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Testing for symmetry

Data: {Xi}ni=1 iid X ∼ P (abs. cont.) on R

Test the hypothesis of symmetry, i.e.,

H0 : X
d
= −X versus H1 : not H0

Distribution-free testing for symmetry

Sign test [Arbuthnot (1710)]: “...the first use of significance tests...”
(first nonparametric test)

Wilcoxon signed-rank (WSR) test [Wilcoxon (1945)]: Created the
field of (classical) nonparametrics

Arises with paired (matched) data; when normality can be violated

Long history: Arbuthnot (1710), Wilcoxon (1945), Hodges & Lehmann
(1956), Chernoff & Savage (1958), McWilliams (1990) ...

Goal: Develop distribution-free testing for multivariate symmetry
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Multivariate symmetry

There are many notions of symmetry in Rp, for p ≥ 2

Central: Test H0 : X d
= −X

Sign: Test H0 : X d
= DX, D = diag(±1, . . . ,±1) ∈ Rp×p

Spherical: Test H0 : X d
= QX, Q ∈ Rp×p is any orthogonal matrix

O(p): group of all orthogonal matrices on Rp×p

G: compact subgroup of O(p)

Goal: Develop distribution-free testing for G-symmetry, i.e.,

H0 : X d
= QX ∀Q ∈ G, versus H1 : not H0

Long history: Weyl (1952), Hodges (1955), Watson (1961), Bickel
(1965), Randles (1989), Baringhaus (1991), Chaudhuri & Sengupta
(1993), Beran & Millar (1997), Marden (1999), Zuo & Serfling (2000),
Hallin & Paindaveine (2002), Oja (2010), Serfling (2014), ...
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Data: X1, . . . ,Xn iid X ∼ P (X abs. cont.) on R (i.e., p = 1)

Goal: Distribution-free testing of H0 : X
d
= −X

Sign test [Arbuthnot (1710)]

Sign: Si :=

{
+1 if Xi ≥ 0
−1 if Xi < 0

Under H0, Si
iid∼ ±1 w.p. 1

2

Rejects H0 when
∑n

i=1 Si is significantly different from 0

Under H0: 1
2

∑n
i=1(Si + 1) ∼ Bin(n, 1

2 )

Distribution-freeness: The null distribution of
∑n

i=1 Si is universal
— does not depend on the underlying distribution of the data

Leads to an exact and distribution-free test valid for all sample sizes

Issue: Actually testing for H0 : P(X ≥ 0) = 1
2 ; does not take into

account the magnitude of the Xi ’s



Data: X1, . . . ,Xn iid X ∼ P (X abs. cont.) on R (i.e., p = 1)

Goal: Distribution-free testing of H0 : X
d
= −X

Sign test [Arbuthnot (1710)]

Sign: Si :=

{
+1 if Xi ≥ 0
−1 if Xi < 0

Under H0, Si
iid∼ ±1 w.p. 1

2

Rejects H0 when
∑n

i=1 Si is significantly different from 0

Under H0: 1
2

∑n
i=1(Si + 1) ∼ Bin(n, 1

2 )

Distribution-freeness: The null distribution of
∑n

i=1 Si is universal
— does not depend on the underlying distribution of the data

Leads to an exact and distribution-free test valid for all sample sizes

Issue: Actually testing for H0 : P(X ≥ 0) = 1
2 ; does not take into

account the magnitude of the Xi ’s



Data: X1, . . . ,Xn iid X ∼ P (X abs. cont.) on R (i.e., p = 1)

Goal: Distribution-free testing of H0 : X
d
= −X

Sign test [Arbuthnot (1710)]

Sign: Si :=

{
+1 if Xi ≥ 0
−1 if Xi < 0

Under H0, Si
iid∼ ±1 w.p. 1

2

Rejects H0 when
∑n

i=1 Si is significantly different from 0

Under H0: 1
2

∑n
i=1(Si + 1) ∼ Bin(n, 1

2 )

Distribution-freeness: The null distribution of
∑n

i=1 Si is universal
— does not depend on the underlying distribution of the data

Leads to an exact and distribution-free test valid for all sample sizes

Issue: Actually testing for H0 : P(X ≥ 0) = 1
2 ; does not take into

account the magnitude of the Xi ’s



Wilcoxon signed-rank test [Wilcoxon (1945)]

Let R+
i be the absolute rank of Xi , i.e., the rank of |Xi | in the

sample of absolute values |X1|, . . . , |Xn|

Rejects H0 when
∑n

i=1 SiR
+
i is significantly different from 0

Under H0, the distribution of
∑n

i=1 SiR
+
i is completely known

Distribution-freeness(
R+

1 , . . . ,R
+
n

)
are uniform over all n! permutations of

{ 1
n , . . . ,

n
n

}
(S1, . . . ,Sn) independent of

(
R+

1 , . . . ,R
+
n

)
under H0 : X

d
= −X

Leads to an exact and distribution-free test valid for all sample sizes

Consistent against location shift alternatives: X1, . . . ,Xn iid f (· − θ);
here f (unknown) is symmetric (H0 : X

d
= −X ⇔ H0 : θ = 0)

Powerful for heavy-tailed data, robust to outliers & contamination
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Properties of sign and WSR tests when p = 1 [van der Vaart (1998)]:

1 Distribution-freeness:
Si ’s are iid uniform over {−1, 1}, under H0 : X

d
= −X(

R+
1 , . . . ,R

+
n

)
are uniform over all n! permutations of

{ 1
n
, . . . , n

n

}
2 Independence: (S1, . . . ,Sn) independent of

(
R+

1 , . . . ,R
+
n

)
under H0

3 Asymptotic normality: Both
∑n

i=1 Si and
∑n

i=1 SiR
+
i are

asymptotically normal under H0

4 Asymptotic relative efficiency (ARE) for location shift alternatives

Hodges-Lehmann (1956): ARE of WSR test w.r.t. t-test ≥ 0.864

Chernoff-Savage (1958): ARE of a Gaussian score transformed WSR
test against the t-test is lower bounded by 1

5 Obtain distribution-free confidence sets for the “center” of X

Question: Can we derive tests with analogous properties when p > 1?
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The distribution-free nature of signs and absolute ranks (under H0) were
crucial to developing distribution-free inference for symmetry when p = 1

Question: Can we define distribution-free (generalized) signs and ranks
and develop distribution-free multivariate tests for G-symmetry?

(Multivariate) ranks defined via optimal transport (OT) [Hallin (2017)]
lead to distribution-free testing

Chernozhukov et al. (2017), De Valk & Segers (2018), Hallin, del Barrio,
Cuesta-Albertos, Matrán (2018), Shi, Drton & Han (2019), Deb &
S. (2019), Ghosal & S. (2019), Hallin, La Vecchia & Liu (2019), Hallin,
Hlubinka, & Hudecová (2020), Deb, Ghosal & S. (2020), Shi, Hallin,
Drton & Han (2020), Deb, Bhattacharya & S. (2021) ...
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Outline

1 Generalized Signs and Ranks
Connection to Optimal Transport
Generalized Signs, Ranks and Signed-ranks
Population Analogues

2 Multivariate Distribution-free tests for Symmetry
Generalized Sign test and Wilcoxon Signed-rank test
Lower bounds on Asymptotic (Pitman) Relative Efficiency
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Optimal Transport: Monge’s problem

Gaspard Monge (1781): What is the cheapest way to transport a pile of
sand to cover a sinkhole?

Goal: inf
T:T(X)∼ν

EP [c(X,T(X))] X ∼ P

P (“data” dist.) and ν (“reference” dist.)

c(x, y) ≥ 0: cost of transporting x to y (e.g., c(x, y) = ‖x− y‖2)

T transports P to ν: T#P = ν (i.e., T(X) ∼ ν where X ∼ P)



Sample Ranks as Optimal Transport (OT) maps
Data: X1, . . . ,Xn iid P
(cont. dist.) on R

Let Pn := 1
n

n∑
i=1

δXi and

νn := 1
n

n∑
i=1

δ i
n

x(1) x(2) x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9) x(10)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Data points

Empirical ranks

Sample rank map: R̂ : {X1,X2, . . . ,Xn} −→ { 1
n ,

2
n , . . . ,

n
n} solves

i.e., R̂ := arg min
T :T#Pn=νn

1
n

n∑
i=1

|Xi − T (Xi )|2

= arg max
T :T#Pn=νn

1
n

n∑
i=1

X(i)T (X(i))

σ̂ := arg min
σ∈Sn

1
n

∑n
i=1

∣∣Xσ(i) − i
n

∣∣2 where Sn is the set of all

permutations of {1, . . . , n}

Sample rank map: R̂(Xi ) = σ̂−1(i)
n
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n ,

2
n , . . . ,

n
n} solves

i.e., R̂ := arg min
T :T#Pn=νn

1
n

n∑
i=1

|Xi − T (Xi )|2 = arg max
T :T#Pn=νn

1
n
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i=1

X(i)T (X(i))

σ̂ := arg min
σ∈Sn

1
n

∑n
i=1

∣∣Xσ(i) − i
n

∣∣2 where Sn is the set of all

permutations of {1, . . . , n}

Sample rank map: R̂(Xi ) = σ̂−1(i)
n



Multivariate Ranks as OT maps in Rp (p ≥ 1)

Data: X1, . . . ,Xn iid P (abs. cont.); ν ∼ Unif([0, 1]p) or N(0, Ip)

Empirical rank map R̂: {X1, . . . ,Xn} → {h1, . . . ,hn} ⊂ [0, 1]d —
sequence of “uniform-like” points (or quasi-Monte Carlo sequence)

(1,1)(0,1)

(0,0) (1,0)

Data points

Empirical ranks

Sample multivariate rank map [Hallin (2017), Deb & S. (2019)] is
defined as the OT map s.t.

σ̂ := arg min
σ∈Sn

1
n

n∑
i=1

‖Xσ(i) − hi‖2; R̂(Xi ) := hσ̂−1(i)

Assignment problem (can be reduced to a linear program — O(n3))



Multivariate Ranks as OT maps in Rp (p ≥ 1)

Data: X1, . . . ,Xn iid P (abs. cont.); ν ∼ Unif([0, 1]p) or N(0, Ip)

Empirical rank map R̂: {X1, . . . ,Xn} → {h1, . . . ,hn} ⊂ [0, 1]d —
sequence of “uniform-like” points (or quasi-Monte Carlo sequence)

(1,1)(0,1)

(0,0) (1,0)

Data points

Empirical ranks

Sample multivariate rank map [Hallin (2017), Deb & S. (2019)] is
defined as the OT map s.t.

σ̂ := arg min
σ∈Sn

1
n

n∑
i=1

‖Xσ(i) − hi‖2; R̂(Xi ) := hσ̂−1(i)

Assignment problem (can be reduced to a linear program — O(n3))



1 Generalized Signs and Ranks
Connection to Optimal Transport
Generalized Signs, Ranks and Signed-ranks
Population Analogues

2 Multivariate Distribution-free tests for Symmetry
Generalized Sign test and Wilcoxon Signed-rank test
Lower bounds on Asymptotic (Pitman) Relative Efficiency



Signs and absolute ranks via OT when p = 1

Data: X1, . . . ,Xn iid P (cont. dist.) on R

H0 : X
d
= QX ∀Q ∈ G = {+1,−1}

Sign test:
∑n

i=1 Si [recall: Si := sign(Xi )]
WSR test:

∑n
i=1 SiR

+
i

Question: Can the signs and absolute ranks be obtained via OT?

Consider the optimization problem:

(Q̂, σ̂) := arg min

{
n∑

i=1

∣∣∣∣qiXσ(i) −
i

n

∣∣∣∣2 : Q = (qi )
n
i=1 ∈ {±1}n, σ ∈ Sn

}
The signs and absolute ranks are then given by:

Si = Q̂σ̂−1(i), R+
i =

σ̂−1(i)

n

The signed-rank for Xi is then defined as SiR
+
i
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Data: X1, . . . ,Xn iid P (abs. cont.) on Rp (p ≥ 1); G ⊂ O(p)

Consider the following optimization problem:

(Q̂, σ̂) := arg min

{
n∑

i=1

‖Q>i Xσ(i) − hi‖2 : Qi ∈ G, σ ∈ Sn

}
(?)

where {h1, . . . ,hn} is discretization of the reference dist. ν

Question: Can the above be seen as an OT problem?

Define the cost function:

c(x,h) := min
Q∈G
‖Q>x− h‖2, for x,h ∈ Rp.

Monge’s problem (OT): (?) = inf
T:T#Pn=νn

1
n

∑n
i=1 c(Xi ,T(Xi ))

where T transports Pn := 1
n

n∑
i=1

δXi to νn := 1
n

n∑
i=1

δhi
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(Q̂, σ̂) := arg min
{ n∑

i=1

‖Q>i Xσ(i) − hi‖2 : Qi ∈ G, σ ∈ Sn
}

(?)

Figure: Data points (“•”) and their ranks (“+”). Here G = {−Ip, Ip}.
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(Q̂, σ̂) := arg min
{ n∑

i=1

‖Xσ(i) − Qihi‖2 : Qi ∈ G, σ ∈ Sn
}

Define the generalized sign and generalized rank as:

Sn(Xi ) := Q̂σ̂−1(i), Rn(Xi ) := hσ̂−1(i)

The generalized signed-rank of Xi is Sn(Xi )Rn(Xi ) — it is the
closest point to Xi in the orbit of Rn(Xi ) (i.e., {QRn(Xi ) : Q ∈ G})
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(Q̂, σ̂) := arg min
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Define the generalized sign and generalized rank as:

Sn(Xi ) := Q̂σ̂−1(i), Rn(Xi ) := hσ̂−1(i)

The generalized signed-rank of Xi is Sn(Xi )Rn(Xi ) — it is the
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Uniqueness of generalized ranks & signed-ranks [Huang & S. (2023+)]

The generalized rank — Rn(Xi ) — is a.s. unique,a ∀i ∈ [n]

The signed-rank — Sn(Xi )Rn(Xi ) — is a.s. unique, ∀i ∈ [n]

Recall: the signed-rank is the point in the orbit of Rn(Xi ) (i.e.,
{QRn(Xi ) : Q ∈ G}) that is closest to Xi

aWe assume that no two hj ’s lie on a same orbit of G.
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Figure: Data point (“•”), its rank (“+”) and its signed-rank (“?”).
Left: G = {−Ip, Ip} (central sym.). Center: G corresponds to sign symmetry.
Right: G = O(2); the signed-rank (“?”) is the (unique) point in
{x ∈ R2 : ‖x‖ = 2} that is closest to the data point.
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{x ∈ R2 : ‖x‖ = 2} that is closest to the data point.
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The sign Sn(Xi ) = arg min
Q∈G

‖Xi − QRn(Xi )‖2 may be not unique

Result If G is the group corresponding to central/sign symmetry, then the
(generalized) sign Sn(Xi ) is unique a.s.
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Figure: Data point (“•”), its rank (“+”) and its signed-rank (“?”). Left: Here
G = {−Ip, Ip} and sign is unique! Right: Here G = O(2) and sign is not unique!

Uniform Can choose Sn(Xi ) ‘uniformly’ over all possible minimizing values
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Q∈G
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Result If G is the group corresponding to central/sign symmetry, then the
(generalized) sign Sn(Xi ) is unique a.s.
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Uniform Can choose Sn(Xi ) ‘uniformly’ over all possible minimizing values



Sn(Xi ) = arg min
Q∈G

‖Q>Xi − Rn(Xi )‖2 = arg min
Q∈G

‖Xi − QRn(Xi )‖2

Question: When can we identify the (generalized) sign?

G acts freely if for x ∈ Rp and Q1,Q2 ∈ G,

Q1x = Q2x ⇒ Q1 = Q2

(i.e., for any x in Rp, we can identify the unique element in G that
maps x 7→ Qx)

Free group action is available for central / sign symmetry

For infinite groups G we may not have a free group action

Proposition [Huang & S. (2023+)]

Suppose that G acts freely and suppose no two hj ’s lie on a same orbit of
G. Then Sn(·) is a.s. unique.
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Computational complexity

Cost function: ci,j ≡ c(Xi ,hj) := min
Q∈G
‖Q>Xi − hj‖2, ∀i , j ∈ [n]

OT problem: min
{∑n

i=1 ci,σ(i) : σ ∈ Sn
}
— assignment problem

If G is a finite group then ci,j can be computed in O(1) time

{Rn(Xi )}ni=1 can be found by solving the assignment problem of
{X1, . . . ,Xn} to {h1, . . . ,hn} under cost c(·, ·) — complexity O(n3)

Sign: Sn(Xi ) ≡ Sn(Xi ,Rn(Xi )) := arg min
Q∈G

‖Q>Xi − Rn(Xi )‖2

For some group G, the computation can be much faster!
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Spherical symmetry (G = O(p))

The computation time of the ranks (and signed-ranks): O(n log n)

c(x,h) = ‖x‖2 − 2maxQ∈G x>Qh + ‖h‖2 =
(
‖x‖ − ‖h‖

)2

If Xi has the j-th largest Euclidean norm among X1, . . . ,Xn and
‖h1‖ < . . . < ‖hn‖, then Xi will have hj as its rank

The signed-rank of Xi is simply the vector in the direction of Xi

with length ‖Rn(Xi )‖, i.e.,

Sn(Xi )Rn(Xi ) = ‖Rn(Xi )‖
Xi

‖Xi‖
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Given X1, . . . ,Xn iid P on Rp (p ≥ 1); G ⊂ O(p)

{h1, . . . ,hn} is discretization of the reference dist. ν

OT: (Q̂, σ̂) := arg min
{∑n

i=1‖Q>i Xσ(i) − hi‖2 : Qi ∈ G, σ ∈ Sn
}

Define the generalized sign and generalized rank as:

Sn(Xi ) := Q̂σ̂−1(i), Rn(Xi ) := hσ̂−1(i)

Theorem [Huang & S. (2023+)]

Result: (Rn(X1), . . . ,Rn(Xn)) is uniformly distributed over the set of all
n! permutations of {h1, . . . ,hn}

Under H0 : X d
= QX ∀Q ∈ G,

1 Sn(X1), . . . ,Sn(Xn) are iid Uniform(G)

2 (Rn(X1), . . . ,Rn(Xn)) and (Sn(X1), . . . ,Sn(Xn)) are independent

Generalizes the distribution-freeness of signs and ranks beyond p = 1!

(Generalized) Wilcoxon signed-rank test: Wn :=
∑n

i=1 Sn(Xi )Rn(Xi )
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1 Generalized Signs and Ranks
Connection to Optimal Transport
Generalized Signs, Ranks and Signed-ranks
Population Analogues

2 Multivariate Distribution-free tests for Symmetry
Generalized Sign test and Wilcoxon Signed-rank test
Lower bounds on Asymptotic (Pitman) Relative Efficiency



X ∼ P (abs. cont.) on Rp; ν: reference dist.; G ⊂ O(p)

Population OT problem [Kantorovich’s relaxation]

inf
(X,H):X∼P,H∼ν

E [c(X,H)] , c(x,h) := min
Q∈G
‖Q>x− h‖2

and (X,H) runs over all joint dist. with marginals X ∼ P and H ∼ ν.

Assumption (A) (On ν and G): ∃ B ⊂ Rp with ν(B) = 1 such that, for
any h ∈ Rp, the orbit {Qh : Q ∈ G} intersects B at one point at most.

Central symmetry: h and −h cannot both be in B; we can take
B = (0,∞)× Rp−1; when p = 1, B = (0, 1) and ν = Unif(0,1)

Sign symmetry: We can take B = (0,∞)p

Spherical symmetry (G = O(p)): We can take B = (0,∞)×{0}p−1;
thus ν is not abs. cont. here
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Central symmetry: h and −h cannot both be in B; we can take
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Sign symmetry: We can take B = (0,∞)p
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Quotient map for cost c(x,h) := minQ∈G ‖x− Qh‖2

Orbit of h is {Qh : Q ∈ G}; every point in an orbit has the same cost

Image of group action of G on B: GB = {Qh : Q ∈ G,h ∈ B} ⊂ Rp

For any point in GB, quotient map picks the representative point in B:

q : GB → B where q(Qh) = h for h ∈ B,Q ∈ G.

If Assumption (A) holds, then q(·) is well-defined
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Figure: Shows the action of the quotient map q on: (i) (Left) 3 points when G
corresponds to the group for sign symmetry, and (ii) (Right) on 2 points for G
corresponding to the group for spherical symmetry (here q(x) = (‖x‖, 0))
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Population generalized rank map [Huang & S. (2023+)]

Let X ∼ P (abs. cont.), H ∼ ν and suppose Assumption (A) holds.

Then, ∃ (P-a.e.) unique map R : Rp → Rp that solves the OT problem
of transporting P to ν (R#P = ν), i.e., Monge’s problem =
Kantorovich’s relaxation:

inf
(X,H)∼π∈Π(P,ν)

Eπ [c(X,H)] = EP [c(X,R(X))] , c(x,h) := min
Q∈G
‖x− Qh‖2

Even if P and ν do not have second order moments, the following hold:

(i) ∃ a P-a.e. unique map R : Rp → Rp s.t. (X,R(X)) has the unique
distribution in Π(P, ν) with a c-cyclically monotone support.

(ii) ∃ a l.s.c. convex function ψ such that R(x) = q(∇ψ(x)) (P-a.e.)
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X ∼ P (abs. cont.), H ∼ ν and suppose Assumption (A) holds.

Cost function: c(x,h) := minQ∈G ‖x− Qh‖2

Population rank and signed-rank maps [Huang & S. (2023+)]

(i) ∃ a P-a.e. unique map R : Rp → Rp s.t. (X,R(X)) has the unique
distribution in Π(P, ν) with a c-cyclically monotone support.

(ii) ∃ a l.s.c. convex function ψ such that R(x) = q(∇ψ(x)) (P-a.e.)

(iii) Here, ∇ψ(·) is the P-a.e. unique gradient of a convex function
s.t. ∇ψ(GX) ∼ GH, where G ∼ Uniform(G) is indep. of X & H

(iv) ∇ψ(X)
a.s.
= S(X,R(X))R(X) — the (generalized) signed-rank; here

S(x,h) := arg min
Q∈G

‖x− Qh‖2

(v) ∇ψ(·) is equivariant under the group action of G, i.e.,

∇ψ(Qx) = Q∇ψ(x) for all Q ∈ G, and x (a.e.)
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Convergence of generalized signs, ranks and signed-ranks

Fix some k > 0. Assume: (i) νn := 1
n

∑n
i=1 δhi

d→ ν as n→∞;
(ii) for Hn ∼ νn, E[‖Hn‖k ]→ E[‖H‖k ], as n→∞.

1 (Convergence of signed-ranks)

1
n

n∑
i=1

‖Sn(Xi )Rn(Xi )−∇ψ(Xi )‖k
a.s.−→ 0.

2 (Convergence of ranks) If q(·) is continuous, then

1
n

n∑
i=1

‖Rn(Xi )− R(Xi )‖k
a.s.−→ 0.

3 (Convergence of signs) If G acts freelya on GB, then

1
n

n∑
i=1

‖Sn(Xi )− S(Xi ,R(Xi ))‖kF
a.s.−→ 0,

where S(x,h) := arg min
Q∈G

‖Q>x− h‖2; ‖ · ‖F is the Frobenius norm.

aG acts freely on GB, if for h ∈ B and Q ∈ G, Qh = h ⇒ Q = Ip .
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Lower bounds on Asymptotic (Pitman) Relative Efficiency



Data: {Xi}ni=1 iid X ∼ P (abs. cont.) on Rp; test H0 : X d
= QX ∀Q ∈ G

Under H0, the generalized signs Sn(X1), . . . ,Sn(Xn) are iid Uniform(G)

Generalized sign test: When G is finite

Suppose G = {g1, . . . , gm} is a finite group of size m which acts freely.
Let

Yj :=
n∑

i=1

1(Sn(Xi ) = gj), j = 1, . . . ,m.

Under H0,
(Y1, . . . ,Ym) ∼ Multinomial

(
n,

1
m
1m
)
.

Distribution-free: Generalizes the usual sign test beyond p = 1!

If m is large, take generalized sign test based on Vn := 1√
n

∑n
i=1 Sn(Xi )

Central symmetry: 1
p‖Vn‖2F

d→ χ2
1

Sign symmetry: ‖Vn‖2F
d→ χ2

p

Spherical symmetry: p‖Vn‖2F
d→ χ2

p2



Data: {Xi}ni=1 iid X ∼ P (abs. cont.) on Rp; test H0 : X d
= QX ∀Q ∈ G

Under H0, the generalized signs Sn(X1), . . . ,Sn(Xn) are iid Uniform(G)

Generalized sign test: When G is finite

Suppose G = {g1, . . . , gm} is a finite group of size m which acts freely.
Let

Yj :=
n∑

i=1

1(Sn(Xi ) = gj), j = 1, . . . ,m.

Under H0,
(Y1, . . . ,Ym) ∼ Multinomial

(
n,

1
m
1m
)
.

Distribution-free: Generalizes the usual sign test beyond p = 1!

If m is large, take generalized sign test based on Vn := 1√
n

∑n
i=1 Sn(Xi )

Central symmetry: 1
p‖Vn‖2F

d→ χ2
1

Sign symmetry: ‖Vn‖2F
d→ χ2

p

Spherical symmetry: p‖Vn‖2F
d→ χ2

p2



Generalized Wilcoxon Signed-rank test

The generalized Wilcoxon signed-rank statistic is

Wn :=
1√
n

n∑
i=1

Sn(Xi )Rn(Xi )

Wn is distribution-free under H0 : X d
= QX ∀Q ∈ G

Asymptotic normality of Wn [Huang & S. (2023+)]

Suppose: (i) νn := 1
n

∑n
i=1 δhi

d→ ν & 2nd moment convergence;
(ii) E[G ] = 0p×p where G ∼ Uniform(G);
Then:

Wn
d→ N (0p,ΣGH) ,

where ΣGH be the covariance matrix of GH, with G ⊥⊥ H (here H ∼ ν).

The Wilcoxon signed-rank test rejects H0 for

W>n Σ−1
GHWn ≥ cα

cα is the universal cut-off; well-approximable by the χ2
p-quantile



Generalized Wilcoxon Signed-rank test

The generalized Wilcoxon signed-rank statistic is

Wn :=
1√
n

n∑
i=1

Sn(Xi )Rn(Xi )

Wn is distribution-free under H0 : X d
= QX ∀Q ∈ G

Asymptotic normality of Wn [Huang & S. (2023+)]

Suppose: (i) νn := 1
n

∑n
i=1 δhi

d→ ν & 2nd moment convergence;
(ii) E[G ] = 0p×p where G ∼ Uniform(G);
Then:

Wn
d→ N (0p,ΣGH) ,

where ΣGH be the covariance matrix of GH, with G ⊥⊥ H (here H ∼ ν).

The Wilcoxon signed-rank test rejects H0 for

W>n Σ−1
GHWn ≥ cα

cα is the universal cut-off; well-approximable by the χ2
p-quantile



Generalized Wilcoxon Signed-rank test

The generalized Wilcoxon signed-rank statistic is

Wn :=
1√
n

n∑
i=1

Sn(Xi )Rn(Xi )

Wn is distribution-free under H0 : X d
= QX ∀Q ∈ G

Asymptotic normality of Wn [Huang & S. (2023+)]

Suppose: (i) νn := 1
n

∑n
i=1 δhi

d→ ν & 2nd moment convergence;
(ii) E[G ] = 0p×p where G ∼ Uniform(G);
Then:

Wn
d→ N (0p,ΣGH) ,

where ΣGH be the covariance matrix of GH, with G ⊥⊥ H (here H ∼ ν).

The Wilcoxon signed-rank test rejects H0 for

W>n Σ−1
GHWn ≥ cα

cα is the universal cut-off; well-approximable by the χ2
p-quantile



The generalized Wilcoxon signed-rank statistic is

Wn :=
1√
n

n∑
i=1

Sn(Xi )Rn(Xi )

Test for G-symmetry: H0 : X d
= QX ∀Q ∈ G, vs. H1 : not H0

Consistency of WSR for testing G-symmetry [Huang & S. (2023+)]

Assume: (i) νn := 1
n

∑n
i=1 δhi

d→ ν; (ii) 1st moment convergence
Then, the Wilcoxon signed-rank test which rejects H0 for

W>n Σ−1
GHWn ≥ cα

is consistent against all alternatives for which

E[∇ψ(X)] 6= 0.a

aE[∇ψ(X)] 6= 0 holds for location shift models if ψ(·) is strictly convex & −Ip ∈ G.



Asymptotics under local alternatives [Huang & S. (2023+)]

Let X1, . . . ,Xn be iid f (· − θ) on Rp; here f is G-symmetric distribution.
Consider testing:

H0 : θ = 0p versus H1 : θ =
µ√
n

; µ 6= 0p ∈ Rp

Under ‘suitable’ assumptionsa and standard regularity conditions of the
parametric family {f (· − θ)}θ∈Rp (e.g., QMD), we have, under H1:

Wn
d→ N (γ,ΣGH),

where γ := EH0

[
∇ψ(X)µ

>∇f (X)
f (X)

]
∈ Rp.

a(i) νn := 1
n

∑n
i=1 δhi

d→ ν & 2nd moment convergence; (ii) E[G ] = 0p×p

Generalized WSR test: W>n Σ−1
GHWn

d→
∥∥∥Σ
−1/2
GH γ + N(0, Ip)

∥∥∥2

The non-centrality parameter of generalized WSR test is ‖Σ−1/2
GH γ‖2

Question: How does this compare with Hotelling’s T 2 test?
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Question: How to compare two consistent tests Sn and Tn?
Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948),
Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]

Data: X1, . . . ,Xn
iid∼ Pθ

{Pθ}θ∈Θ⊂Rp : “smooth” (satisfies DQM) parametric family

Test H0 : θ = 0 vs. H1 : θ = ∆; ∆→ 0
Fix α ∈ (0, 1) (level) and β ∈ (α, 1) (power)

Let N∆(T·) ≡ N∆ denote the minimum number of samples s.t.:

EH0 [TN∆
] = α and EH1 [TN∆

] ≥ β

The asymptotic (Pitman) efficiency of Sn w.r.t. Tn is given by

ARE (Sn,Tn) := lim
∆→0

N∆(T·)

N∆(S·)

ARE (Sn,Tn) can depend on α and β, but in some cases they don’t!
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ARE (Sn,Tn) can depend on α and β, but in some cases they don’t!



Hotelling T 2: nX̄>S−1
n X̄ where

Sn := 1
n−1

∑n
i=1(Xi − X̄)(Xi − X̄)>

p→ ΣX := E (X− EX) (X− EX)>.

Generalized WSR: W>n Σ−1
GHWn

X1, . . . ,Xn
iid∼ f (· − θ); f is G-symmetric

{f (· − θ)}: “smooth” (satisfies DQM) parametric family
Consider H0 : θ = 0p vs. H1 : θ = µ√

n
; µ 6= 0 ∈ Rp

Result: ARE (Wn, X̄n) =
‖Σ−1/2

GH γ‖2

‖Σ−1/2
X µ‖2

; γ = EH0

[
∇ψ(X)µ

>∇f (X)
f (X)

]
.

Some observations

Expression of ARE (Wn, X̄n) does not depend on α and β

ARE (Wn, X̄n) can depend on ν [Deb, Bhattacharya & S. (2021)]

Can we lower bound ARE for sub-classes of multivariate dists., i.e.,

min
F

ARE (Wn, X̄n) = ??
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X1, . . . ,Xn be iid f (· − θ) on Rp; f is density of a G-symmetric dist.

Gaussian case: f is density of N(0p,ΣX ), where ΣX is p.d. (unknown)

Theorem [Huang & S. (2023+)]

Suppose: (i) νn := 1
n

∑n
i=1 δhi

d→ ν & 2nd moment convergence;
(ii) E[G ] = 0p×p where G ∼ Uniform(G).

If GH ∼ N(0p, Ip), then

ARE (Wn, X̄n) = 1.

If GH has the spherical uniform distributiona, then

ARE (Wn, X̄n) = κp ≥

{
0.95, for p < 5
0.648, ∀ p

aκ1 = 3/π reduces to the classical ARE of the WSR test against the t-test.

Generalizes Chernoff & Savage (1958)
ARE can be arbitrarily large (can tend to +∞) for heavy tailed dists.
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X1, . . . ,Xn be iid f (· − θ) on Rp; here f is density of a G-symmetric dist.

Independent components

Find = {f (· − θ)} has density f (z1, . . . , zp) =
∏p

i=1 fi (zi )

Theorem [Huang & S. (2023+)]

Suppose: (i) νn := 1
n

∑n
i=1 δhi

d→ ν & 2nd moment convergence;
(ii) E[G ] = 0p×p where G ∼ Uniform(G).

If GH ∼ Uniform(−1, 1)p, then

min
Find

ARE (Wn, X̄n) = 0.864.

If GH ∼ N(0p, Ip), then

min
Find

ARE (Wn, X̄n) = 1.

Generalizes Hodges & Lehmann (1956), Chernoff & Savage (1958)

ARE can be arbitrarily large (can tend to +∞) for heavy tailed dists.
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X1, . . . ,Xn be iid f (· − θ) on Rp; here f is density of a G-symmetric dist.

Elliptically symmetric distributions

Fell = {f (· − θ)} is class of elliptically symmetric distributions on Rp, i.e.,

f (x) ∝ (det(ΣX ))−
1
2 f
(
x>Σ−1

X x
)
, for all x ∈ Rp

Theorem [Huang & S. (2023+)]

Suppose: (i) νn := 1
n

∑n
i=1 δhi

d→ ν & 2nd moment convergence;
(ii) E[G ] = 0p×p where G ∼ Uniform(G).

If GH ∼ N(0p, Ip), then minFell ARE (Wn, X̄n) = 1.

If GH has the spherical uniform distribution, then

min
Fell

ARE (Wn, X̄n) ≥ 0.648.

This generalizes the famous result of Chernoff and Savage (1958)

Similar lower bounds can also be obtained for other sub-classes of
multivariate distributions (e.g., the model for ICA)
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Distribution-free confidence set for the center of symmetry

X ∼ P on Rp has a G-symmetric distribution with center of
symmetry θ∗ (unknown) if

(X− θ∗)
d
= Q(X− θ∗), ∀Q ∈ G

Goal: Given data X1, . . . ,Xn iid P, find a distribution-free
confidence set for θ∗

Idea: Invert the collection of hypothesis tests

Fix θ ∈ Rp, and test

H0,θ : (X− θ)
d
= Q(X− θ), ∀Q ∈ G

using generalized Wilcoxon signed-rank test with {Xi − θ}ni=1

C := {θ : H0,θ is accepted} — exact (1− α) confidence set for θ∗
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Figure: Confidence sets for θ∗ as the sample size n varies, obtained from (i)
normal data (first row) and (ii) data from multivariate t-distribution with 1
degree of freedom (second row), for G corresponding to spherical symmetry.



Summary

Framework for distribution-free testing for multivariate symmetry

Developed notions of generalized signs, ranks and signed-ranks

Proposed generalizations of sign and Wilcoxon signed-rank tests

Proposed tests are: (i) distribution-free and have good efficiency, (ii)
computationally feasible, (iii) more powerful for distributions with
heavy tails, and (iv) robust to outliers and contamination

Can develop universally consistent, distribution-free tests for
multivariate symmetry using kernel methods (ongoing work)

Thank you very much!

Questions?
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Question: How to generate

Sn(Xi ) ≡ S(Xi ,Rn(Xi )) := arg min
Q∈G

‖Q>Xi − Rn(Xi )‖2

when it is not unique?

Spherical symmetry G = O(p)

Let
S(x,h) := arg min

Q∈G
‖Q>x− h‖2.

If h, x 6= 0, let w = h
‖h‖ , and v = x

‖x‖ . Then, S(x,h) should be chosen
uniformly from:

{Q ∈ O(p) : v = Qw} = {vw> + VUW> : U ∈ O(p − 1)},

where V and W are p × (p − 1) matrices such that
V>V = W>W = Ip−1, V>v = W>w = 0.
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