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Background - dynamical systems and control

Decision-making in environments
that change and are uncertain
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Control systems evolution
from single systems in predictable environments

to . . .

networks dynamic interactions unknown terrains
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Research thread

I Develop fundamental understanding of decision-making under
uncertainty

I Design algorithms with provable safety and performance
guarantees
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Multi-agent systems
Interacting agents with coupled objectives and constraints
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Multi-agent systems: learning, optimization and control

How do players learn to optimize
given only local information?
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The rest of the talk

with Tatiana Tatarenko, TU Darmstadt, Germany

I T. Tatarenko, M. Kamgarpour, Bandit Online Learning of Nash
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Players objectives and constraints

Game Γ(N, {Ai}, {J i}) with N agents/players

I action ai ∈ Ai ⊂ Rd

I joint action a ∈ A = A1 × · · · ×AN ⊆ RNd

I cost J i : RNd → R, J i(ai,a−i)

Convex game

I Ai: convex and compact

I J i(ai,a−i): continuously differentiable in a, convex in ai
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Examples of convex games

I Mixed strategy extensions of finite action games
I Ai: probability simplex, J i(ai,a−i) linear in ai

I Traffic networks, communication networks, power networks
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Characterizing Nash equilibria

I a∗ ∈ A is a Nash equilibrium (NE): for each i = 1, . . . , N

J i(a∗i,a∗−i) ≤ J i(ai,a∗−i), ∀ai ∈ Ai

I NE exists in convex games

Variational inequality (VI) characterization of NE

I game mapping M : RNd → RNd

M(a) = [∇aiJ i(ai,a−i)]Ni=1

I a∗ is a NE ⇐⇒ M(a∗)T (a− a∗) ≥ 0,∀a ∈ A︸ ︷︷ ︸
VI problem given M and A

[Facchinei, Pang, 2007]
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Games versus optimization problems

Variational Inequality problem VI(M ,A)

Given M : RNd → RNd, A ⊂ RNd, find a∗ ∈ A

M(a∗)T (a− a∗) ≥ 0, ∀a ∈ A

I if M = ∇f for some f : A→ R, then VI is the first-order
optimality condition for mina∈A f(a)

I in a game M(a) = [∇aiJ i(ai,a−i)]Ni=1 is a pseudo-gradient
I is gradient if the Jacobian JM(a) is symmetric
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Example - matching pennies

I zero-sum game of matching pennies
I row-player, column-player[ head tail

head (1,−1) (−1, 1)
tail (−1, 1) (1,−1)

]

I mixed strategies: ai probability of player i choosing head

J1(a1,a2) =
[
a1 1− a1

] [ 1 −1
−1 1

][
a2

1− a2
]

I game mapping is not a gradient

M(a1,a2) =

[
0 4
−4 0

] [
a1

a2

]
+

[
−2
2

]

15/47



Example - matching pennies

I zero-sum game of matching pennies
I row-player, column-player[ head tail

head (1,−1) (−1, 1)
tail (−1, 1) (1,−1)

]

I mixed strategies: ai probability of player i choosing head

J1(a1,a2) =
[
a1 1− a1

] [ 1 −1
−1 1

][
a2

1− a2
]

I game mapping is not a gradient

M(a1,a2) =

[
0 4
−4 0

] [
a1

a2

]
+

[
−2
2

]

15/47



Seeking equilibria with limited information

Each player observes only her cost for a played action

I zero-order information: J it = J i(ait,a
−i
t )

I black-box access to the function

How should she play to ensure convergence to a Nash equilibrium?
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Zero-order information in games

Use function evaluations J it = J i(ait,a
−i
t ) to estimate gradient?

I query J i at ait+1 = ait + δ and use finite difference

I feedback: J it+1 = J i(ait+1,a
−i
t+1), can’t control a−it+1

How should she play to ensure convergence to a Nash equilibrium?
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Randomization helps in learning

I each player samples her action from a distribution

ait ∼ p(µit, σt)
I mean µi: updated greedily based on player’s observed cost

I variance σi: encourages exploring non-greedy strategies

decision making when faced with unknown cost functions:
exploitation and exploration
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Learning-based algorithm iterates

I actions ai and states µi of each player are updated as

play: ait ∼ N(µit, σ
2
t I), receive: J it = J i(ait,a

−i
t )

µit+1 = ProjAi
[
µit − βtJ it

ait − µit
σ2t

]

19/47



Learning-based algorithm iterates

I actions ai and states µi of each player are updated as

play: ait ∼ N(µit, σ
2
t I), receive: J it = J i(ait,a

−i
t )

µit+1 = ProjAi
[
µit − βtJ it

ait − µit
σ2t

]

19/47



Learning-based algorithm iterates

I actions ai and states µi of each player are updated as

ait ∼ N(µit, σ
2
t I)

µit+1 = ProjAi
[
µit − βt J it

ait − µit
σ2t︸ ︷︷ ︸

M̂ i(at,µit)

]

I samples of gradient with respect to cost in mixed strategies

Eat{M̂ i(at,µ
i
t)} =

∂J̃ i(µt)

∂µi

J̃ i(µ) =

∫
RNd

J i(y)pµ1(y1) . . . pµN (yN )dy
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Randomization for gradient estimation
Let f : Rn → R, p(y) a probability density function

fσ(µ) =

∫
Rn
f(µ+ σy)p(y)dy

I bandit learning and regret minimization [Flaxman et al. 2006], [Bravo et al.

2019]

I stochastic and zero-order optimization [Nesterov 2010], [Ghadimi, Lan 2014]

I non-smooth optimization [Duchi et al. 2012]

I non-convex graduated optimization [Mobhai 2012], [Levy, Hazan 2015]

left: smoothing absolute value, right: graduated optimization
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Interpretation as a stochastic optimization procedure

Player i: µit+1 = ProjAi
[
µit − βtJ it

ait−µit
σ2
t

]
Stacking players’ iterates, the algorithm is

µt = ProjA[µt − βt
(
M(µt) +Q(µt, σt) +R(µt,at, σt)

)
]

I M game mapping, stacked gradients of players’ cost functions

I Q difference in the gradient of the smoothed and original cost

I R stochastic noise term, EatR(µt,at, σt) = 0

22/47
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Convergence of the algorithm

Assumptions

I strictly monotone:
(
M(a)−M(a′)

)T
(a−a′) > 0 ∀a,a′ ∈ A

I Lipschitz: ‖(M(a)−M(a′)‖ ≤ L‖a− a′‖ ∀a,a′ ∈ A

Theorem [TT, MK TAC 2019]

Choose βt, σt → 0 such that

∞∑
t=0

βt =∞,
∞∑
t=0

βtσt <∞
∞∑
t=0

β2t
σ2t

<∞

Then,

I state µt converges almost surely to a Nash equilibrium µ∗

I action at converges in probability to µ∗
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Proof sketch

Approach: show ‖µt − µ∗‖2 sufficiently decreases at each iteration

µt+1 = ProjA[µt − βt
(
M(µt) +Q(µt, σt) +R(µt,at, σt)

)
]

E{‖µt+1 − µ∗‖2} ≤ ‖µt − µ∗‖2 + ξt︸︷︷︸
O(βtσt+

β2t
σ2t

)

−βtM(µt)
T (µt − µ∗)︸ ︷︷ ︸
≥0

[Robbins and Siegmund, 1985]

I ‖µt − µ∗‖2 converges as t→∞
I
∑∞

t=0 βtM(µt)
T (µt − µ∗) <∞

}
µt → µ∗

24/47
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Summary

Convex game, zero-order information: J it = J i(ait,a
−i
t )

I player i: one-point estimation of her gradient

I at = (a1t , . . . ,a
N
t ) convergence to a∗ ∈ A

J i(a∗i,a∗−i) ≤ J i(ai,a∗−i), ∀ai ∈ Ai

Algorithm

ait

J it
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Learning in games as a bandit optimization problem

Algorithm

ait

J it

Regret: R(T ) =
∑T

t=0 J
i
t (a

i
t)−

∑T
t=0 J

i
t (a

i)

I ait played action, J it (a
i
t) = J i(ait,a

−i
t )

I ai best action in hindsight: minãi∈Ai
∑T

t=0 J
i
t (ã

i)

No-regret algorithm: R(T ) = o(T ) as T →∞
[Flaxman et al. 2005], [Shamir 2013], [Bubeck 2016], . . .
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No-regret learning and convex games

Finite action games: each player adopts a no-regret algorithm

I 1
T

∑T
t=0 a

i
t → coarse-correlated equilibrium

Convex games: our algorithm is no-regret [TT, MK 2018]

µit+1 = ProjAi
[
µit − βtJ it

ait − µit
σ2t

]
I aiT → a∗, a∗: Nash equilibrium

I under strict monotonicity of the game map
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Convex games versus optimization: zero-sum games

[ head tail

head (1,−1) (−1, 1)
tail (−1, 1) (1,−1)

]
I Game mapping is not strictly monotone:(

M(a)−M(a′)
)T

(a− a′) = 0, ∀a,a′
I Our algorithm does not converge

matching pennies - [N. Kwan, USRA 2020]
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Implications of non-strictly monotone game mapping
I All follow-the-regularized-leader algorithms (no-regret) diverge

[Mertikopoulos et. al. 2018], [Bailey, 2020]

I Hamiltonian system interpretations [Balduzzi et al. 2018]

JM(a) = P (a)︸ ︷︷ ︸
symmetric

+ H(a)︸ ︷︷ ︸
assymetric

Figure - [Bailey & Piliouras 2019] 30/47
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Zero-sum games beyond matching pennies

minx maxd f(x, d): robust optimization, robust control, training
generative adversarial networks

I algorithms for monotone VIs [ Tseng 1995], [Facchinei, Pang 2007]

I extra gradient, optimistic mirror descent [Mokhtari et al. 2019]

I Limitation in our setup: J it = J i(ait,a
−i
t )

I no (extra) gradients
I no implicit algorithms
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Bandit learning in non-strictly monotone games

Monotone game map:
(
M(a)−M(a′)

)T
(a− a′) ≥ 0 ∀a,a′ ∈ A

I single time-scale regularization

µit+1 = ProjAi
(
µit − βtJ it

ait − µit
σ2t

+ εtµ
i
t

)
I regularized cost: J i(a) + εt

2 ‖a
i‖22

32/47
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Convergence result

Assumptions

I M : RNd → RNd is montone and Liptschitz

Theorem [TT, MK 2019]

Choose βt, σt, εt → 0 such that

∞∑
t=0

βt =∞,
∞∑
t=0

βtσt <∞,
∞∑
t=0

β2t
σ2t

<∞,

∞∑
t=0

(εt−1 − εt)2

βtε3t
<∞,

∞∑
t=0

βtεt =∞.

Then,

I state µt converges almost surely to a Nash equilibrium µ∗

I action at converges in probability to µ∗
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Proof sketch

Define yt as solution of VI(M(a) + εta,A)

I converges to a solution of VI(M(a),A) [Facchinei, Pang 2007]

Show ‖µt − yt‖2 sufficiently decreases at each iteration

E{‖µt+1 − yt+1‖2} ≤ (1− εtβt)‖µt − yt‖2 + ξt

I ‖yt−yt−1‖22 = O( |εt−εt−1|2
ε2t

)⇒ ξt = O(βtσt +
β2
t

σ2
t

+ |εt−1−εt|2
βtε3t

)

I ‖µt − yt‖ goes to zero almost surely

34/47
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Learning in matching pennies
Choose βt = 1

tp , σt = 1
tq , εt = 1

tl
, p, q, l > 0 such that

∞∑
t=0

βt =∞,
∞∑
t=0

βtσt <∞,
∞∑
t=0

β2t
σ2t

<∞,

∞∑
t=0

(εt−1 − εt)2

βtε3t
<∞,

∞∑
t=0

βtεt =∞

matching pennies - [N. Kwan, USRA 2020]
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Extension - games with coupling constraints

I sharing limited capacity resources
I transmission lines, roads, bandwidth

I convex coupling constraint g : RNd → Rm

C := {a ∈ RNd | g(a) ≤ 0}

I jointly convex game Γ(N,A ∩ C, {J i})
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Challenges due to coupled action spaces

Generalized Nash equilibria (GNE) for Γ(N,A ∩ C, {J i})
For each player i

J i(a∗i,a∗−i) ≤ J i(ai,a∗−i), ∀ai ∈ {ai ∈ Ai |g(ai,a∗−i) ≤ 0}

I uniqueness and computation [Rosen 1965], [Facchinei, Pang, Kanzow 2009-2010]

Variational equilibria ⊂ GNE

If a∗ ∈ A ∩ C satisfies M(a∗)T (a− a∗) ≥ 0, ∀a ∈ A ∩ C
Then a∗ is a GNE [Facchinei and Pang, 2009]
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Decoupling the constraints for distributed computation

Associate a player to the coupling constraint g : RNd → Rm

I a new game with an additional fictitious player, λ ∈ Rm≥0

Γ̄(N + 1, {{Ai}i=1,...,N ,R
n
≥0}, {J̄ i})

I cost functions in extended game Γ̄

J̄ i(ai,a−i,λ) = J i(ai,a−i) + λTg(ai,a−i), i = 1, . . . , N

J̄N+1(a,λ) = −λTg(a)

[a∗,λ∗] Nash equilibrium in Γ̄⇒ a∗ variational equilibrium in Γ
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Non-monotonicity of the game mapping

Example: quadratic cost and affine coupling constraint

I J i(a) = 1
2a

TH ia, i = 1, . . . , N

I g(a) = Fa+ f , F : RNd → Rm

M̄(a,λ) =

[
H F T

−F 0

] [
a
λ

]
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Zero-order learning in games with coupling constraints

Zero-order information: J̄ it = J i(at) + λtg(at)

ait ∼ N(µit, σ
2
t I)

µit+1 = ProjAi

[
µit − βtJ̄ it

ait − µit
σ2t

]
λt+1 = ProjRn≥0

[λt + βtg(at)]

Theorem

I Assume M(a) is symmetric and strictly monotone

I Choose βt, σt as in the strictly monotone case

µt converges almost surely to the variational equilibrium.
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Example - Cournot game in electricity markets
Consumers minimizing their electricity bills

I consumption profile over d periods ai = [ai1, . . . , a
i
d]
> ∈ Rd

I local consumption bounds

0 ≤ aik ≤ āik, k = 1, . . . , d,

d∑
k=1

aik = āi

I network capacity constraint
∑N

i=1 a
i
k ≤ āk, k = 1, . . . , d
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Convex game formulation

I electricity price p(a)

I player i’s cost function

J i(ai,a−i) = P i(ai) + p(a)ai

I P i convex quadratic, p linear
I convex game with strictly convex potential function
I learning optimal consumption profile using payoff information
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Simulation result
Relative error ‖µt−a

∗‖
‖a∗‖

I fast initial decrease, very slow convergence

I lower bounds on convergence rates?

0 50 100 150 200 250 300

t

0.5

1

1.5

2
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Colors blue, green, red corresponding to N = 3, 10, 30
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Summary
Learning in convex games

I Nash equilibria solve a variational inequality problem

I learn Nash equilibria using zero-order information

Proposed algorithm

I bandit feedback: no knowledge of the cost functions

I convergence to Nash equilibrium under monotonicity
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Outlook

I Connections of no-regret learning and convex games

I Exploring lower bounds for convergence rate

I Learning in non-convex games

I Learning in dynamic and feedback games
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Thank you for your time and attention!
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Convergence of random variables

Robbins and Siegmund on non-negative random variables

Theorem
(Ω, F, P ): probability space, F1 ⊂ F2 ⊂ . . . sub-σ-algebras of F ,
zt, bt, ξt, and ζt be non-negative Ft-measurable random variables
with

E(zt+1|Ft) ≤ zt(1 + bt) + ξt − ζt.

I almost surely limt→∞ zt exists and is finite

I
∑∞

t=1 ζt <∞ almost surely on {
∑∞

t=1 bt <∞,
∑∞

t=1 ξt <∞}
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