A Weyl-type inequality for irreducible elements in function fields, with applications

Zhenchao Ge
University of Waterloo

Lethbridge Number Theory & Combinatorics Seminar
October 17, 2023
This is joint work with:

- Jérémie Champagne (University of Waterloo)
- Thái Hoàng Lê (University of Mississippi)
- Yu-Ru Liu (University of Waterloo)
Weyl differencing

Let us begin with the differencing process. Write \(e(x) = e^{2\pi i x} \) for real \(x \). Let \(f(x) = \sum_{j=0}^{k} \alpha_j x^j \in \mathbb{R}[x] \). Weyl observed that

\[
\left| \sum_{n=1}^{N} e(f(n)) \right|^2 = \sum_{n=1}^{N} \sum_{m=1}^{N} e(f(m) - f(n))
\]

\[
= N + 2\text{Re} \sum_{\ell=1}^{N-1} \sum_{n=1}^{N-\ell} e(f(n + \ell) - f(n)).
\]

Note that \(f(n + \ell) - f(n) = g_\ell(n) \) is a polynomial of degree \(k - 1 \).

This process is known as **Weyl differencing**.

One can continue the process \(k - 1 \) times and reduce the exponent to a linear polynomial.
In \mathbb{R}, a sequence $(a_n)_{n=1}^{\infty}$ of real numbers is **equidistributed** (mod 1) if for any interval $I \subset [0, 1)$, we have

$$\lim_{N \to \infty} \frac{\# \{a_n : 1 \leq n \leq N \text{ and } \{a_n\} \in I\}}{N} = |I|,$$

where $\{a\}$ is the fractional part of a. Using the differencing process, Weyl proved the classical equidistribution theorem.

Theorem (Weyl, 1916)

If $f(x)$ is a polynomial with real coefficients and at least one of the non-constant coefficients is irrational, then the sequence $\{f(n)\}$ is equidistributed (mod 1).

In the same paper, using the idea of differencing, Weyl also proved the famous inequality (Weyl's inequality), although it was given in a less explicit form.
In \mathbb{R}, a sequence $(a_n)_{n=1}^{\infty}$ of real numbers is **equidistributed** (mod 1) if for any interval $I \subset [0, 1)$, we have

$$\lim_{N \to \infty} \frac{\# \{ a_n : 1 \leq n \leq N \text{ and } \{a_n\} \in I \}}{N} = |I|,$$

where $\{a\}$ is the fractional part of a.

Using the differencing process, Weyl proved the classical equidistribution theorem.
In \mathbb{R}, a sequence $(a_n)_{n=1}^{\infty}$ of real numbers is **equidistributed** (mod 1) if for any interval $I \subset [0, 1)$, we have

$$\lim_{N \to \infty} \frac{\# \{a_n : 1 \leq n \leq N \text{ and } \{a_n\} \in I \}}{N} = |I|,$$

where $\{a\}$ is the fractional part of a.

Using the differencing process, Weyl proved the classical equidistribution theorem.

Theorem (Weyl, 1916)

If $f(x)$ is a polynomial with real coefficients and at least one of the non-constant coefficients is irrational, then the sequence $\{f(n)\}$ is equidistributed (mod 1).
In \mathbb{R}, a sequence $(a_n)_{n=1}^\infty$ of real numbers is **equidistributed** (mod 1) if for any interval $I \subset [0, 1)$, we have

$$\lim_{N \to \infty} \frac{\# \{ a_n : 1 \leq n \leq N \text{ and } \{a_n\} \in I \}}{N} = |I|,$$

where $\{a\}$ is the fractional part of a.

Using the differencing process, Weyl proved the classical equidistribution theorem.

Theorem (Weyl, 1916)

If $f(x)$ is a polynomial with real coefficients and at least one of the non-constant coefficients is irrational, then the sequence $\{f(n)\}$ is equidistributed (mod 1).

In the same paper, using the idea of differencing, Weyl also proved the famous inequality (Weyl’s ineq), although it was given in a less explicit form.
Theorem (Weyl’s inequality, an explicit form)

Suppose that \(f(x) = \sum_{j=0}^{k} \alpha_j x^j \in \mathbb{R}[x] \), and that \(|\alpha_k - a/q| < q^{-2} \), \((a, q) = 1\). Then for any \(\varepsilon > 0 \),

\[
\sum_{n=1}^{N} e(f(n)) \ll_{k, \varepsilon} N^{1+\varepsilon} \left(\frac{1}{q} + \frac{1}{N} + \frac{q}{N^k} \right)^{2^{1-k}}.
\]

Theorem (Weyl’s inequality, an inverse form)

Given \(0 < \eta \leq 2^{1-k} \), for any \(\varepsilon > 0 \), if \(N \) is sufficiently large in terms of \(\varepsilon \) and \(\eta \), and

\[
\left| \sum_{n=1}^{N} e(f(n)) \right| > N^{1-\eta},
\]

then there are \((a, q) = 1\), such that

\[
q < Z_{\eta, \varepsilon, k} = N^{\varepsilon+2^{k-1}\eta} \quad \text{and} \quad |q\alpha_k - a| < Z_{\eta, \varepsilon, k}/N^k.
\]
Weyl’s inequality over primes in \mathbb{Z}

Theorem (Harman)

Suppose that $f(x) = \sum_{j=0}^{k} \alpha_j x^j \in \mathbb{R}[x]$, and that $|\alpha_k - a/q| < q^{-2}$, $(a, q) = 1$. Then for any $\varepsilon > 0$,

$$\sum_{p \leq N} (\log p) e(f(p)) \ll_{k, \varepsilon} N^{1+\varepsilon} \left(\frac{1}{q} + \frac{1}{N^{1/2}} + \frac{q}{N^k} \right)^{4^{1-k}}.$$

Weyl-type inequality in $\mathbb{F}_q[t]$
As a key ingredient in the Hardy-Littlewood Method, the Weyl-type inequality is applied in many problems.

- Waring’s problem, Goldbach’s problem...
- Diophantine inequalities, Diophantine equations...
- Sumsets problems, Sequences...
- Riemann zeta-function, L-functions...
Ring of polynomials over \mathbb{F}_q

Let $\mathbb{F}_q[t]$ be the polynomial ring over a finite field with q elements and characteristic p.

Let

$$K = \mathbb{F}_q(t) = \left\{ \frac{x}{y} : x, y \in \mathbb{F}_q[t], y \neq 0 \right\}$$

be the field of fractions, and let

$$K_\infty = \mathbb{F}_q((1/t)) = \left\{ \sum_{j=-\infty}^{N} a_j t^j : a_j \in \mathbb{F}_q, N \in \mathbb{Z} \right\}.$$

For $\alpha = \sum_{j=-\infty}^{N} a_j t^j \in K_\infty$ with $a_N \neq 0$, we define $\text{ord}(\alpha) = N$ and $|\alpha| = q^{\text{ord}\alpha}$. In particular, $\text{ord}(0) = -\infty$.
Ring of polynomials over \mathbb{F}_q

Let $\mathbb{F}_q[t]$ be the polynomial ring over a finite field with q elements and characteristic p.

Let

$$K = \mathbb{F}_q(t) = \left\{ \frac{x}{y} : x, y \in \mathbb{F}_q[t], y \neq 0 \right\}$$

be the field of fractions, and let

$$K_\infty = \mathbb{F}_q((1/t)) = \left\{ \sum_{j=-\infty}^{N} a_j t^j : a_j \in \mathbb{F}_q, N \in \mathbb{Z} \right\}.$$

For $\alpha = \sum_{j=-\infty}^{N} a_j t^j \in K_\infty$ with $a_N \neq 0$, we define $\text{ord}(\alpha) = N$ and $|\alpha| = q^{\text{ord}\alpha}$. In particular, $\text{ord}(0) = -\infty$.

Here, $\mathbb{F}_q[t]$, K, K_∞ play the roles of \mathbb{Z}, \mathbb{Q}, \mathbb{R}.
Exponential function on K_∞

Define \(\{\alpha\} = \sum_{j=-\infty}^{-1} a_j t^j \) to be the \textbf{fractional part} of \(\alpha \) and let \(\text{res}(\alpha) = a_{-1} \). Then,

\[
T = \left\{ \sum_{j=-\infty}^{-1} a_j t^j : a_j \in \mathbb{F}_q \right\}
\]

is the analog of \([0, 1)\) in \(\mathbb{R}\).
Exponential function on K_∞

Define $\{\alpha\} = \sum_{j=-\infty}^{-1} a_j t^j$ to be the fractional part of α and let $\text{res}(\alpha) = a_{-1}$. Then,

$$T = \left\{ \sum_{j=-\infty}^{-1} a_j t^j : a_j \in \mathbb{F}_q \right\}$$

is the analog of $[0, 1)$ in \mathbb{R}.

Let $\text{tr} : \mathbb{F}_q \to \mathbb{F}_p$ denote the trace map. Then for $\alpha \in K_\infty$, the exponential function is defined as

$$e(\alpha) := e^{2\pi i \cdot \text{tr}(\text{res}\alpha)/p}.$$

This is an additive character on K_∞ and analogous to $e^{2\pi ix}$ in \mathbb{R}. We can use this function to study additive problems in function fields.
Weyl differencing is problematic in $\mathbb{F}_q[t]$.

Q: Can we use the differencing process to prove an analog of Weyl’s inequality?
Weyl differencing is problematic in $\mathbb{F}_q[t]$.

Q: Can we use the differencing process to prove an analog of Weyl’s inequality?

Let $f(x) = \sum_{j=1}^{k} \alpha_j x^j$, $\alpha_j \in \mathbb{K}_\infty$.

- If $k < p = \text{char}(\mathbb{F}_q)$, then one can repeat Weyl differencing and prove analogous results.

- If $k \geq p$, Weyl differencing is problematic. Look at the leading coefficient of $f(x)$. If we do $f(x + h) - f(x)$, $k - 1$ times, we end up having a factor of $k!$ in the final leading coefficient, which is 0 when $k \geq p$.

Y.-R. Liu and T. Wooley (2010), in their Waring's problem paper, overcame the barrier of $k < p$ in function fields, by using large sieve and Vinogradov’s mean value theorem (VMVT).
Weyl differencing is problematic in $\mathbb{F}_q[t]$.

Q: Can we use the differencing process to prove an analog of Weyl’s inequality?

Let $f(x) = \sum_{j=1}^{k} \alpha_j x^j$, $\alpha_j \in \mathbb{K}_\infty$.

- If $k < p = \text{char}(\mathbb{F}_q)$, then one can repeat Weyl differencing and prove analogous results.

- If $k \geq p$, Weyl differencing is problematic. Look at the leading coefficient of $f(x)$. If we do $f(x + h) - f(x)$, $k - 1$ times, we end up having a factor of $k!$ in the final leading coefficient, which is 0 when $k \geq p$.

Y.-R. Liu and T. Wooley (2010), in their *Waring’s problem* paper, overcame the barrier of $k < p$ in function fields, by using large sieve and Vinogradov’s mean value theorem (VMVT).
Carlitz’s Example

For any $x = \sum_{j=0}^{n} c_j t^j \in \mathbb{F}_q[t]$, we have $x^p = \sum_{j=0}^{n} c_j^p t^{jp} \in \mathbb{F}_q[t^p]$.

Example. (Carlitz, 1952) Let

$$C = \left\{ \alpha : \alpha = \sum_{i=-\infty}^{n} c_i t^i, c_{-jp-1} = 0 \text{ for all } j \right\},$$

so that $\exp(\alpha x^p) = 1$ for all $x \in \mathbb{F}_q[t]$.

Weyl-type inequality in $\mathbb{F}_q[t]$
Carlitz’s Example

For any $x = \sum_{j=0}^{n} c_j t^j \in \mathbb{F}_q[t]$, we have $x^p = \sum_{j=0}^{n} c_j^p t^{jp} \in \mathbb{F}_q[t^p]$.

Example. (Carlitz, 1952) Let

$$C = \left\{ \alpha : \alpha = \sum_{i=-\infty}^{n} c_i t^i, c_{jp-1} = 0 \text{ for all } j \right\},$$

so that $e(\alpha x^p) = 1$ for all $x \in \mathbb{F}_q[t]$.

Weyl-type inequality: if $| \sum e(\alpha x^p) |$ is large, can the leading coefficient α be well-approximated by rationals with small denominators?

There are many (irrational) $\alpha \in C$ that cannot be well-approximated by rationals.
Carlitz’s Example

For any \(x = \sum_{j=0}^{n} c_j t^j \in \mathbb{F}_q[t] \), we have \(x^p = \sum_{j=0}^{n} c_j^p t^{jp} \in \mathbb{F}_q[t^p] \).

Example. (Carlitz, 1952) Let

\[
\mathcal{C} = \left\{ \alpha : \alpha = \sum_{i=-\infty}^{n} c_i t^i, c_{jp-1} = 0 \text{ for all } j \right\},
\]

so that \(e(\alpha x^p) = 1 \) for all \(x \in \mathbb{F}_q[t] \).

Weyl-type inequality: if \(|\sum e(\alpha x^p)| \) is large, can the leading coefficient \(\alpha \) be well-approximated by rationals with small denominators? There are many (irrational) \(\alpha \in \mathcal{C} \) that cannot be well-approximated by rationals.

Example. For polynomials like \(f(x) = \alpha x^p + \beta x \), it is not possible to determine the Diophantine approximation of \(\alpha \) or \(\beta \) by the Weyl sum, since \(x^p \) and \(x \) interfere with one another.
Q: Given \(f(x) = \sum_{j \in \mathcal{K}} \alpha_j x^j \in K_\infty[x] \) supported on \(\mathcal{K} \subset \mathbb{Z}^+ \), which coefficients satisfy Weyl-type inequalities?

Example

Suppose \(p = 7 \) and \(\mathcal{K} = ([1, 3p + 1] \cap \mathbb{Z}) \cup \{p^3 + p^2, 3p^4, p^6 + 2p^5\} \).

To visualize it, we plot \(\mathcal{K} \) on the number line in the following way.
Q: Given $f(x) = \sum_{j \in \mathcal{K}} \alpha_j x^j \in \mathbb{K}_\infty[x]$ supported on $\mathcal{K} \subset \mathbb{Z}^+$, which coefficients satisfy Weyl-type inequalities?

Example

Suppose $p = 7$ and $\mathcal{K} = ([1, 3p + 1] \cap \mathbb{Z}) \cup \{p^3 + p^2, 3p^4, p^6 + 2p^5\}$.

To visualize it, we plot \mathcal{K} on the number line in the following way.

Ideally, the set of indices (in green) without interference is the largest subset of \mathcal{K} on which Weyl’s inequality applies.
Given a finite set $\mathcal{K} \subset \mathbb{Z}^+$, define the set (without interference)

$$I_{\mathcal{K}} = \{ k \in \mathcal{K} : p \nmid k, kp^v \notin \mathcal{K} \text{ for any positive integer } v \}.$$
Given a finite set \(\mathcal{K} \subset \mathbb{Z}^+ \), define the set (without interference)

\[
\mathcal{I}_\mathcal{K} = \{ k \in \mathcal{K} : p \nmid k, kp^v \notin \mathcal{K} \text{ for any positive integer } v \}.
\]

1. **Define the shadow of** \(\mathcal{K} \) **to be**

 \[
 S(\mathcal{K}) := \{ j \in \mathbb{Z}^+ : p \nmid \binom{r}{j} \text{ for some } r \in \mathcal{K} \}.
 \]

2. **Define** \(\mathcal{K}^* := \{ k \in \mathcal{K} : p \nmid k \text{ and } p^v k \notin S(\mathcal{K}) \text{ for any } v \in \mathbb{Z}^+ \} \) **to “remove” interfering coefficients (indices) on the shadow.**

3. **For** \(\mathcal{K}_0 = \mathcal{K} \), \(\mathcal{K}_n = \mathcal{K}_{n-1} \setminus \mathcal{K}_{n-1}^* \), we define \(\widetilde{\mathcal{K}} := \bigcup_{n \geq 0} \mathcal{K}_n^* \).

Lê-Liu-Wooley proved a Weyl-type inequality for all coefficients \(\alpha_j \) with \(j \in \widetilde{\mathcal{K}} \).

Note that

\[
\widetilde{\mathcal{K}} \subset \mathcal{I}_\mathcal{K} \subset (\mathcal{K} \setminus p\mathbb{Z})
\]
Theorem (Lê-Liu-Wooley, 2023)

Fix \(q \) and a finite set \(K \subset \mathbb{Z}^+ \). There exist positive constant \(c \) and \(C \) depending only on \(K \) and \(q \), such that following holds. Let \(\epsilon > 0 \) and \(N \) sufficiently large (in terms of \(K, \epsilon, q \)). Let \(f(x) = \sum_{r \in K} \alpha_r x^r \in \mathbb{K}_\infty[x] \). If

\[
\left| \sum_{\deg x < N} e(f(x)) \right| \geq q^{N-\eta},
\]

for some \(\eta \in (0, cN] \). Then for each \(k \in \tilde{K} \) there exist \(a \in \mathbb{F}_q[t] \) and monic \(g \in \mathbb{F}_q[t] \) such that

\[
|g \alpha_k - a| < \frac{q^{\epsilon N+C\eta}}{q^{kN}} \quad \text{and} \quad |g| \leq q^{\epsilon N+C\eta}.
\]
Theorem (Lê-Liu-Wooley, 2023)

Fix \(q \) and a finite set \(\mathcal{K} \subset \mathbb{Z}^+ \). There exist positive constant \(c \) and \(C \) depending only on \(\mathcal{K} \) and \(q \), such that following holds. Let \(\epsilon > 0 \) and \(N \) sufficiently large (in terms of \(\mathcal{K}, \epsilon, q \)). Let \(f(x) = \sum_{r \in \mathcal{K}} \alpha_r x^r \in \mathbb{K}_\infty[x] \). If

\[
\left| \sum_{\deg x < N} e(f(x)) \right| \geq q^{N-\eta},
\]

for some \(\eta \in (0, cN] \). Then for each \(k \in \widetilde{\mathcal{K}} \) there exist \(a \in \mathbb{F}_q[t] \) and monic \(g \in \mathbb{F}_q[t] \) such that

\[
|g \alpha_k - a| < \frac{q^{\epsilon N + C \eta}}{q^{kN}} \quad \text{and} \quad |g| \leq q^{\epsilon N + C \eta}.
\]

- \(f(x) = \alpha_k x^k + \cdots \) with \((k, p) = 1 \).
- \(f(x) = \alpha_\ell x^\ell + \cdots + \alpha_k x^k + \cdots \), with \((k, p) = 1 \) and \(k > \ell/p \).
- \(f(x) = \sum_{1 \leq j \leq k, (j, p) = 1} \alpha_j x^j \). In this case, \(\widetilde{\mathcal{K}} = \mathcal{I} = \mathcal{K} \).
Define the von Mangoldt function over $\mathbb{F}_q[t]$ by $\Lambda(x) = \deg(P)$, if $x = cP^r$ for some monic irreducible P, zero otherwise.
Define the von Mangoldt function over $\mathbb{F}_q[t]$ by $\Lambda(x) = \deg(P)$, if $x = cP^r$ for some monic irreducible P, zero otherwise.

Theorem (Champagne-G.-Lê-Liu, 2023+)

Let $\mathcal{K} \subset \mathbb{Z}^+$ be a finite set and $k \in \mathcal{I}_\mathcal{K}$. There exist constants $c_k, C_k > 0$ (depending on k, \mathcal{K}, q) such that the following holds:

Let $\epsilon > 0$ and N be sufficiently large in terms of \mathcal{K}, ϵ and q. Suppose that $f(u) = \sum_{r \in \mathcal{K} \cup \{0\}} \alpha_r u^r \in \mathcal{K}_\infty[u]$ satisfying the bound

$$\left| \sum_{x \in \mathcal{A}_N} \Lambda(x)e(f(x)) \right| \geq q^{N-\eta},$$

for some η with $0 < \eta \leq c_k N$. Then, there exist $a_k \in \mathbb{F}_q[t]$ and monic $g_k \in \mathbb{F}_q[t]$ such that

$$|g_k \alpha_k - a_k| < \frac{q^{\epsilon N + C_k \eta}}{q^{kN}}$$

and

$$|g_k| \leq q^{\epsilon N + C_k \eta}.$$
Like Weyl proved the equidistribution theorem, Lê-Liu-Wooley (in the same paper) proved the next theorem.

Theorem (Lê-Liu-Wooley, 2023)

Let \(f(u) = \sum_{r \in K \cup \{0\}} \alpha_r u^r \) be a polynomial supported on \(K \subset \mathbb{Z}^+ \) with coefficients in \(K_\infty \). Suppose \(\alpha_k \) is irrational for some \(k \in \widetilde{K} \). Then the sequence \((f(x))_{x \in \mathbb{F}_q[t]} \) is equidistributed in \(\mathbb{T} \).

Remarks:

- **Carlitz** (1952) gave a family of irrational \(\alpha \) that \(e(\alpha x^p) = 1 \) for all \(x \in \mathbb{F}_q[t] \), thus equidistribution does not hold for \(f(x) = \alpha x^p \).

\[\mathbb{P} = \{ x \in F_q[t] : \text{monic irreducible} \} \]
\(\mathbb{P} = \{ x \in \mathbb{F}_q[t] : \text{monic irreducible} \} \).

Theorem (Champagne-G.-Lê-Liu, 2023+)

Let \(f(u) = \sum_{r \in \mathcal{K} \cup \{0\}} \alpha_r u^r \) be a polynomial supported on \(\mathcal{K} \subset \mathbb{Z}^+ \) with coefficients in \(\mathbb{K}_\infty \). Suppose \(\alpha_k \) is irrational for some \(k \in \mathcal{I}_\mathcal{K} \). Then the sequence \((f(x))_{x \in \mathbb{F}_q[t]} \) is equidistributed in \(\mathbb{T} \).

- **Carlitz** (1952): the result may not hold for \(f(x) = \alpha x^p \).
- **Rhin** (1972) proved the theorem when \(\mathcal{K} = \{1\} \).
- **Difficulty**: The space \(\mathbb{P} \) is not self-similar as \(\mathbb{F}_q[t] \). A Weyl-type inequality does not immediately imply the equidistribution theorem.
 1. We prove for the special case \(\tilde{\mathcal{K}} = \mathcal{I}_\mathcal{K} = \mathcal{K} \), for which we further prove an epsilon-free version of Weyl’s inequality.
 2. Then we prove the equidistribution theorem on \(\mathcal{I}_\mathcal{K} \) for general \(\mathcal{K} \), using Jérémy Champagne’s argument.
Application 2: Additive inequality of irreducible powers

Let \(\mathbb{P}^k_{kN} = \{x^k : x \text{ is monic irreducible, } \deg(x^k) = kN\} \).

Theorem (G.)

Suppose \((p, k) = 1\) and \(k \geq 2\). Let \(N\) be a large number. Let \(\mathcal{A} \) be a set of polynomials in \(\mathbb{F}_q[t] \) of degree less than \(kN \) and \(0 < \frac{|\mathcal{A}|}{q^{kN}} = \delta < e^{-2} \). Then we have

\[
\frac{|\mathcal{A} + \mathbb{P}^k_{kN}|}{q^{kN}} > \delta \frac{4 \log(2) + c_q \log(k)}{\log \log(1/\delta)}
\]

for some \(c_q > 0 \).

- It is different from the analog in \(\mathbb{Z} \) that the theorem is not true when \(p \mid k \).
- Among all monic degree-\(kN \) polynomials, the proportion (density) of \(\mathbb{P}^k_{kN} \) is very tiny. However, \(\mathcal{A} + \mathbb{P}^k_{kN} \) is significantly denser than \(\mathcal{A} \) for every small density set \(\mathcal{A} \).
Ingredients of Lê-Liu-Wooley’s original method include

- Weyl’s shift,
- Large sieve inequality (Hsu),
- Vinogradov’s mean value theorem (Liu-Wooley).
Ingredients of the Proof

Ingredients of Lê-Liu-Wooley’s original method include

- Weyl’s shift,
- Large sieve inequality (Hsu),
- Vinogradov’s mean value theorem (Liu-Wooley).

More tools for irreducible elements:

- Vaughan’s identity in $\mathbb{F}_q[t]$.
- A bootstrap argument. (Iterate LLW’s argument multiple times.)
- Major arc estimates for removing the epsilon.
- A nice self-duality property of \mathbb{K}_∞.
To help sketch the arguments, we introduce the following notation:

\[G_N := \{ x \in \mathbb{F}_q[t] : \deg(x) < N \}. \]

This is the analog of \([0, N)\) in integers.
To help sketch the arguments, we introduce the following notation:

\[\mathbb{G}_N := \{ x \in \mathbb{F}_q[t] : \deg(x) < N \}. \]

This is the analog of \([0, N)\) in integers.

Moreover,

\[\mathbb{A}_N := \{ x \in \mathbb{F}_q[t] : \text{monic } \deg(x) = N \}. \]

This is the analog of the dyadic interval \([N, 2N)\) in integers.
Lemma (Weyl’s shift)

Let $\mathcal{A} \subset \mathbb{F}_q[t]$ be a multiset consisting of elements of degree less than N. We have

$$\sum_{x \in \mathcal{A}_N} e(f(x)) = \#(\mathcal{A})^{-1} \sum_{x \in \mathcal{A}_N} \sum_{y \in \mathcal{A}} e(f(y + x))$$

Proof.

For each y with $\deg(y) < N$, we have

$$\sum_{x \in \mathcal{A}_N} e(f(x)) = \sum_{x \in \mathcal{A}_N} e(f(x + y)).$$

Summing $y \in \mathcal{A}$, the lemma follows.

• The choice of \mathcal{A} is very flexible!

• Instead of looking at a sum over \mathcal{A}_N, we turn attention on summing $e(g(x)) = e(f(x + y))$ over $y \in \mathcal{A}$.

• The new polynomial $g(x)$ is supported on the shadow. (Bad)
Lemma (Weyl’s shift)

Let $A \subset \mathbb{F}_q[t]$ be a multiset consisting of elements of degree less than N. We have

$$\sum_{x \in \mathbb{A}_N} e(f(x)) = \#(A)^{-1} \sum_{x \in \mathbb{A}_N} \sum_{y \in A} e(f(y + x))$$

Proof. For each y with $\text{deg}(y) < N$, we have

$$\sum_{x \in \mathbb{A}_N} e(f(x)) = \sum_{x \in \mathbb{A}_N} e(f(x + y)).$$

Summing $y \in A$, the lemma follows.

- The choice of A is very flexible!
- Instead of looking at a sum over \mathbb{A}_N, we turn attention on summing $e(g_x(y)) = e(f(x + y))$ over $y \in A$.
- The new polynomial $g_x(y)$ is supported on the shadow. (Bad)
1 Based on Dirichlet’s approximation, we take a multiset \(\mathcal{A} = \{\ell u\} \) that “fit” the approximation and (Weyl) shift the sum onto \(\mathcal{A} \).
 • This turns the original sum into a bilinear sum.
 • It creates well-spaced (leading) coefficients \(\{\alpha \ell^k\} \), i.e. distinct elements are at least \(q^{-\lambda} \) apart in \(\mathbb{T} \) for some \(\lambda > 0 \) (depending on the Diophantine approximation of \(\alpha \)).

2 Then, we apply Hölder’s inequality and Hsu’s large sieve inequality to convert the bilinear sum into Vinogradov’s mean value problem.

3 Finally, we apply Liu-Wooley’s VMVT. The final upper estimate depends on \(q^\lambda \) (and hence the Diophantine approximation of \(\alpha \)).
Define the mobius function $\mu(x) = (-1)^r$ if x is square-free with r distinct monic irreducible factors, zero otherwise.
Vaughan’s identity

Define the mobius function $\mu(x) = (-1)^r$ if x is square-free with r distinct monic irreducible factors, zero otherwise.

Let $1 \leq U, V \leq N$. For every monic $x \in \mathbb{F}_q[t]$ with $\deg(x) < U$, we have

$$\Lambda(x) = a_1(x) + a_2(x) + a_3(x),$$

where

$$a_1(x) = -\sum_{uvw=x \atop u \in G_U \atop v \in G_V} \Lambda(u)\mu(v), \quad a_2(x) = \sum_{uv=x \atop u \in G_V} \deg(u)\mu(v),$$

$$a_3(x) = \sum_{uvw=x \atop \deg(u) \geq U \atop \deg(v) \geq V} \Lambda(u)\mu(v),$$

and the sums are over monic polynomials.
By Vaughan’s identity,

\[S(N, f) = \sum_{x \in \mathbb{A}_N} \Lambda(x)e(f(x)) = S_1 + S_2 + S_3. \]
By Vaughan’s identity,

\[S(N, f) = \sum_{x \in \mathbb{A}_N} \Lambda(x)e(f(x)) = S_1 + S_2 + S_3. \]

- **Type I sums:**

 \[J_1 = \sum_{u \in \mathbb{A}_L} \sum_{v \in \mathbb{A}_{N-L}} \phi(u) e(f(uv)). \]

 \[S_1 \text{ and } S_2 \text{ can be decomposed as linear combination of Type I sums. In particular, when } L = 0, \text{ this is an ordinary exponential sum.} \]
By Vaughan’s identity,

\[S(N, f) = \sum_{x \in \mathbb{A}_N} \Lambda(x)e(f(x)) = S_1 + S_2 + S_3. \]

- **Type I sums:**
 \[J_1 = \sum_{u \in \mathbb{A}_L} \phi(u) \sum_{v \in \mathbb{A}_{N-L}} e(f(uv)). \]

 \(S_1 \) and \(S_2 \) can be decomposed as linear combination of Type I sums. In particular, when \(L = 0 \), this is an ordinary exponential sum.

- **Type II sums:**
 \[J_2 = \sum_{u \in \mathbb{P}_L} \sum_{v \in \mathbb{G}_{N-L}} \psi(v)e(f(uv)), \]

 where \(\mathbb{P}_L \) is the set of monic irreducible polynomials of degree \(L \). Using triangle inequality, \(S_3 \) can be bounded by Type II sums.
Le-Liu-Wooley estimated the ordinary exponential sum:

When $(k, p) = 1$ and $|P_{x \in G^N} f(x)| > q^{N - M}$ for some M, find a rational approximation: $|b| < q^M$ and $|b\alpha - a| < q^{N - kN + M}$.

In our proof, we consider the problem for the bilinear sums.

- **Type I sums**

 $J_1 = \sum_{u \in A^L} \phi(u) \sum_{v \in A^{N-L}} \le(f(uv))$, for $0 \le L \le N - 2M$.

- **Type II sums**

 $J_2 = \sum_{u \in P^L} \psi(v) e(f(uv))$, for $0 \le L \le N/2$.

The difficulty is to obtain the same quality of the rational approximation of αk simultaneously for all (large) L in the red range.
Le-Liu-Wooley estimated the ordinary exponential sum:

- When \((k, p) = 1\) and \(|\sum_{x \in \mathbb{G}_N} e(f(x))| > q^{N-M}\) for some \(M\), find a rational approximation: • \(|b| < q^M\) and • \(|b\alpha - a| < q^{-kN+M}\).
Le-Liu-Wooley estimated the ordinary exponential sum:

- When \((k, p) = 1\) and \(|\sum_{x \in \mathbb{G}_N} e(f(x))| > q^{N-M}\) for some \(M\), find a rational approximation: \(|b| < q^M\) and \(|b\alpha - a| < q^{-kN+M}\).

In our proof, we consider the problem for the bilinear sums.

- **Type I sums**
 \[
 J_1 = \sum_{u \in A_L} \phi(u) \sum_{v \in A_{N-L}} e(f(uv)), \quad \text{for } 0 \leq L \leq N - 2M
 \]

- **Type II sums**
 \[
 J_2 = \sum_{u \in P_L} \sum_{v \in G_{N-L}} \psi(v)e(f(uv)), \quad \text{for } 0 \leq L \leq N/2.
 \]
Le-Liu-Wooley estimated the ordinary exponential sum:

- When \((k, p) = 1\) and \(|\sum_{x \in \mathbb{G}_N} e(f(x))| > q^{N-M}\) for some \(M\), find a rational approximation:
 - \(|b| < q^M\) and
 - \(|b\alpha - a| < q^{-kN+M}\).

In our proof, we consider the problem for the bilinear sums.

- **Type I sums**

 \[J_1 = \sum_{u \in \mathbb{A}_L} \phi(u) \sum_{v \in \mathbb{A}_{N-L}} e(f(\text{uv})), \quad \text{for } 0 \leq L \leq N - 2M \]

- **Type II sums**

 \[J_2 = \sum_{u \in \mathbb{P}_L} \sum_{v \in \mathbb{G}_{N-L}} \psi(v)e(f(\text{uv})), \quad \text{for } 0 \leq L \leq N/2. \]

The difficulty is the to obtain the same quality of the rational approximation of \(\alpha_k\) simultaneously for all (large) \(L\) in the red range.
Consider

\[J_2 = \sum_{u \in P_L} \sum_{v \in G_{N-L}} \psi(v)e(f(uv)). \]

- One can partition \(P_L = \bigcup_i A_i \) (Very flexible)
- After triangle inequality, to study \(J_2 \), it suffices to look at the sum over \(A \):

\[\sum_{u \in A \subset P_L} \sum_{v \in G_{N-L}} \psi(v)e(f(uv)). \]

These two bullet points are parallel to Weyl’s shift.
• We begin with Dirichlet’s theorem. Accordingly, we pick a family of sets A that “fit” the trivial approximation:

$$|J_2| \leq \sum_i \left| \sum_{u \in A_i} \sum_{v \in \mathbb{G}_{N-L}} \psi(v)e(f(uv)) \right|.$$

• After Holder’s inequality, Hsu’s large sieve, and Liu-Wooley’s theorem, we end up having

If $|J_2| > Tq^{N-M}$ where $|\psi| \leq T$, then there are $(a, b) = 1$ with

$$|b\alpha - a| < q^{-kN+L}, \quad |b| < q^M. \quad (1)$$

The approximation (1) is worse than what we want when $L > M$, but this is still much better than the trivial approximation.

Remark. The process in the second bullet point is independent of what A is.
Bootstrap the quality of the approximation

\[|J_2| \leq \sum_i \left| \sum_{u \in A_i} \sum_{v \in G_{N-L}} \psi(v)e(f(uv)) \right| \]

Next, we repeat LLW’s argument again.

- Suppose \(|J_2| > Tq^{N-M}\). Then we have approximation (1) in hand, which is much better than the trivial approximation.

- Next, we find a new family of \(A\)s that “fit” the approximation (1). We are going to do LLW’s process over this new family of \(A\).

- After Holder’s inequality, Hsu’s large sieve, and Liu-Wooley’s theorem, we end up having:

If \(|J_2| > Tq^{N-M}\) then there are \((a, b) = 1\) with

\[
|b\alpha - a| < q^{-kN+M}, \quad |b| < q^M.
\] (2)
Further remarks

- For \(J_2 = \sum_{u \in P_L} \sum_{v \in G_{N-L}} \psi(v) e(f(uv)) \), we can do \(M \leq L \leq N/2 \) at this moment.

 The barrier \(N/2 \) can be relaxed to \(N \) if one applies Vaughan’s identity to the bilinear sum and repeats the whole process again.

- In the classical Vaughan/Vinogradov’s Type I/II method, type II is usually the more difficult one, but in our case, Type II is the easier one.
Generalizing $\tilde{\mathcal{K}}$ to \mathcal{I}

Lemma (Self-duality)

For any $v \in \mathbb{Z}^+ \cup \{0\}$ and $\alpha \in K_\infty$, there exists $\tau = \tau_v(\alpha) \in K_\infty$ such that

$$e(\alpha x^{rp^v}) = e(\alpha(x^r)^{p^v}) = e(\tau x^r)$$

Given a finite $\mathcal{K} \subset \mathbb{Z}^+$, $\mathcal{R} = \mathcal{R}_\mathcal{K} = \{ r : p \nmid r, rp^v \in \mathcal{K} \text{ for some integer } v \}$. Using the above lemma, we can simplify the sum as

$$\sum_x e\left(\sum_{j \in \mathcal{K}} \alpha_j x^j \right) = \sum_x e\left(\sum_{j \in \mathcal{R}} \tau_j x^j \right).$$

Note that $\mathcal{I} \subseteq \mathcal{K} \cap \mathcal{R}$ and $\alpha_j = \tau_j$ when $j \in \mathcal{I}$.

We know how to estimate the sum over \mathcal{R} by LLW, since $\tilde{\mathcal{R}} = \mathcal{R}$.

Weyl-type inequality in $\mathbb{F}_q[t]$
Thank You!