Almost-Prime Times in Horospherical Flows
West Coast Dynamics Seminar

Taylor McAdam

Yale University

May 28, 2020
Homogeneous Dynamics

- G, a Lie group
- $\Gamma \leq G$, a lattice (discrete, finite covolume subgroup)
- $X = \Gamma \backslash G$, space of interest
- $H \leq G$, a closed subgroup
- Dynamics: $H \curvearrowright X$ by right translations

Possible questions:
- Given $x \in X$, what does the orbit xH look like?
- What does a typical orbit look like?
- What H-invariant/ergodic measures are supported on this space?
Homogeneous Dynamics

- G, a Lie group
- $\Gamma \leq G$, a lattice (discrete, finite covolume subgroup)
- $X = \Gamma \backslash G$, space of interest
- $H \leq G$, a closed subgroup
- Dynamics: $H \actson X$ by right translations

Possible questions:

- Given $x \in X$, what does the orbit xH look like?
- What does a \textit{typical} orbit look like?
- What H-invariant/ergodic measures are supported on this space?
Example: Linear Flows on the Torus

\[G = \mathbb{R}^2, \quad \Gamma = \mathbb{Z}^2, \quad X = \mathbb{T}^2, \quad H = \{tv \mid t \in \mathbb{R}\} \text{ for some } v \in \mathbb{R}^2 \]

- If \(v \) has rational slope, then every orbit is periodic.
- If \(v \) has irrational slope, then every orbit is dense.
Example: Linear Flows on the Torus

\[G = \mathbb{R}^2, \quad \Gamma = \mathbb{Z}^2, \quad X = \mathbb{T}^2, \quad H = \{ tv \mid t \in \mathbb{R} \} \text{ for some } v \in \mathbb{R}^2 \]

- If \(v \) has rational slope, then every orbit is periodic.
- If \(v \) has irrational slope, then every orbit is dense.
Example: Linear Flows on the Torus

\[G = \mathbb{R}^2, \; \Gamma = \mathbb{Z}^2, \; X = \mathbb{T}^2, \; H = \{tv \mid t \in \mathbb{R}\} \text{ for some } v \in \mathbb{R}^2 \]

- If \(v \) has rational slope, then every orbit is periodic.
- If \(v \) has irrational slope, then every orbit is dense.
Example: Linear Flows on the Torus

\[G = \mathbb{R}^2, \quad \Gamma = \mathbb{Z}^2, \quad X = \mathbb{T}^2, \quad H = \{tv \mid t \in \mathbb{R}\} \text{ for some } v \in \mathbb{R}^2 \]

- If \(v \) has rational slope, then every orbit is periodic.
- If \(v \) has irrational slope, then every orbit is dense.

\[\begin{array}{c}
\includegraphics[width=0.5\textwidth]{torus_diagram}
\end{array} \]
Example: Linear Flows on the Torus

\[G = \mathbb{R}^2, \quad \Gamma = \mathbb{Z}^2, \quad X = \mathbb{T}^2, \quad H = \{ tv \mid t \in \mathbb{R} \} \text{ for some } v \in \mathbb{R}^2 \]

- If \(v \) has rational slope, then every orbit is periodic.
- If \(v \) has irrational slope, then every orbit is dense.
Example: Linear Flows on the Torus

\[G = \mathbb{R}^2, \quad \Gamma = \mathbb{Z}^2, \quad X = \mathbb{T}^2, \quad H = \{tv \mid t \in \mathbb{R}\} \text{ for some } v \in \mathbb{R}^2 \]

- If \(v \) has rational slope, then every orbit is periodic.
- If \(v \) has irrational slope, then every orbit is dense.
Example: Linear Flows on the Torus

\[G = \mathbb{R}^2, \quad \Gamma = \mathbb{Z}^2, \quad X = \mathbb{T}^2, \quad H = \{tv \mid t \in \mathbb{R}\} \text{ for some } v \in \mathbb{R}^2 \]

- If \(v \) has rational slope, then every orbit is periodic.
- If \(v \) has irrational slope, then every orbit is dense.
Example: Linear Flows on the Torus

$G = \mathbb{R}^2$, $\Gamma = \mathbb{Z}^2$, $X = \mathbb{T}^2$, $H = \{tv \mid t \in \mathbb{R}\}$ for some $v \in \mathbb{R}^2$

- If v has rational slope, then every orbit is periodic.
- If v has irrational slope, then every orbit is dense.
Example: Linear Flows on the Torus

\[G = \mathbb{R}^2, \quad \Gamma = \mathbb{Z}^2, \quad X = \mathbb{T}^2, \quad H = \{tv \mid t \in \mathbb{R}\} \text{ for some } v \in \mathbb{R}^2 \]

- If \(v \) has rational slope, then every orbit is periodic.
- If \(v \) has irrational slope, then every orbit is dense.
Example: Linear Flows on the Torus

\[G = \mathbb{R}^2, \quad \Gamma = \mathbb{Z}^2, \quad X = \mathbb{T}^2, \quad H = \{ tv \mid t \in \mathbb{R} \} \text{ for some } v \in \mathbb{R}^2 \]

- If \(v \) has rational slope, then every orbit is periodic.
- If \(v \) has irrational slope, then every orbit is dense.

Taylor McAdam
Almost-Prime Times in Horospherical Flows
Example: Linear Flows on the Torus

\[G = \mathbb{R}^2, \quad \Gamma = \mathbb{Z}^2, \quad X = \mathbb{T}^2, \quad H = \{tv \mid t \in \mathbb{R}\} \text{ for some } \nu \in \mathbb{R}^2 \]

- If \(\nu \) has rational slope, then every orbit is periodic.
- If \(\nu \) has irrational slope, then every orbit is dense.
The Space of Lattices

- $G = \text{SL}_2(\mathbb{R})$
- $\Gamma = \text{SL}_2(\mathbb{Z})$
- $G \curvearrowright \mathbb{H}^2 := \{z = x + iy \in \mathbb{C} \mid y > 0\}$ by Möbius transformations:
 $$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \mapsto \frac{az + b}{cz + d}$$

- $G \curvearrowright T^1\mathbb{H}^2$ by $g : (z, v) \mapsto (g(z), Dg v)$ with $\text{Stab}_G(z) = \{ \pm I \}$
- $\text{PSL}_2(\mathbb{R}) \cong T^1\mathbb{H}^2$
The Space of Lattices

PSL\(_2(\mathbb{Z}) \backslash PSL\(_2(\mathbb{R})\)

\[
\frac{dx dy d\theta}{y^2}
\]

\[G = SL_n(\mathbb{R}), \quad \Gamma = SL_n(\mathbb{Z}), \quad \Gamma \backslash G \cong \{\text{lattices in } \mathbb{R}^n \text{ of covolume 1}\}\]
The Space of Lattices

\[\frac{dxdyd\theta}{y^2} \]

\[G = \text{SL}_n(\mathbb{R}), \quad \Gamma = \text{SL}_n(\mathbb{Z}), \quad \Gamma \backslash G \cong \{ \text{lattices in } \mathbb{R}^n \text{ of covolume } 1 \} \]
The Space of Lattices

\[\text{PSL}_2(\mathbb{R}) \cong T^1 \mathbb{H}^2 \]

\[\text{SL}_2(\mathbb{Z})g \leftrightarrow \mathbb{Z}^2g \]

\[G = \text{SL}_n(\mathbb{R}), \quad \Gamma = \text{SL}_n(\mathbb{Z}), \quad \Gamma \backslash G \cong \{ \text{lattices in } \mathbb{R}^n \text{ of covolume } 1 \} \]
The Space of Lattices

\[\text{PSL}_2(\mathbb{R}) \cong T^1 \mathbb{H}^2 \]

\[\text{SL}_2(\mathbb{Z})g \leftrightarrow \mathbb{Z}^2g \]

\[G = \text{SL}_n(\mathbb{R}), \quad \Gamma = \text{SL}_n(\mathbb{Z}), \quad \Gamma \backslash G \cong \{\text{lattices in } \mathbb{R}^n \text{ of covolume 1}\} \]
Subgroup Actions

\[A = \left\{ a_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix} \right\}_{t \in \mathbb{R}} \]

geodesic flow

\[U = \left\{ u_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \right\}_{t \in \mathbb{R}} \]

horocycle flow

\[\text{PSL}_2(\mathbb{R}) \cong T^1 \mathbb{H}^2 \]
Subgroup Actions

\[A = \left\{ a_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix} \right\} \quad t \in \mathbb{R} \]

geodesic flow

\[U = \left\{ u_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \right\} \quad t \in \mathbb{R} \]

horocycle flow

\[\text{PSL}_2(\mathbb{R}) \cong T^1 \mathbb{H}^2 \]
Subgroup Actions

geodesic flow

\[A = \left\{ a_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix} \right\} \quad t \in \mathbb{R} \]

horocycle flow

\[U = \left\{ u_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \right\} \quad t \in \mathbb{R} \]

\[\text{PSL}_2(\mathbb{R}) \cong T^1 \mathbb{H}^2 \]
Note: \(a_t^{-1} u_s a_t = \begin{pmatrix} 1 & se^{-t} \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) as \(t \rightarrow \infty \)

Definition

A subgroup \(H \leq G \) is called *horospherical* if there exists \(g \in G \) such that

\[
H = \{ h \in G \mid g^{-n} h g^n \rightarrow e \text{ as } n \rightarrow \infty \}.
\]
Horospherical Subgroups

Note: $a_t^{-1} u_s a_t = \begin{pmatrix} 1 & se^{-t} \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ as $t \rightarrow \infty$

Definition

A subgroup $H \leq G$ is called horospherical if there exists $g \in G$ such that

$$H = \{ h \in G \mid g^{-n} h g^n \rightarrow e \text{ as } n \rightarrow \infty \}.$$
Horospherical Subgroups

Fact: horospherical $\not\Rightarrow$ unipotent

Example (Heisenberg group)

\[
\left\{ \begin{pmatrix} 1 & x & y \\ 1 & z \\ 1 \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\}
\]

with respect to, e.g.,

\[
\begin{pmatrix} 2 & 1 \\ & & 1/2 \end{pmatrix}
\]

Example

\[
\left\{ \begin{pmatrix} 1 & t & t^2/2 \\ 1 & t \\ 1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}
\]

is NOT horospherical
Fact: horospherical \nRightarrow unipotent

Example (Heisenberg group)
\[
\left\{ \begin{pmatrix} 1 & x & y \\ 1 & z \\ 1 \end{pmatrix} \bigg| x, y, z \in \mathbb{R} \right\}
\]
with respect to, e.g., \[
\begin{pmatrix} 2 & 1 \\ & & 1/2 \end{pmatrix}
\]

Example
\[
\left\{ \begin{pmatrix} 1 & t & t^2/2 \\ 1 & t \\ 1 \end{pmatrix} \bigg| t \in \mathbb{R} \right\}
\]
is NOT horospherical
Horospherical Subgroups

Fact: horospherical $\not\Rightarrow$ unipotent

Example (Heisenberg group)
\[
\left\{ \begin{pmatrix} 1 & x & y \\ 1 & z \\ 1 \end{pmatrix} \bigg| x, y, z \in \mathbb{R} \right\}
\]
with respect to, e.g., \[
\begin{pmatrix} 2 & 1 \\ \frac{1}{2} \end{pmatrix}
\]

Example
\[
\left\{ \begin{pmatrix} 1 & t & t^2/2 \\ 1 & t \\ 1 \end{pmatrix} \bigg| t \in \mathbb{R} \right\}
\]
is NOT horospherical
Roughly speaking, a subset of X \textit{equidistributes} respect to a measure μ if it spends the expected amount of time in measurable subsets.

Example

A sequence $\{x_n\}_{n \in \mathbb{N}} \subset X$ equidistributes with respect to μ if

$$\frac{1}{N} \sum_{n=1}^{N} f(x_n) \to \int_{X} f \, d\mu$$

for all $f \in C_c^\infty(X)$.

Say equidistribution is \textit{effective} if the rate of convergence is known.
Roughly speaking, a subset of X *equidistributes* respect to a measure μ if it spends the expected amount of time in measurable subsets.

Example

A sequence $\{x_n\}_{n \in \mathbb{N}} \subset X$ equidistributes with respect to μ if

$$\frac{1}{N} \sum_{n=1}^{N} f(x_n) \to \int_{X} f \, d\mu$$

for all $f \in C_c^\infty(X)$.

Say equidistribution is *effective* if the rate of convergence is known.
Roughly speaking, a subset of X \textit{equidistributes} respect to a measure μ if it spends the expected amount of time in measurable subsets.

\textbf{Example}

A path $\{x(t)\}_{t \in \mathbb{R}^+} \subset X$ equidistributes with respect to μ if

$$\frac{1}{T} \int_0^T f(x(t)) dt \to \int_X f \, d\mu$$

for all $f \in C_c^\infty(X)$.

Say equidistribution is \textit{effective} if the rate of convergence is known.
Theorem

Let $H \leq G$ be horospherical. For any $x \in X$, there exists a closed, connected subgroup $H \leq L \leq G$ such that $xH = xL$ and such that xL supports an L-invariant probability measure μ_x with respect to which the H-orbit of x equidistributes.

- Hedlund, Furstenberg (SL_2)
- Burger (SL_2, Γ cocompact, effective w/ polynomial rate)
- Veech, Ellis-Perrizo (general horospherical, Γ cocompact)
- Margulis, Dani, Dani-Margulis (quantitative nondivergence)
- Dani (above theorem)
- Strömbergsson, Flaminio-Forni (SL_2, Γ non-uniform, effective w/ polynomial rate depending on basepoint)
Rigidity of Horospherical Actions

Theorem

Let $H \leq G$ be horospherical. For any $x \in X$, there exists a closed, connected subgroup $H \leq L \leq G$ such that $xH = xL$ and such that xL supports an L-invariant probability measure μ_x with respect to which the H-orbit of x equidistributes.

- Hedlund, Furstenberg (SL$_2$)
- Burger (SL$_2$, Γ cocompact, effective w/ polynomial rate)
- Veech, Ellis-Perrizo (general horospherical, Γ cocompact)
- Margulis, Dani, Dani-Margulis (quantitative nondivergence)
- Dani (above theorem)
- Strömbergsson, Flaminio-Forni (SL$_2$, Γ non-uniform, effective w/ polynomial rate depending on basepoint)
Theorem (Dani)

For every $x = \Gamma g \in X$, either

$$\frac{1}{|B_T|} \int_{B_T} f(xu)\,du \xrightarrow{T\to\infty} \int_X f\,dm \quad \forall f \in C^\infty_c(X)$$

(1)

or there is a proper, nontrivial rational subspace $W \subset \mathbb{R}^n$ such that Wg is U-invariant.

- du Haar measure on U
- dm pushforward of Haar measure on G to X
- $B_T = a_{\log T}B^U_1 a_{\log T}^{-1}$ expanding Følner sets
- If x satisfies (1), call it *generic*.
 (Birkhoff’s Theorem \iff almost every x is generic.)
Effective Equidistribution

Theorem (M.)

There exists \(\gamma > 0 \) such that for every \(x = \Gamma g \in X \) and \(T > R \) large enough, either:

\[
\left| \frac{1}{|B_T|} \int_{B_T} f(xu) du - \int_X f dm \right| \ll_f R^{-\gamma} \quad \forall f \in C^\infty_c(X) \quad (2a)
\]

or

\[
\exists j \in \{1, \cdots, n-1\} \text{ and } w \in \Lambda^j(\mathbb{Z}^n) \setminus \{0\} \text{ such that } \|wg_0u\| < R \quad \forall u \in B_T. \quad (2b)
\]

- If \(x \) satisfies (2a) for fixed \(R \) and all large \(T \), call it \(R \)-generic.
 Note: \(x \) is generic \(\iff \) \(x \) is \(R \)-generic for all \(R > 0 \).

- Condition (2b) says that there is a rational subspace \(W \in \mathbb{R}^n \) such that \(Wg \) is \(R \)-almost invariant when flowed up to time \(T \).
Effective Equidistribution

Theorem (M.)

There exists $\gamma > 0$ such that for every $x = \Gamma g \in X$ and $T > R$ large enough, either:

$$\left| \frac{1}{|B_T|} \int_{B_T} f(xu) du - \int_X f dm \right| \ll f R^{-\gamma} \quad \forall f \in C_c^\infty(X) \quad (2a)$$

or

$$\exists j \in \{1, \cdots, n-1\} \text{ and } w \in \Lambda^j(\mathbb{Z}^n) \setminus \{0\} \text{ such that } \|wg_0u\| < R \quad \forall u \in B_T. \quad (2b)$$

- If x satisfies (2a) for fixed R and all large T, call it R-generic.
 Note: x is generic $\iff x$ is R-generic for all $R > 0$.

- Condition (2b) says that there is a rational subspace $W \in \mathbb{R}^n$ such that $W g$ is R-almost invariant when flowed up to time T.

Taylor McAdam
Almost-Prime Times in Horospherical Flows
Theorem (M.)

There exists $\gamma > 0$ such that for every $x = \Gamma g \in X$ and $T > R$ large enough, either:

$$\left| \frac{1}{|B_T|} \int_{B_T} f(xu) du - \int_X f dm \right| \ll f R^{-\gamma} \quad \forall f \in C^\infty_c(X) \quad (2a)$$

or

$$\exists j \in \{1, \cdots, n-1\} \text{ and } w \in \Lambda^j(\mathbb{Z}^n) \setminus \{0\} \text{ such that } \|wg_0u\| < R \quad \forall u \in B_T. \quad (2b)$$

- If x satisfies (2a) for fixed R and all large T, call it R-generic.
 Note: x is generic \iff x is R-generic for all $R > 0$.

- Condition (2b) says that there is a rational subspace $W \in \mathbb{R}^n$ such that Wg is R-almost invariant when flowed up to time T.
Why do we want effective results?
Why do we want effective results?

- Applications in number theory often require effective rates.
Möbius Disjointness

Recall: the Möbius function

$$\mu(n) = \begin{cases}
0 & \text{if } n \text{ is not squarefree} \\
(-1)^k & \text{if } n \text{ is the product of } k \text{ distinct primes}
\end{cases}$$

Conjecture (Sarnak)

$$\frac{1}{N} \sum_{n \leq N} \mu(n) f(T^nx) \to 0$$

for any:

- X compact metric space
- $x \in X$
- $T : X \to X$ continuous, zero topological entropy
- $f \in C(X)$
Möbius Disjointness

Recall: the Möbius function

\[\mu(n) = \begin{cases}
0 & \text{if } n \text{ is not squarefree} \\
(-1)^k & \text{if } n \text{ is the product of } k \text{ distinct primes}
\end{cases} \]

Conjecture (Sarnak)

\[\frac{1}{N} \sum_{n \leq N} \mu(n)f(T^n x) \to 0 \]

for any:

- \(X \) compact metric space
- \(x \in X \)
- \(T : X \to X \) continuous, zero topological entropy
- \(f \in C(X) \)
Partial results:

- Vinogradov/Davenport (circle rotations/translations on a compact group—effective)
- Green-Tao (nilflows—effective)
- Bourgain-Sarnak-Ziegler/Peckner (unipotent flows on homogeneous spaces—not effective)
Conjecture (Margulis)

Let \(\{u_t\}_{t \in \mathbb{R}} \) be a unipotent flow on a homogeneous space \(X \). If \(\{xu_t \mid t \in \mathbb{R}\} \) equidistributes in \(X \), then so does \(\{xu_p \mid p \text{ is prime}\} \).

Theorem (Bourgain)

For any measurable dynamical system \((X, \mathcal{B}, \mu, T)\) and \(f \in L^2(X, \mu) \), the ergodic averages over primes

\[
\frac{1}{\pi(N)} \sum_{\substack{p \leq N \atop p \text{ prime}}} f(T^p x)
\]

converge for \(\mu \)-a.e \(x \in X \).
Conjecture (Margulis)

Let \(\{u_t\}_{t \in \mathbb{R}} \) be a unipotent flow on a homogeneous space \(X \). If \(\{xu_t \mid t \in \mathbb{R}\} \) equidistributes in \(X \), then so does \(\{xu_p \mid p \text{ is prime}\} \).

Theorem (Bourgain)

For any measurable dynamical system \((X, \mathcal{B}, \mu, T)\) and \(f \in L^2(X, \mu) \), the ergodic averages over primes

\[
\frac{1}{\pi(N)} \sum_{p \leq N \atop p \text{ prime}} f(T^p x)
\]

converge for \(\mu \)-a.e \(x \in X \).
The Horocycle Flow at Almost-Prime Times

Definition
An integer is called *almost-prime* if it has fewer than a fixed number of prime factors.

Theorem (Sarnak-Ubis)
There exists $\ell \in \mathbb{N}$ such that for any generic $x \in \text{SL}_2(\mathbb{Z})\backslash\text{SL}_2(\mathbb{R})$, the set
$$\{ xu(k) \mid k \in \mathbb{Z} \text{ has fewer than } \ell \text{ prime factors} \}$$
is dense in $\text{SL}_2(\mathbb{Z})\backslash\text{SL}_2(\mathbb{R})$.
Definition

An integer is called *almost-prime* if it has fewer than a fixed number of prime factors.

Theorem (Sarnak-Ubis)

There exists \(\ell \in \mathbb{N} \) *such that for any generic* \(x \in SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R}) \), *the set*

\[
\{ xu(k) \mid k \in \mathbb{Z} \text{ has fewer than } \ell \text{ prime factors} \}
\]

is dense in \(SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R}) \).
Let $G = \text{SL}_n(\mathbb{R})$, $\Gamma \leq G$ a lattice, and $u(t)$ a d-dimensional horospherical flow on $X = \Gamma \backslash G$. Define

$$\mathcal{A}_\ell(x) = \{xu(k_1, k_2, \cdots, k_d) \mid k_i \in \mathbb{Z} \text{ has fewer than } \ell \text{ prime factors}\}.$$

Theorem (M.)

1. If Γ is cocompact, then there exists $\ell = \ell(n, d, \Gamma)$ such that for any $x \in X$, the set $\mathcal{A}_\ell(x)$ is dense in X.

2. If $\Gamma = \text{SL}_n(\mathbb{Z})$ and $x = \Gamma g \in X$ satisfies a Diophantine property with parameter δ, then there exists $\ell = \ell(n, d, \delta)$ such that $\mathcal{A}_\ell(x)$ is dense in X.
Let $G = \text{SL}_n(\mathbb{R})$, $\Gamma \leq G$ a lattice, and $u(t)$ a d-dimensional horospherical flow on $X = \Gamma \backslash G$. Define

$$A_\ell(x) = \{ xu(k_1, k_2, \ldots, k_d) \mid k_i \in \mathbb{Z} \text{ has fewer than } \ell \text{ prime factors} \}.$$

Theorem (M.)

1. If Γ is cocompact, then there exists $\ell = \ell(n, d, \Gamma)$ such that for any $x \in X$, the set $A_\ell(x)$ is dense in X.

2. If $\Gamma = \text{SL}_n(\mathbb{Z})$ and $x = \Gamma g \in X$ satisfies a Diophantine property with parameter δ, then there exists $\ell = \ell(n, d, \delta)$ such that $A_\ell(x)$ is dense in X.
Let $G = \text{SL}_n(\mathbb{R})$, $\Gamma \leq G$ a lattice, and $u(t)$ a d-dimensional horospherical flow on $X = \Gamma \backslash G$. Define

$$\mathcal{A}_\ell(x) = \{xu(k_1, k_2, \ldots, k_d) \mid k_i \in \mathbb{Z} \text{ has fewer than } \ell \text{ prime factors}\}.$$

Theorem (M.)

1. If Γ is cocompact, then there exists $\ell = \ell(n, d, \Gamma)$ such that for any $x \in X$, the set $\mathcal{A}_\ell(x)$ is dense in X.

2. If $\Gamma = \text{SL}_n(\mathbb{Z})$ and $x = \Gamma g \in X$ satisfies a Diophantine property with parameter δ, then there exists $\ell = \ell(n, d, \delta)$ such that $\mathcal{A}_\ell(x)$ is dense in X.
Questions?
Proof Idea:

1. Prove effective equidistribution of the continuous horospherical flow
2. Use this to prove effective equidistribution of arithmetic progressions of times
3. Apply sieve methods to deduce a statement about almost-primes
Effective Equidistribution of the Continuous Flow

Proof Idea: Margulis’s thickening method

\[xu(s) \rightarrow xu(1) \rightarrow xu(T) \]

\[xa_{\log T} u(s) a_{\log T}^{-1} \]
Effective Equidistribution of the Continuous Flow

Proof Idea: Margulis’s thickening method
Effective Equidistribution of the Continuous Flow

Effective mixing of the A-action:

Theorem (Howe-Moore, Kleinbock-Margulis)

Let Γ be cocompact. There exists $\tilde{\gamma} > 0$ such that for any $x \in X$ and $f, g \in C_c^\infty(X)$,

$$
\left| \int_X f(xa_t)g(x)dm - \int_X f \, dm \int_X g \, dm \right| \ll_{f,g} e^{-\tilde{\gamma}t}.
$$

Note:

$$
\frac{1}{|B_T|} \int_{B_T} f(xu)du = \int_{B_1} f(xa_{\log T}ua_{\log T}^{-1})du = \int_U \chi_{B_1}(u)f(xa_{\log T}ua_{\log T}^{-1})du
$$
Effective Equidistribution of the Continuous Flow

Effective mixing of the A-action:

Theorem (Howe-Moore, Kleinbock-Margulis)

Let Γ be cocompact. There exists $\tilde{\gamma} > 0$ such that for any $x \in X$ and $f, g \in C_c^\infty(X)$,

$$\left| \int_X f(xa_t)g(x)dm - \int_X f dm \int_X g dm \right| \ll_f g e^{-\tilde{\gamma}t}.$$

Note:

$$\frac{1}{|B_T|} \int_{B_T} f(xu)du = \int_{B_1} f(xa_{\log T}ua_{\log T}^{-1})du = \int_U \chi_{B_1}(u)f(xa_{\log T}ua_{\log T}^{-1})du$$
Effective Equidistribution of the Continuous Flow

\[\int_U \chi_{B_1}(u)f(xa_{\log T}u a_{\log T}^{-1})du \]

Problems:

1. \(\chi_{B_1} \) not smooth
 - Convolve with a smooth approximation to the identity

2. Integral over \(U \), not \(X \)
 - Thicken to get integral in \(G \), project to \(X \) (need to make sure it injects)

3. Moving basepoint
 - Quantitative nondivergence (Dani-Margulis) \(\implies \) can get a good radius of convergence for all but a small proportion of \(u \in B_1 \)
Effective Equidistribution of the Continuous Flow

\[\int_U \chi_{B_1}(u) f(xa_{\log T}ua_{\log T}^{-1}) \, du \]

Problems:

1. \(\chi_{B_1} \) not smooth
 - Convolve with a smooth approximation to the identity

2. Integral over \(U \), not \(X \)
 - Thicken to get integral in \(G \), project to \(X \) (need to make sure it injects)

3. Moving basepoint
 - Quantitative nondivergence (Dani-Margulis) \(\implies \) can get a good radius of convergence for all but a small proportion of \(u \in B_1 \)
Effective Equidistribution of the Continuous Flow

\[\int_U \chi_{B_1}(u) f(xa_\log Tua_{\log T}^{-1}) du \]

Problems:

1. \(\chi_{B_1} \) not smooth
 • Convolve with a smooth approximation to the identity

2. Integral over \(U \), not \(X \)
 • Thicken to get integral in \(G \), project to \(X \) (need to make sure it injects)

3. Moving basepoint
 • Quantitative nondivergence (Dani-Margulis) \(\implies \) can get a good radius of convergence for all but a small proportion of \(u \in B_1 \)
Effective Equidistribution of the Continuous Flow

\[\int_U \chi_{B_1}(u) f(xa_{\log T} u a_{-1}^{-1} \log T) du \]

Problems:

1. \(\chi_{B_1} \) not smooth
 - Convolve with a smooth approximation to the identity

2. Integral over \(U \), not \(X \)
 - Thicken to get integral in \(G \), project to \(X \) (need to make sure it injects)

3. Moving basepoint
 - Quantitative nondivergence (Dani-Margulis) \(\Rightarrow \) can get a good radius of convergence for all but a small proportion of \(u \in B_1 \)
Effective Equidistribution of the Continuous Flow

\[
\int_U \chi_{B_1}(u) f(xa_{\log T}u^{-1}a_{\log T}) du
\]

Problems:

1. \(\chi_{B_1} \) not smooth
 - Convolve with a smooth approximation to the identity

2. Integral over \(U \), not \(X \)
 - Thicken to get integral in \(G \), project to \(X \) (need to make sure it injects)

3. Moving basepoint
 - Quantitative nondivergence (Dani-Margulis) \(\implies \) can get a good radius of convergence for all but a small proportion of \(u \in B_1 \)
Effective Equidistribution of the Continuous Flow

\[\int_U \chi_{B_1}(u)f(xa_{\log T}ua_{\log T}^{-1})du \]

Problems:

1. \(\chi_{B_1} \) not smooth
 - Convolve with a smooth approximation to the identity

2. Integral over \(U \), not \(X \)
 - Thicken to get integral in \(G \), project to \(X \) (need to make sure it injects)

3. Moving basepoint
 - Quantitative nondivergence (Dani-Margulis) \(\implies \) can get a good radius of convergence for all but a small proportion of \(u \in B_1 \)
Theorem (M.)

Let \(u(t_1, \cdots, t_d) \) be an abelian horospherical flow. There exists \(\beta > 0 \) such that if \(x \in X \) satisfies (2a) for \(T > R \) large enough, then for any \(1 \leq K \leq T \) we have

\[
\left| \frac{K^d}{T^d} \sum_{\substack{k \in \mathbb{Z}^d \\ni Kk \in B_T}} f(xu(Kk)) - \int_X f \, dm \right| \ll_f R^{-\beta} K^{d/(d+1)} S(f).
\]
Proof Idea: Venkatesh’s van der Corput method

For simplicity, assume $G = \text{SL}_2(\mathbb{R})$, $\int f \, dm = 0$.

Let

$$E_{K,T}(f) = \frac{K}{T} \sum_{k \in \mathbb{Z}} \text{mod}_{0 \leq Kk < T} f(xu(Kk))$$

be the average over the set:

$$x \quad xu(K) \quad xu(2K) \quad \ldots \quad xu(T)$$
Define new function for $1 < H < T$:

$$f_H(x) = \frac{1}{H} \sum_{\ell=0}^{H} f(xu(K\ell))$$

Note: $E_{K,T}(f_H)$ is close to $E_{K,T}(f)$:
Define new function for $1 < H < T$:

$$f_H(x) = \frac{1}{H} \sum_{\ell=0}^{H} f(xu(K\ell))$$

Note: $E_{K,T}(f_H)$ is close to $E_{K,T}(f)$:
Thicken the discrete set in U by $\delta > 0$:

$$x \quad xu(K) \quad xu(2K) \quad \cdots \quad xu(T)$$

Let $E_{K,T,\delta}$ be the ergodic average over this set.

Note: By uniform continuity, $E_{K,T,\delta}(f_H)$ is close to $E_{K,T}(f_H)$.
Thicken the discrete set in U by $\delta > 0$:

$x \quad xu(K) \quad xu(2K) \quad \cdots \quad xu(T)$

Let $E_{K,T,\delta}$ be the ergodic average over this set.

Note: By uniform continuity, $E_{K,T,\delta}(f_H)$ is close to $E_{K,T}(f_H)$.

Note:

\[E_{K,T,\delta}(f_H)^2 \ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} \frac{1}{T} \int_0^T f(xu(s)u(K\ell_1))f(xu(s)u(K\ell_2))ds \]
Effective Equidistribution of Arithmetic Progressions

Note:

\[E_{K,T,\delta}(f_{H})^2 \ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} \frac{1}{T} \int_{0}^{T} f(xu(s)u(K\ell_1))f(xu(s)u(K\ell_2))ds \]

↓ effective equidistribution

\[\ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} \langle u(K(\ell_1 - \ell_2)) \cdot f, f \rangle_{L^2(X)} + error \]
Effective Equidistribution of Arithmetic Progressions

Note:

\[E_{K,T,\delta}(f_H)^2 \ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} \frac{1}{T} \int_{0}^{T} f(xu(s)u(K\ell_1))f(xu(s)u(K\ell_2))ds \]

\[\downarrow \text{effective equidistribution} \]

\[\ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} \langle u(K(\ell_1 - \ell_2)) \cdot f, f \rangle_{L^2(X)} + \text{error} \]

\[\downarrow \text{bounds on matrix coefficients} \]

\[\ll \frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} (1 + K|\ell_1 - \ell_2|)^{-a} S(f)^2 + \text{error} \]
Choose H, δ to optimize the various error terms.
\[
\frac{K}{\delta H^2} \sum_{\ell_1=0}^{H} \sum_{\ell_2=0}^{H} (1 + K|\ell_1 - \ell_2|)^{-a} S(f)^2
\]

Choose \(H, \delta\) to optimize the various error terms
To sieve the orbits for almost-primes, need control over averages along arithmetic progressions—this is exactly what the last theorem tells us.

For \(f \in C_c^\infty(X) \) and \(T \) large enough,

\[
\frac{\left(\log T\right)^d}{T^d} \sum_{k \in B_T, (k_1 \cdots k_d, P) = 1} f(xu(k)) \asymp \alpha \int f \, dm
\]

where \(P \) is the product of primes less than \(T^\alpha \).

Note: The lower bound implies the result for integer points with fewer than \(1/\alpha \) prime factors (consider \(f \) a bump function on any small set).
To sieve the orbits for almost-primes, need control over averages along arithmetic progressions—this is exactly what the last theorem tells us.

For $f \in C_c^\infty(X)$ and T large enough,

$$\frac{(\log T)^d}{T^d} \sum_{\substack{k \in B_T \\text{ for } (k_1 \cdots k_d, P) = 1}} f(xu(k)) \lesssim \alpha \int f dm$$

where P is the product of primes less than T^α.

Note: The lower bound implies the result for integer points with fewer than $1/\alpha$ prime factors (consider f a bump function on any small set).
Sieving

To sieve the orbits for almost-primes, need control over averages along arithmetic progressions—this is exactly what the last theorem tells us.

For \(f \in C_c^\infty(X) \) and \(T \) large enough,

\[
\frac{(\log T)^d}{T^d} \sum_{\substack{k \in B_T \cap (k_1 \cdots k_d, P) = 1}} f(xu(k)) \approx \alpha \int f \, dm
\]

where \(P \) is the product of primes less than \(T^\alpha \).

Note: The lower bound implies the result for integer points with fewer than \(1/\alpha \) prime factors (consider \(f \) a bump function on any small set).
Thank you!