Learning Nash Equilibria with Bandit Feedback

Maryam Kamgarpour

Electrical & Computer Engineering, UBC

Jan 29, 2021 Pacific Interdisciplinary Hub on Optimal Transport

Introduction

Learning in convex games - setup & algorithm

Learning in games - connections & extensions

Conclusions

Outline

Introduction

Learning in convex games - setup & algorithm

Learning in games - connections & extensions

Conclusions

Background - dynamical systems and control

Decision-making in environments that change and are uncertain

Control systems evolution

from single systems in predictable environments

to ...

networks

dynamic interactions

unknown terrains

- Develop fundamental understanding of decision-making under uncertainty
- Design algorithms with provable safety and performance guarantees

Multi-agent systems

Interacting agents with coupled objectives and constraints

Multi-agent systems: learning, optimization and control

How do players learn to optimize given only local information?

The rest of the talk

with Tatiana Tatarenko, TU Darmstadt, Germany

- T. Tatarenko, M. Kamgarpour, Bandit Online Learning of Nash Equilibria in Monotone Games, 2020
- T. Tatarenko, M. Kamgarpour, Learning Generalized Nash Equilibria in a Class of Convex Games, IEEE Transactions on Automatic Control, 2019
- T. Tatarenko, M. Kamgarpour, Minimizing Regret of Bandit Online Optimization in Unconstrained Action Spaces, 2018

Outline

Introduction

Learning in convex games - setup & algorithm

Learning in games - connections & extensions

Conclusions

Players objectives and constraints

Game $\Gamma(N,\{A^i\},\{J^i\})$ with N agents/players

$$lacksymbol{
abla}$$
 action $oldsymbol{a}^i \in A^i \subset \mathbb{R}^d$

▶ joint action $a \in A = A^1 \times \cdots \times A^N \subseteq \mathbb{R}^{Nd}$

• cost
$$J^i : \mathbb{R}^{Nd} \to \mathbb{R}$$
, $J^i(\boldsymbol{a}^i, \boldsymbol{a}^{-i})$

Players objectives and constraints

Game $\Gamma(N, \{A^i\}, \{J^i\})$ with N agents/players

- ▶ action $a^i \in A^i \subset \mathbb{R}^d$
- ▶ joint action $a \in A = A^1 \times \cdots \times A^N \subseteq \mathbb{R}^{Nd}$

$$\blacktriangleright$$
 cost $J^i: \mathbb{R}^{Nd}
ightarrow \mathbb{R}$, $J^i({oldsymbol a}^i, {oldsymbol a}^{-i})$

Convex game

- A^i : convex and compact
- $J^i({m a}^i,{m a}^{-i})$: continuously differentiable in ${m a}$, convex in ${m a}^i$

Examples of convex games

- Mixed strategy extensions of finite action games
 - A^i : probability simplex, $J^i({m a}^i, {m a}^{-i})$ linear in ${m a}^i$

Examples of convex games

- Mixed strategy extensions of finite action games
 - A^i : probability simplex, $J^i({m a}^i,{m a}^{-i})$ linear in ${m a}^i$
- Traffic networks, communication networks, power networks

Characterizing Nash equilibria

• $a^* \in A$ is a Nash equilibrium (NE): for each $i = 1, \dots, N$

$$J^{i}(\boldsymbol{a}^{*i}, \boldsymbol{a}^{*-i}) \leq J^{i}(\boldsymbol{a}^{i}, \boldsymbol{a}^{*-i}), \quad \forall \boldsymbol{a}^{i} \in A^{i}$$

Characterizing Nash equilibria

• $a^* \in A$ is a Nash equilibrium (NE): for each $i = 1, \dots, N$

$$J^{i}(\boldsymbol{a}^{*i}, \boldsymbol{a}^{*-i}) \leq J^{i}(\boldsymbol{a}^{i}, \boldsymbol{a}^{*-i}), \quad \forall \boldsymbol{a}^{i} \in A^{i}$$

Characterizing Nash equilibria

• $a^* \in A$ is a Nash equilibrium (NE): for each $i = 1, \dots, N$

$$J^{i}(\boldsymbol{a}^{*i}, \boldsymbol{a}^{*-i}) \leq J^{i}(\boldsymbol{a}^{i}, \boldsymbol{a}^{*-i}), \quad \forall \boldsymbol{a}^{i} \in A^{i}$$

Variational inequality (VI) characterization of NE

▶ game mapping
$$oldsymbol{M}: \mathbb{R}^{Nd}
ightarrow \mathbb{R}^{Nd}$$

$$\boldsymbol{M}(\boldsymbol{a}) = [\nabla_{\boldsymbol{a}^i} J^i(\boldsymbol{a}^i, \boldsymbol{a}^{-i})]_{i=1}^N$$

•
$$a^*$$
 is a NE $\iff \underbrace{M(a^*)^T(a-a^*) \ge 0, \forall a \in A}_{\text{VI problem given } M \text{ and } A}$

[Facchinei, Pang, 2007]

Games versus optimization problems

 $\begin{array}{l} \text{Variational Inequality problem VI}(\boldsymbol{M},\boldsymbol{A})\\ \text{Given }\boldsymbol{M}:\mathbb{R}^{Nd}\rightarrow\mathbb{R}^{Nd}\text{, }\boldsymbol{A}\subset\mathbb{R}^{Nd}\text{, find }\boldsymbol{a}^{*}\in\boldsymbol{A} \end{array}$

$$\boldsymbol{M}(\boldsymbol{a}^*)^T(\boldsymbol{a}-\boldsymbol{a}^*) \geq 0, \forall \boldsymbol{a} \in \boldsymbol{A}$$

▶ if $M = \nabla f$ for some $f : A \to \mathbb{R}$, then VI is the first-order optimality condition for $\min_{a \in A} f(a)$

Games versus optimization problems

 $\begin{array}{l} \text{Variational Inequality problem VI}(\boldsymbol{M},\boldsymbol{A})\\ \text{Given }\boldsymbol{M}:\mathbb{R}^{Nd}\rightarrow\mathbb{R}^{Nd}\text{, }\boldsymbol{A}\subset\mathbb{R}^{Nd}\text{, find }\boldsymbol{a}^{*}\in\boldsymbol{A} \end{array}$

$$\boldsymbol{M}(\boldsymbol{a}^*)^T(\boldsymbol{a}-\boldsymbol{a}^*) \geq 0, \forall \boldsymbol{a} \in \boldsymbol{A}$$

▶ if $M = \nabla f$ for some $f : A \to \mathbb{R}$, then VI is the first-order optimality condition for $\min_{a \in A} f(a)$

▶ in a game $m{M}(m{a}) = [
abla_{m{a}^i} J^i(m{a}^i,m{a}^{-i})]_{i=1}^N$ is a pseudo-gradient

• is gradient if the Jacobian JM(a) is symmetric

Example - matching pennies

- zero-sum game of matching pennies
 - row-player, column-player

 $\begin{array}{c|c} & \mathsf{head} & \mathsf{tail} \\ \mathsf{head} & \left[\begin{array}{c} (1,-1) & (-1,1) \\ (-1,1) & (1,-1) \end{array} \right] \end{array}$

Example - matching pennies

- zero-sum game of matching pennies
 - row-player, column-player

▶ mixed strategies: a^i probability of player *i* choosing head $J^1(a^1, a^2) = \begin{bmatrix} a^1 & 1-a^1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} a^2 \\ 1-a^2 \end{bmatrix}$

game mapping is not a gradient

$$oldsymbol{M}(oldsymbol{a}^1,oldsymbol{a}^2) = egin{bmatrix} 0 & 4 \ -4 & 0 \end{bmatrix} egin{bmatrix} oldsymbol{a}^1 \ oldsymbol{a}^2 \end{bmatrix} + egin{bmatrix} -2 \ 2 \end{bmatrix}$$

Seeking equilibria with limited information

Each player observes only her cost for a played action

- zero-order information: $J_t^i = J^i(\boldsymbol{a}_t^i, \boldsymbol{a}_t^{-i})$
- black-box access to the function

Seeking equilibria with limited information

Each player observes only her cost for a played action

- zero-order information: $J_t^i = J^i(\boldsymbol{a}_t^i, \boldsymbol{a}_t^{-i})$
- black-box access to the function

Zero-order information in games

Use function evaluations $J_t^i = J^i(\boldsymbol{a}_t^i, \boldsymbol{a}_t^{-i})$ to estimate gradient?

- query J^i at $oldsymbol{a}_{t+1}^i = oldsymbol{a}_t^i + \delta$ and use finite difference
- ▶ feedback: $J_{t+1}^i = J^i(a_{t+1}^i, a_{t+1}^{-i})$, can't control a_{t+1}^{-i}

Zero-order information in games

Use function evaluations $J^i_t = J^i({m a}^i_t, {m a}^{-i}_t)$ to estimate gradient?

- query J^i at $oldsymbol{a}^i_{t+1} = oldsymbol{a}^i_t + \delta$ and use finite difference
- ▶ feedback: $J_{t+1}^i = J^i(a_{t+1}^i, a_{t+1}^{-i})$, can't control a_{t+1}^{-i}

Randomization helps in learning

each player samples her action from a distribution

 $\boldsymbol{a}_t^i \sim p(\boldsymbol{\mu}_t^i, \sigma_t)$

- mean μ^i : updated greedily based on player's observed cost
- variance σ^i : encourages exploring non-greedy strategies

Randomization helps in learning

► each player samples her action from a distribution

 $\boldsymbol{a}_t^i \sim p(\boldsymbol{\mu}_t^i, \sigma_t)$

- mean μ^i : updated greedily based on player's observed cost
- variance σⁱ: encourages exploring non-greedy strategies

decision making when faced with unknown cost functions: exploitation and exploration

 \blacktriangleright actions a^i and states μ^i of each player are updated as

$$\begin{split} & \mathsf{play:} \ \boldsymbol{a}_t^i \sim \mathcal{N}(\boldsymbol{\mu}_t^i, \sigma_t^2 I), \ \mathsf{receive:} \ J_t^i = J^i(\boldsymbol{a}_t^i, \boldsymbol{a}_t^{-i}) \\ & \boldsymbol{\mu}_{t+1}^i = \mathsf{Proj}_{A^i} \big[\boldsymbol{\mu}_t^i - \beta_t J_t^i \frac{\boldsymbol{a}_t^i - \boldsymbol{\mu}_t^i}{\sigma_t^2} \big] \end{split}$$

 \blacktriangleright actions a^i and states μ^i of each player are updated as

$$\begin{split} & \mathsf{play:} \ \boldsymbol{a}_t^i \sim \mathcal{N}(\boldsymbol{\mu}_t^i, \sigma_t^2 I), \ \mathsf{receive:} \ J_t^i = J^i(\boldsymbol{a}_t^i, \boldsymbol{a}_t^{-i}) \\ & \boldsymbol{\mu}_{t+1}^i = \mathsf{Proj}_{A^i} \big[\boldsymbol{\mu}_t^i - \beta_t J_t^i \frac{\boldsymbol{a}_t^i - \boldsymbol{\mu}_t^i}{\sigma_t^2} \big] \end{split}$$

ullet actions a^i and states μ^i of each player are updated as

$$\begin{aligned} \boldsymbol{a}_{t}^{i} \sim \mathcal{N}(\boldsymbol{\mu}_{t}^{i}, \sigma_{t}^{2}I) \\ \boldsymbol{\mu}_{t+1}^{i} = \operatorname{Proj}_{A^{i}} \big[\boldsymbol{\mu}_{t}^{i} - \beta_{t} \underbrace{J_{t}^{i} \frac{\boldsymbol{a}_{t}^{i} - \boldsymbol{\mu}_{t}^{i}}{\sigma_{t}^{2}}}_{\hat{M}^{i}(\boldsymbol{a}_{t}, \boldsymbol{\mu}_{t}^{i})} \big] \end{aligned}$$

 \blacktriangleright actions a^i and states μ^i of each player are updated as

$$\begin{aligned} \boldsymbol{a}_{t}^{i} \sim \mathcal{N}(\boldsymbol{\mu}_{t}^{i}, \sigma_{t}^{2}I) \\ \boldsymbol{\mu}_{t+1}^{i} = \operatorname{Proj}_{A^{i}} \big[\boldsymbol{\mu}_{t}^{i} - \beta_{t} \underbrace{J_{t}^{i} \frac{\boldsymbol{a}_{t}^{i} - \boldsymbol{\mu}_{t}^{i}}{\sigma_{t}^{2}}}_{\hat{M}^{i}(\boldsymbol{a}_{t}, \boldsymbol{\mu}_{t}^{i})} \big] \end{aligned}$$

samples of gradient with respect to cost in mixed strategies

$$E_{\boldsymbol{a}_{t}}\{\hat{\boldsymbol{M}}^{i}(\boldsymbol{a}_{t},\boldsymbol{\mu}_{t}^{i})\} = \frac{\partial \tilde{J}^{i}(\boldsymbol{\mu}_{t})}{\partial \boldsymbol{\mu}^{i}}$$
$$\tilde{J}^{i}(\boldsymbol{\mu}) = \int_{\mathbb{R}^{Nd}} J^{i}(\boldsymbol{y}) p_{\boldsymbol{\mu}^{1}}(\boldsymbol{y}^{1}) \dots p_{\boldsymbol{\mu}^{N}}(\boldsymbol{y}^{N}) d\boldsymbol{y}$$

Randomization for gradient estimation

Let $f : \mathbb{R}^n \to \mathbb{R}$, $p(\boldsymbol{y})$ a probability density function

$$f_{\sigma}(oldsymbol{\mu}) = \int_{\mathbb{R}^n} f(oldsymbol{\mu} + \sigma oldsymbol{y}) p(oldsymbol{y}) doldsymbol{y}$$

- bandit learning and regret minimization [Flaxman et al. 2006], [Bravo et al. 2019]
- stochastic and zero-order optimization [Nesterov 2010], [Ghadimi, Lan 2014]

Randomization for gradient estimation

Let $f : \mathbb{R}^n \to \mathbb{R}$, $p(\boldsymbol{y})$ a probability density function

$$f_{\sigma}(oldsymbol{\mu}) = \int_{\mathbb{R}^n} f(oldsymbol{\mu} + \sigma oldsymbol{y}) p(oldsymbol{y}) doldsymbol{y}$$

- bandit learning and regret minimization [Flaxman et al. 2006], [Bravo et al. 2019]
- stochastic and zero-order optimization [Nesterov 2010], [Ghadimi, Lan 2014]
- non-smooth optimization [Duchi et al. 2012]
- non-convex graduated optimization [Mobhai 2012], [Levy, Hazan 2015]

left: smoothing absolute value, right: graduated optimization

Interpretation as a stochastic optimization procedure

$$\mathsf{Player} \; i \colon \; \boldsymbol{\mu}_{t+1}^i = \mathsf{Proj}_{A^i} \big[\boldsymbol{\mu}_t^i - \beta_t J_t^i \frac{\boldsymbol{a}_t^i - \boldsymbol{\mu}_t^i}{\sigma_t^2} \big]$$

Stacking players' iterates, the algorithm is

$$\boldsymbol{\mu_t} = \mathsf{Proj}_{\boldsymbol{A}}[\boldsymbol{\mu_t} - \beta_t \big(\boldsymbol{M}(\boldsymbol{\mu_t}) + \boldsymbol{Q}(\boldsymbol{\mu_t}, \sigma_t) + \boldsymbol{R}(\boldsymbol{\mu_t}, \boldsymbol{a_t}, \sigma_t) \big)]$$

- \blacktriangleright *M* game mapping, stacked gradients of players' cost functions
- \blacktriangleright Q difference in the gradient of the smoothed and original cost
- \boldsymbol{R} stochastic noise term, $\mathbf{E}_{\boldsymbol{a}_t} \boldsymbol{R}(\boldsymbol{\mu}_t, \boldsymbol{a}_t, \sigma_t) = 0$

Convergence of the algorithm

Assumptions

- ▶ strictly monotone: $(M(a) M(a'))^T (a a') > 0 \ \forall a, a' \in A$
- ► Lipschitz: $||(M(a) M(a')|| \le L||a a'|| \forall a, a' \in A$

Convergence of the algorithm

Assumptions

- ▶ strictly monotone: $(M(a) M(a'))^T (a a') > 0 \ \forall a, a' \in A$
- ► Lipschitz: $||(M(a) M(a')|| \le L||a a'|| \forall a, a' \in A$

Theorem [TT, MK TAC 2019] Choose $\beta_t, \sigma_t \rightarrow 0$ such that

$$\sum_{t=0}^{\infty}\beta_t=\infty,\ \sum_{t=0}^{\infty}\beta_t\sigma_t<\infty\ \sum_{t=0}^{\infty}\frac{\beta_t^2}{\sigma_t^2}<\infty$$

Then,

- \blacktriangleright state μ_t converges almost surely to a Nash equilibrium μ^*
- \blacktriangleright action a_t converges in probability to μ^*

Proof sketch

Approach: show $\| oldsymbol{\mu}_t - oldsymbol{\mu}^* \|^2$ sufficiently decreases at each iteration

$$\boldsymbol{\mu}_{t+1} = \mathsf{Proj}_{\boldsymbol{A}}[\boldsymbol{\mu}_t - \beta_t \big(\boldsymbol{M}(\boldsymbol{\mu}_t) + \boldsymbol{Q}(\boldsymbol{\mu}_t, \sigma_t) + \boldsymbol{R}(\boldsymbol{\mu}_t, \boldsymbol{a}_t, \sigma_t) \big) \big]$$

$$\mathbb{E}\{\|\boldsymbol{\mu}_{t+1} - \boldsymbol{\mu}^*\|^2\} \leq \|\boldsymbol{\mu}_t - \boldsymbol{\mu}^*\|^2 + \underbrace{\xi_t}_{O(\beta_t \sigma_t + \frac{\beta_t^2}{\sigma_t^2})} -\beta_t \underbrace{\boldsymbol{M}(\boldsymbol{\mu}_t)^T(\boldsymbol{\mu}_t - \boldsymbol{\mu}^*)}_{\geq 0}$$

[Robbins and Siegmund, 1985]

$$\begin{aligned} & \models \|\boldsymbol{\mu}_t - \boldsymbol{\mu}^*\|^2 \text{ converges as } t \to \infty \\ & \models \sum_{t=0}^{\infty} \beta_t \boldsymbol{M}(\boldsymbol{\mu}_t)^T (\boldsymbol{\mu}_t - \boldsymbol{\mu}^*) < \infty \end{aligned}$$

Proof sketch

Approach: show $\|oldsymbol{\mu}_t - oldsymbol{\mu}^*\|^2$ sufficiently decreases at each iteration

$$\boldsymbol{\mu}_{t+1} = \mathsf{Proj}_{\boldsymbol{A}}[\boldsymbol{\mu}_t - \beta_t \big(\boldsymbol{M}(\boldsymbol{\mu}_t) + \boldsymbol{Q}(\boldsymbol{\mu}_t, \sigma_t) + \boldsymbol{R}(\boldsymbol{\mu}_t, \boldsymbol{a}_t, \sigma_t) \big)]$$

$$\mathbb{E}\{\|\boldsymbol{\mu}_{t+1} - \boldsymbol{\mu}^*\|^2\} \leq \|\boldsymbol{\mu}_t - \boldsymbol{\mu}^*\|^2 + \underbrace{\xi_t}_{O(\beta_t \sigma_t + \frac{\beta_t^2}{\sigma_t^2})} -\beta_t \underbrace{\boldsymbol{M}(\boldsymbol{\mu}_t)^T(\boldsymbol{\mu}_t - \boldsymbol{\mu}^*)}_{\geq 0}$$

[Robbins and Siegmund, 1985]

$$\begin{array}{l} \bullet \quad \|\boldsymbol{\mu}_t - \boldsymbol{\mu}^*\|^2 \text{ converges as } t \to \infty \\ \bullet \quad \sum_{t=0}^{\infty} \beta_t \boldsymbol{M}(\boldsymbol{\mu}_t)^T (\boldsymbol{\mu}_t - \boldsymbol{\mu}^*) < \infty \end{array} \right\} \ \mu_t \to \mu^*$$

Summary

Convex game, zero-order information: $J_t^i = J^i(\boldsymbol{a}_t^i, \boldsymbol{a}_t^{-i})$

player i: one-point estimation of her gradient

▶
$$m{a}_t = (m{a}_t^1, \dots, m{a}_t^N)$$
 convergence to $m{a}^* \in m{A}$

$$J^i(\boldsymbol{a}^{*i}, \boldsymbol{a}^{*-i}) \le J^i(\boldsymbol{a}^i, \boldsymbol{a}^{*-i}), \quad \forall \boldsymbol{a}^i \in A^i$$

Outline

Introduction

Learning in convex games - setup & algorithm

Learning in games - connections & extensions

Conclusions

Learning in games as a bandit optimization problem

Learning in games as a bandit optimization problem

Regret: $R(T) = \sum_{t=0}^{T} J_t^i(\boldsymbol{a}_t^i) - \sum_{t=0}^{T} J_t^i(\boldsymbol{a}^i)$

- ▶ $m{a}^i_t$ played action, $J^i_t(m{a}^i_t) = J^i(m{a}^i_t,m{a}^{-i}_t)$
- a^i best action in hindsight: $\min_{\tilde{a}^i \in A^i} \sum_{t=0}^T J^i_t(\tilde{a}^i)$

Learning in games as a bandit optimization problem

$$\begin{array}{l} \text{Regret:} \ R(T) = \sum_{t=0}^{T} J_t^i(\boldsymbol{a}_t^i) - \sum_{t=0}^{T} J_t^i(\boldsymbol{a}^i) \\ & \blacktriangleright \ \boldsymbol{a}_t^i \text{ played action, } J_t^i(\boldsymbol{a}_t^i) = J^i(\boldsymbol{a}_t^i, \boldsymbol{a}_t^{-i}) \\ & \blacktriangleright \ \boldsymbol{a}^i \text{ best action in hindsight: } \min_{\tilde{a}^i \in A^i} \sum_{t=0}^{T} J_t^i(\tilde{a}^i) \\ & \text{No-regret algorithm: } R(T) = o(T) \text{ as } T \to \infty \\ & \text{[Flaxman et al. 2005], [Shamir 2013], [Bubeck 2016], ...} \end{array}$$

No-regret learning and convex games

Finite action games: each player adopts a no-regret algorithm

•
$$\frac{1}{T}\sum_{t=0}^{T} a_{t}^{i}
ightarrow$$
 coarse-correlated equilibrium

No-regret learning and convex games

Finite action games: each player adopts a no-regret algorithm • $\frac{1}{T} \sum_{t=0}^{T} a_t^i \rightarrow coarse-correlated equilibrium$

Convex games: our algorithm is no-regret [TT, MK 2018]

$$oldsymbol{\mu}_{t+1}^i = \mathsf{Proj}_{A^i}ig[oldsymbol{\mu}_t^i - eta_t J_t^i rac{oldsymbol{a}_t^i - oldsymbol{\mu}_t^i}{\sigma_t^2}ig]$$

• $oldsymbol{a}_T^i
ightarrow oldsymbol{a}^*$, $oldsymbol{a}^*$: Nash equilibrium

No-regret learning and convex games

Finite action games: each player adopts a no-regret algorithm • $\frac{1}{T}\sum_{t=0}^{T} a_t^i \rightarrow coarse-correlated equilibrium$

Convex games: our algorithm is no-regret [TT, MK 2018]

$$oldsymbol{\mu}_{t+1}^i = \mathsf{Proj}_{A^i}ig[oldsymbol{\mu}_t^i - eta_t J_t^i rac{oldsymbol{a}_t^i - oldsymbol{\mu}_t^i}{\sigma_t^2}ig]$$

• $a_T^i
ightarrow a^*$, a^* : Nash equilibrium

under strict monotonicity of the game map

Convex games versus optimization: zero-sum games

$$\begin{array}{c} \mathsf{head} & \mathsf{tail} \\ \mathsf{head} & \left[\begin{array}{c} (1,-1) & (-1,1) \\ (-1,1) & (1,-1) \end{array} \right] \end{array}$$

- Game mapping is not strictly monotone: $(M(a) - M(a'))^T (a - a') = 0, \forall a, a'$
- Our algorithm does not converge

matching pennies - [N. Kwan, USRA 2020]

Implications of non-strictly monotone game mapping

All follow-the-regularized-leader algorithms (no-regret) diverge

[Mertikopoulos et. al. 2018], [Bailey, 2020]

e

Hamiltonian system interpretations [Balduzzi et al. 2018]

$$M(a) = \underbrace{P(a)}_{\text{symmetric}} + \underbrace{H(a)}_{\text{assymetric}}$$

Figure - [Bailey & Piliouras 2019]

Zero-sum games beyond matching pennies

 $\min_x \max_d f(x,d)$: robust optimization, robust control, training generative adversarial networks

- ► algorithms for monotone VIs [Tseng 1995], [Facchinei, Pang 2007]
- extra gradient, optimistic mirror descent [Mokhtari et al. 2019]

Zero-sum games beyond matching pennies

 $\min_x \max_d f(x,d)$: robust optimization, robust control, training generative adversarial networks

- ► algorithms for monotone VIs [Tseng 1995], [Facchinei, Pang 2007]
- extra gradient, optimistic mirror descent [Mokhtari et al. 2019]

• Limitation in our setup: $J_t^i = J^i(\boldsymbol{a}_t^i, \boldsymbol{a}_t^{-i})$

- no (extra) gradients
- no implicit algorithms

Bandit learning in non-strictly monotone games

Monotone game map: $(M(\boldsymbol{a}) - M(\boldsymbol{a}'))^T (\boldsymbol{a} - \boldsymbol{a}') \geq 0 \; \forall \boldsymbol{a}, \boldsymbol{a}' \in \boldsymbol{A}$

single time-scale regularization

$$\boldsymbol{\mu}_{t+1}^{i} = \operatorname{Proj}_{A^{i}} \left(\boldsymbol{\mu}_{t}^{i} - \frac{\boldsymbol{\beta}_{t}}{\boldsymbol{\beta}_{t}} J_{t}^{i} \frac{\boldsymbol{a}_{t}^{i} - \boldsymbol{\mu}_{t}^{i}}{\boldsymbol{\sigma}_{t}^{2}} + \frac{\epsilon_{t}}{\epsilon_{t}} \boldsymbol{\mu}_{t}^{i} \right)$$

• regularized cost: $J^i(\boldsymbol{a}) + \frac{\epsilon_t}{2} \| \boldsymbol{a}^i \|_2^2$

Convergence result

Assumptions

• $oldsymbol{M}: \mathbb{R}^{Nd}
ightarrow \mathbb{R}^{Nd}$ is montone and Liptschitz

Convergence result

Assumptions

• $\boldsymbol{M}: \mathbb{R}^{Nd}
ightarrow \mathbb{R}^{Nd}$ is montone and Liptschitz

Theorem [TT, МК 2019]

Choose $\beta_t, \sigma_t, \epsilon_t \to 0$ such that

$$\begin{split} &\sum_{t=0}^{\infty}\beta_t=\infty,\ \sum_{t=0}^{\infty}\beta_t\sigma_t<\infty,\ \sum_{t=0}^{\infty}\frac{\beta_t^2}{\sigma_t^2}<\infty,\\ &\sum_{t=0}^{\infty}\frac{(\epsilon_{t-1}-\epsilon_t)^2}{\beta_t\epsilon_t^3}<\infty,\ \sum_{t=0}^{\infty}\beta_t\epsilon_t=\infty. \end{split}$$

Then,

- \blacktriangleright state μ_t converges almost surely to a Nash equilibrium μ^*
- action a_t converges in probability to μ^*

Proof sketch

Define y_t as solution of $\mathsf{VI}(\boldsymbol{M}(\boldsymbol{a}) + \epsilon_t \boldsymbol{a}, \mathbf{A})$

 \blacktriangleright converges to a solution of VI($M(a),\mathbf{A})$ [Facchinei, Pang 2007] Show $\| \pmb{\mu}_t - \pmb{y}_t \|^2$ sufficiently decreases at each iteration

$$E\{\|\mu_{t+1} - y_{t+1}\|^2\} \le (1 - \epsilon_t \beta_t)\|\mu_t - y_t\|^2 + \xi_t$$

$$\| \boldsymbol{y}_t - \boldsymbol{y}_{t-1} \|_2^2 = O(\frac{|\epsilon_t - \epsilon_{t-1}|^2}{\epsilon_t^2}) \Rightarrow \xi_t = O(\beta_t \sigma_t + \frac{\beta_t^2}{\sigma_t^2} + \frac{|\epsilon_{t-1} - \epsilon_t|^2}{\beta_t \epsilon_t^3})$$

$$\| \boldsymbol{\mu}_t - \boldsymbol{y}_t \| \text{ goes to zero almost surely}$$

Learning in matching pennies

Choose
$$\beta_t = \frac{1}{t^p}, \sigma_t = \frac{1}{t^q}, \epsilon_t = \frac{1}{t^l}, p, q, l > 0$$
 such that

matching pennies - [N. Kwan, USRA 2020]

Extension - games with coupling constraints

- sharing limited capacity resources
 - transmission lines, roads, bandwidth
- convex coupling constraint $\mathbf{g}: \mathbb{R}^{Nd} \to \mathbb{R}^m$

$$C := \{ \boldsymbol{a} \in \mathbb{R}^{Nd} \mid \mathbf{g}(\boldsymbol{a}) \leq \mathbf{0} \}$$

• jointly convex game $\Gamma(N, \mathbf{A} \cap C, \{J^i\})$

Challenges due to coupled action spaces

Generalized Nash equilibria (GNE) for $\Gamma(N, A \cap C, \{J^i\})$ For each player i

 $J^i(\boldsymbol{a}^{*i}, \boldsymbol{a}^{*-i}) \leq J^i(\boldsymbol{a}^i, \boldsymbol{a}^{*-i}), \; \forall \boldsymbol{a}^i \in \{\boldsymbol{a}^i \in A^i \, | \, \mathbf{g}(\boldsymbol{a}^i, \boldsymbol{a}^{*-i}) \leq 0\}$

uniqueness and computation [Rosen 1965], [Facchinei, Pang, Kanzow 2009-2010]

Variational equilibria \subset GNE If $a^* \in A \cap C$ satisfies $M(a^*)^T(a - a^*) \ge 0, \forall a \in A \cap C$ Then a^* is a GNE [Facchinei and Pang, 2009] Decoupling the constraints for distributed computation

Associate a player to the coupling constraint $\mathbf{g}: \mathbb{R}^{Nd} \rightarrow \mathbb{R}^m$

lacksim a new game with an additional fictitious player, $m\lambda\in\mathbb{R}^m_{>0}$

$$\bar{\Gamma}(N+1,\{\{A^i\}_{i=1,\dots,N},\mathbb{R}^n_{\geq 0}\},\{\bar{J}^i\})$$

• cost functions in extended game $\bar{\Gamma}$

$$\bar{J}^{i}(\boldsymbol{a}^{i},\boldsymbol{a}^{-i},\boldsymbol{\lambda}) = J^{i}(\boldsymbol{a}^{i},\boldsymbol{a}^{-i}) + \boldsymbol{\lambda}^{T}\mathbf{g}(\boldsymbol{a}^{i},\boldsymbol{a}^{-i}), \quad i = 1,\dots,N$$
$$\bar{J}_{N+1}(\boldsymbol{a},\boldsymbol{\lambda}) = -\boldsymbol{\lambda}^{T}\mathbf{g}(\boldsymbol{a})$$

 $[{m a}^*,{m \lambda}^*]$ Nash equilibrium in $ar{\Gamma}\Rightarrow{m a}^*$ variational equilibrium in Γ

Non-monotonicity of the game mapping

Example: quadratic cost and affine coupling constraint

•
$$J^i(\boldsymbol{a}) = \frac{1}{2} \boldsymbol{a}^T H^i \boldsymbol{a}, \ i = 1, \dots, N$$

•
$$\mathbf{g}(\boldsymbol{a}) = F\boldsymbol{a} + f$$
, $F: \mathbb{R}^{Nd} \to \mathbb{R}^m$

Non-monotonicity of the game mapping

Example: quadratic cost and affine coupling constraint

►
$$J^i(\boldsymbol{a}) = \frac{1}{2}\boldsymbol{a}^T H^i \boldsymbol{a}, \ i = 1, \dots, N$$

► $\mathbf{g}(\boldsymbol{a}) = F\boldsymbol{a} + f, \ F : \mathbb{R}^{Nd} \to \mathbb{R}^m$

$$ar{M}(oldsymbol{a},oldsymbol{\lambda}) = egin{bmatrix} H & F^T \ -F & oldsymbol{0} \end{bmatrix} egin{bmatrix} oldsymbol{a} \ oldsymbol{\lambda} \end{bmatrix}$$

Zero-order learning in games with coupling constraints

Zero-order information: $\bar{J}_t^i = J^i(\boldsymbol{a}_t) + \boldsymbol{\lambda}_t \mathbf{g}(\boldsymbol{a}_t)$

$$\begin{split} \boldsymbol{a}_{t}^{i} &\sim \mathcal{N}(\boldsymbol{\mu}_{t}^{i}, \sigma_{t}^{2}I) \\ \boldsymbol{\mu}_{t+1}^{i} &= \operatorname{Proj}_{A^{i}} \left[\boldsymbol{\mu}_{t}^{i} - \beta_{t} \bar{J}_{t}^{i} \frac{\boldsymbol{a}_{t}^{i} - \boldsymbol{\mu}_{t}^{i}}{\sigma_{t}^{2}} \right] \\ \boldsymbol{\lambda}_{t+1} &= \operatorname{Proj}_{\mathbb{R}_{\geq 0}^{n}} [\boldsymbol{\lambda}_{t} + \beta_{t} \mathbf{g}(\boldsymbol{a}_{t})] \end{split}$$

Theorem

- Assume $oldsymbol{M}(oldsymbol{a})$ is symmetric and strictly monotone
- Choose β_t, σ_t as in the strictly monotone case
- μ_t converges almost surely to the variational equilibrium.

Example - Cournot game in electricity markets

Consumers minimizing their electricity bills

- ▶ consumption profile over \overline{d} periods $a^i = [\overline{a_1^i}, \dots, \overline{a_d^i}]^\top \in \mathbb{R}^d$
- local consumption bounds

$$0 \le a_k^i \le \bar{a}_k^i, \ k = 1, \dots, d, \qquad \sum_{k=1}^a a_k^i = \bar{a}^i$$

.1

• network capacity constraint $\sum_{i=1}^{N} a_k^i \leq \bar{a}_k, \ k = 1, \dots, d$

Convex game formulation

- electricity price $\mathbf{p}(a)$
- player i's cost function

$$J^i(\boldsymbol{a}^i, \boldsymbol{a}^{-i}) = P^i(\boldsymbol{a}^i) + \mathbf{p}(\boldsymbol{a})\boldsymbol{a}^i$$

- Pⁱ convex quadratic, p linear
 - convex game with strictly convex potential function
 - learning optimal consumption profile using payoff information

Simulation result

Relative error $\frac{\| \boldsymbol{\mu}_t - \boldsymbol{a}^* \|}{\| \boldsymbol{a}^* \|}$

- fast initial decrease, very slow convergence
- Iower bounds on convergence rates?

Colors blue, green, red corresponding to N = 3, 10, 30

Outline

Introduction

Learning in convex games - setup & algorithm

Learning in games - connections & extensions

Conclusions

Summary

Learning in convex games

- Nash equilibria solve a variational inequality problem
- learn Nash equilibria using zero-order information
- Proposed algorithm
 - bandit feedback: no knowledge of the cost functions
 - convergence to Nash equilibrium under monotonicity

Outlook

- Connections of no-regret learning and convex games
- Exploring lower bounds for convergence rate
- Learning in non-convex games
- Learning in dynamic and feedback games

Thank you for your time and attention!

Learning players' cost functions via Gaussian processes

- 1. P. G. Sessa, I. Bogunovic, A. Krause and M. Kamgarpour, Contextual Games: Multi-Agent Learning with Side Information, NeurIPS 2020
- P. G. Sessa, I. Bogunovic, M. Kamgarpour and A. Krause, No-Regret Learning in Unknown Games with Correlated Payoffs, NeurIPS 2019
- P. G. Sessa, I. Bogunovic, M. Kamgarpour and A. Krause, Mixed Strategies for Robust Optimization of Unknown Objectives, AISTATS 2020

Efficiency of Nash equilibria, mechanism design, applications

- O. Karaca and M. Kamgarpour, Designing Coalition-Proof Reverse Auctions over Continuous Goods, IEEE Transactions on Automatic Control, 2019
- P. G. Sessa, M. Kamgarpour, A. Krause, Bounding Inefficiency of Equilibria in Continuous actions games using submodularity and curvature, AISTATS 2019
- O. Karaca*, P. G. Sessa*, A. Leidi and M. Kamgarpour, No-regret Learning from Partially Observed Data in Repeated Auctions, IFAC 2019, *: equal contribution
- B. Shea, M. Schmidt and M. Kamgarpour, A Multiagent Model of Efficient and Sustainable Financial Markets, NeurIPS 2020 Workshop

Convergence of random variables

Robbins and Siegmund on non-negative random variables

Theorem

 (Ω, F, P) : probability space, $F_1 \subset F_2 \subset \ldots$ sub- σ -algebras of F, z_t, b_t, ξ_t , and ζ_t be non-negative F_t -measurable random variables with

$$\mathbb{E}(z_{t+1}|F_t) \le z_t(1+b_t) + \xi_t - \zeta_t.$$

- almost surely $\lim_{t\to\infty} z_t$ exists and is finite
- $\sum_{t=1}^{\infty} \zeta_t < \infty$ almost surely on $\{\sum_{t=1}^{\infty} b_t < \infty, \sum_{t=1}^{\infty} \xi_t < \infty\}$