ho:0=0, versus Hy&z%; w#0, € RP
Under ‘suitable’ assumptions® and standard regularity conditions of the
parametric family {f(- — 0)}gcr» (e.g., QMD), we have, under H;:

W, % N (v, Zan),

where v := Ey, [Vq/)( )%} € RP.

(i) vp = % 1 O, % v & 2nd moment convergence; (ii) E[G] = 0pxp

o Generalized WSR test: W} TGhW,  [£6i/%y + N(0, 1) H

@ The non-centrality parameter of generalized WSR test is ||ZGH ~/||2



Asymptotics under local alternatives [Huang & S. (2023+)]

Let Xy,...,X, beiid f(- — 0) on RP; here f is G-symmetric distribution.
Consider testing:

Ho:0=0, versus Hl:Q:%; w#0, € RP
Under ‘suitable’ assumptions® and standard regularity conditions of the
parametric family {f(- — 0)}gcr» (e.g., QMD), we have, under H;:

W, % N (v, Zan),

where v := Ey, [Vq/( )%} € RP.

(i) vp = % 1 O, % v & 2nd moment convergence; (ii) E[G] = 0pxp
o Generalized WSR test: W] T LW, % HZ_I/QW + N(O, I,) H
@ The non-centrality parameter of generalized WSR test is ||ZGH ~/||2

Question: How does this compare with Hotelling’s T2 test?



@ Generalized Signs and Ranks

© Multivariate Distribution-free tests for Symmetry

@ Lower bounds on Asymptotic (Pitman) Relative Efficiency



@ Question: How to compare two consistent tests S, and T,?

e Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948),
Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]
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@ {Pplococrr: “smooth” (satisfies DQM) parametric family
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Test Hy: 0 =0 vs. Hi:0=A; A—0
Fix oo € (0,1) (level) and B € (a, 1) (power)
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Data: Xi,....X, <P,

{Py}ococre: “smooth” (satisfies DQM) parametric family

Test Hy: 0 =0 vs. Hi:0=A; A—0
Fix oo € (0,1) (level) and B € (a, 1) (power)

Let Na(T.) = Na denote the minimum number of samples s.t.:

EHD[TNA] =« and EHl[TNA] Z ,8



@ Question: How to compare two consistent tests S, and T,?

e Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948),
Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]

Data: Xi,....X, <P,

{Py}ococre: “smooth” (satisfies DQM) parametric family

Test Hy: 0 =0 vs. Hi:0=A; A—0
Fix oo € (0,1) (level) and B € (a, 1) (power)

Let Na(T.) = Na denote the minimum number of samples s.t.:

EHD[TNA] =« and EHl[TNA] Z ,8

The asymptotic (Pitman) efficiency of S, w.r.t. T, is given by

ARE(S,, T,) := lim %i((g




@ Question: How to compare two consistent tests S, and T,?

e Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948),
Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]

Data: Xi,....X, <P,

{Py}ococre: “smooth” (satisfies DQM) parametric family

Test Hy: 0 =0 vs. Hi:0=A; A—0
Fix oo € (0,1) (level) and B € (a, 1) (power)

Let Na(T.) = Na denote the minimum number of samples s.t.:

EHD[TNA] =« and EHl[TNA] Z ,8

@ The asymptotic (Pitman) efficiency of S, w.r.t. T, is given by
_ . Na(T)
ARE (Sn, To) = fim 0 5)

ARE (S,, T,,) can depend on « and (3, but in some cases they don't!



Hotelling 72:  nX'S 'X where
Spi= 23 (X = X)X —X)T B Sy = E(X - EX) (X —EX)".

Generalized WSR: W, ¥ LW,
o Xq,..., X, id f(-—0); f is G-symmetric
o {f(-—6)}: “smooth” (satisfies DQM) parametric family
o Consider Hp:0=0, vs. 0= 1= NG uw#0eRP

Hz—l/Z

2 T
Eag 2 = Eng [W(X)“ o0

Result: ARE (W, X,) = T




Hotelling 72:  nX'S 'X where
Spi= 23 (X = X)X —X)T B Sy = E(X - EX) (X —EX)".

Generalized WSR: W, ¥ LW,

o Xq,..., X, id f(-—0); f is G-symmetric

o {f(-—6)}: “smooth” (satisfies DQM) parametric family

o Consider HO 0= Op VS. -0 = w U ?é 0 € RP
— 271/2 2 T
Result: ARE (W, X,) = M v = Eg, [Vw(x)%xf)(x)]_

Some observations

@ Expression of ARE (W, X,) does not depend on o and 3

o ARE (W, X,) can depend on v [Deb, Bhattacharya & S. (2021)]



Hotelling 72:  nX'S 'X where
Spi= 23 (X = X)X —X)T B Sy = E(X - EX) (X —EX)".

Generalized WSR: W, ¥ LW,

o Xq,..., X, id f(-—0); f is G-symmetric

o {f(-—6)}: “smooth” (satisfies DQM) parametric family

o Consider HO 0= Op VS. -0 = w U ?é 0 € RP
— 271/2 2 T
Result: ARE (W, X,) = M v = Eg, [Vw(x)%xf)(x)]_

Some observations

@ Expression of ARE (W, X,) does not depend on o and 3
o ARE (W, X,) can depend on v [Deb, Bhattacharya & S. (2021)]

Can we lower bound ARE for sub-classes of multivariate dists., i.e.,

m]_i_n ARE (W,,X,) =77



Xi,...,X, beiid f(- —0) on RP;  f is density of a G-symmetric dist.

Gaussian case: f is density of N(0,, X x), where ¥x is p.d. (unknown)

Theorem [Huang & S. (2023+)]

: d
Suppose: (i) v, =237 0n, = v & 2nd moment convergence;

(ii) E[G] = 0,xp Where G ~ Uniform(G).
If GH ~ N(0,, /,), then

ARE (W, X,) = 1.



Xi,...,X, beiid f(- —0) on RP;  f is density of a G-symmetric dist.

Gaussian case: f is density of N(0,, X x), where ¥x is p.d. (unknown)

Theorem [Huang & S. (2023+)]

LS 6n 3 v & 2nd moment convergence;
(ii) E[G] = 0,xp Where G ~ Uniform(G).

Suppose: (i) v, =%

If GH ~ N(0,, /,), then
ARE (W, X,) = 1.
If GH has the spherical uniform distribution?, then

0.95, for p <5

ARE (W,, X,,) = K >
0.648, Vp

2k1 = 3/7 reduces to the classical ARE of the WSR test against the t-test.



Xi,...,X, beiid f(- —0) on RP;  f is density of a G-symmetric dist.

Gaussian case: f is density of N(0,, X x), where ¥x is p.d. (unknown)

Theorem [Huang & S. (2023+)]

LS 6n 3 v & 2nd moment convergence;
(ii) E[G] = 0,xp Where G ~ Uniform(G).

Suppose: (i) v, =%

If GH ~ N(0,, /,), then
ARE (W, X,) = 1.
If GH has the spherical uniform distribution?, then

0.95, for p <5

ARE (W,, X,,) = K >
0.648, Vp

2k1 = 3/7 reduces to the classical ARE of the WSR test against the t-test.

o Generalizes Chernoff & Savage (1958)
@ ARE can be arbitrarily large (can tend to +00) for heavy tailed dists.



Xi,...,X, beiid f(- —0) on RP; here f is density of a G-symmetric dist.
Independent components
Find = {f(- — 0)} has density f(zi,...,2,) = [[7, fi(z)

Theorem [Huang & S. (2023+)]

, d
Suppose: (i) v, := 23", 0n, = v & 2nd moment convergence;

(ii) E[G] = 0,xp Where G ~ Uniform(G).

If GH ~ Uniform(—1,1)P, then
min ARE (W, X,,) = 0.864.

ind



Xi,...,X, beiid f(- —0) on RP; here f is density of a G-symmetric dist.
Independent components
Find = {f(- — 0)} has density f(zi,...,2,) = [[7, fi(z)

Theorem [Huang & S. (2023+)]

, d
Suppose: (i) v, := 23", 0n, = v & 2nd moment convergence;

(ii) E[G] = 0,xp Where G ~ Uniform(G).

If GH ~ Uniform(—1,1)P, then
min ARE (W, X,,) = 0.864.

ind

If GH ~ N(0,, /,), then
min ARE (W, X,,) = 1.

Find



Xi,...,X, beiid f(- —0) on RP; here f is density of a G-symmetric dist.
Independent components
Find = {f(- — 0)} has density f(zi,...,2,) = [[7, fi(z)

Theorem [Huang & S. (2023+)]

, d
Suppose: (i) v, := 23", 0n, = v & 2nd moment convergence;

(ii) E[G] = 0,xp Where G ~ Uniform(G).

If GH ~ Uniform(—1,1)P, then
min ARE (W, X,,) = 0.864.

ind

If GH ~ N(0,, /,), then
min ARE (W, X,,) = 1.

Find

o Generalizes Hodges & Lehmann (1956), Chernoff & Savage (1958)

@ ARE can be arbitrarily large (can tend to +o0) for heavy tailed dists.



X1,..., X, beiid (- — ) on RP; here f is density of a G-symmetric dist.

Elliptically symmetric distributions

Feon = {f(-—0)} is class of elliptically symmetric distributions on R”, i.e.,

f(x) o (det(Tx))"2f (x Exx), for all x € R



X1,..., X, beiid (- — ) on RP; here f is density of a G-symmetric dist.
Elliptically symmetric distributions

Feon = {f(-—0)} is class of elliptically symmetric distributions on R”, i.e.,
f(x) o (det(Tx))"2f (x Exx), for all x € R

Theorem [Huang & S. (2023+)]

. d
Suppose: (i) v, =237 6h, — v & 2nd moment convergence;

(ii) E[G] = 0pxp where G ~ Uniform(G).

If GH ~ N(0,, 1,), then minz,,, ARE (W,,X,) = 1.



X1,..., X, beiid (- — ) on RP; here f is density of a G-symmetric dist.

Elliptically symmetric distributions

Feon = {f(-—0)} is class of elliptically symmetric distributions on R”, i.e.,
f(x) o (det(Tx))"2f (x Exx), for all x € R

Theorem [Huang & S. (2023+)]

Suppose: (i) v, == 2377 | O, % 1 & 2nd moment convergence;
(ii) E[G] = 0pxp where G ~ Uniform(G).

If GH ~ N(0,, 1,), then minz,,, ARE (W,,X,) = 1.

If GH has the spherical uniform distribution, then
min ARE (W, X,,) > 0.648.

Fen



X1,..., X, beiid (- — ) on RP; here f is density of a G-symmetric dist.

Elliptically symmetric distributions

Feon = {f(-—0)} is class of elliptically symmetric distributions on R”, i.e.,
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X1,..., X, beiid (- — ) on RP; here f is density of a G-symmetric dist.

Elliptically symmetric distributions

Feon = {f(-—0)} is class of elliptically symmetric distributions on R”, i.e.,
F(x) o (det(Tx)) 2 f (x"Zx'x), forall x € RP

Theorem [Huang & S. (2023+)]

Ly 1 On; % v & 2nd moment convergence;
(ii) E[G] = 0pxp Where G ~ Uniform(G).

Suppose: (i) v, ==+

If GH ~ N(0,, 1,), then minz,,, ARE (W,,X,) = 1.

If GH has the spherical uniform distribution, then
min ARE (W, X,,) > 0.648.

Fen

This generalizes the famous result of Chernoff and Savage (1958)

Similar lower bounds can also be obtained for other sub-classes of
multivariate distributions (e.g., the model for ICA)
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Distribution-free confidence set for the center of symmetry

@ X ~ P on RP has a G-symmetric distribution with center of
symmetry 6% (unknown) if

(X—6)LQ(X-6%), VQeg

o Goal: Given data Xy,...,X, iid P, find a distribution-free
confidence set for *

o ldea: Invert the collection of hypothesis tests

o Fix 8 € RP, and test
Hop: (X—0)Z Q(X—0), VQeg

using generalized Wilcoxon signed-rank test with {X; — 6}7_;

o C:={0:Hpp is accepted} — exact (1 — a) confidence set for 6*



n = 20 (Gaussian) n = 65 (Gaussian) n = 200 (Gaussian)
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Figure: Confidence sets for 8" as the sample size n varies, obtained from (i)
normal data (first row) and (ii) data from multivariate t-distribution with 1
degree of freedom (second row), for G corresponding to spherical symmetry.
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@ Framework for distribution-free testing for multivariate symmetry
@ Developed notions of generalized signs, ranks and signed-ranks
@ Proposed generalizations of sign and Wilcoxon signed-rank tests

@ Proposed tests are: (i) distribution-free and have good efficiency, (ii)
computationally feasible, (iii) more powerful for distributions with
heavy tails, and (iv) robust to outliers and contamination

@ Can develop universally consistent, distribution-free tests for
multivariate symmetry using kernel methods (ongoing work)

Thank you very much!

Questions?



Question: How to generate

Sa(Xi) = S(Xi, Ra(X;)) := argmin | QT X; — R,(X;)|I?
Qeg
when it is not unique?

Spherical symmetry G = O(p)
Let

S(x,h) ;= argmin |Q@ "x — h||?.
Qeg

If h,x #0, let w= ﬁ and v = L” Then, S(x, h) should be chosen

IIx
uniformly from:

{QeO(p): v=Qw}={w' + VUWT: UecO(p-1)},

where V and W are p x (p — 1) matrices such that
VIV=WTW=1l_;, VIv=WTw=0.
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