# Convex Optimization 

Stephen Boyd<br>Electrical Engineering Department<br>Stanford University

(joint work with Lieven Vandenberghe, UCLA)

## Two problems

polyhedron $\mathcal{P}$ described by linear inequalities, $a_{i}^{T} x \leq b_{i}, i=1, \ldots, m$


Problem 1: find minimum volume ellipsoid $\supseteq \mathcal{P}$

Problem 2: find maximum volume ellipsoid $\subseteq \mathcal{P}$
are these (computationally) difficult? or easy?
problem 1 is very difficult

- in practice
- in theory (NP-hard)
problem 2 is very easy
- in practice (readily solved on small computer)
- in theory (polynomial complexity)


## Moral

very difficult and very easy problems can look quite similar
. . . unless you're trained to recognize the difference

## Linear program (LP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

$c, a_{i} \in \mathbf{R}^{n}$ are parameters; $x \in \mathbf{R}^{n}$ is variable

- easy to solve, in theory and practice
- can solve dense problems with $n=1000$ vbles, $m=10000$ constraints easily; far larger for sparse or structured problems


## Polynomial minimization

minimize $\quad p(x)$

$p$ is polynomial of degree $d$; $x \in \mathbf{R}^{n}$ is variable

- except for special cases (e.g., $d=2$ ) this is a very difficult problem
- even sparse problems with size $n=20, d=10$ are essentially intractable
- all algorithms known to solve this problem require effort exponential in $n$


## Moral

- a problem can appear* hard, but be easy
- a problem can appear* easy, but be hard
* to the untrained eye


## What makes a problem easy or hard?

classical view:

- linear is easy
- nonlinear is hard(er)


## What makes a problem easy or hard?

emerging (and correct) view:
. . . the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity.

- R. Rockafellar, SIAM Review 1993


## Convex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0, \quad A x=b
\end{array}
$$

$x \in \mathbf{R}^{n}$ is optimization variable; $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are convex:

$$
f_{i}(\lambda x+(1-\lambda) y) \leq \lambda f_{i}(x)+(1-\lambda) f_{i}(y)
$$

for all $x, y, 0 \leq \lambda \leq 1$

- includes least-squares, linear programming, maximum volume ellipsoid in polyhedron, and many others
- convex problems are fundamentally tractable


## Maximum volume ellipsoid in polyhedron

- polyhedron: $\mathcal{P}=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\}$
- ellipsoid: $\mathcal{E}=\{B y+d \mid\|y\| \leq 1\}$, with $B=B^{T} \succ 0$

maximum volume $\mathcal{E} \subseteq \mathcal{P}$, as convex problem in variables $B$, $d$ :

$$
\begin{array}{ll}
\operatorname{maximize} & \log \operatorname{det} B \\
\text { subject to } & B=B^{T} \succ 0, \quad\left\|B a_{i}\right\|+a_{i}^{T} d \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

## Moral

- it's not easy to recognize convex functions and convex optimization problems
- huge benefit, though, when you do


## Convex Analysis and Optimization

## Convex analysis \& optimization

nice properties of convex optimization problems known since 1960s

- local solutions are global
- duality theory, optimality conditions
- simple solution methods like alternating projections
convex analysis well developed by 1970s Rockafellar
- separating \& supporting hyperplanes
- subgradient calculus


## What's new (since 1990 or so)

- primal-dual interior-point (IP) methods extremely efficient, handle nonlinear large scale problems, polynomial-time complexity results, software implementations
- new standard problem classes
generalizations of LP, with theory, algorithms, software
- extension to generalized inequalities
semidefinite, cone programming


## Applications and uses

- lots of engineering applications
control, combinatorial optimization, signal processing, circuit design, communications, . . .
- robust optimization
robust versions of LP, least-squares, other problems
- relaxations and randomization
provide bounds, heuristics for solving hard (e.g., combinatorial optimization) problems


## Recent history

- 1984-97: interior-point methods for LP
- 1984: Karmarkar's interior-point LP method
- theory Ye, Renegar, Kojima, Todd, Monteiro, Roos, . . .
- practice Wright, Mehrotra, Vanderbei, Shanno, Lustig,
- 1988: Nesterov \& Nemirovsky's self-concordance analysis
- 1989-: LMIs and semidefinite programming in control
- 1990-: semidefinite programming in combinatorial optimization Alizadeh, Goemans, Williamson, Lovasz \& Schrijver, Parrilo, . . .
- 1994: interior-point methods for nonlinear convex problems Nesterov \& Nemirovsky, Overton, Todd, Ye, Sturm, . . .
- 1997-: robust optimization Ben Tal, Nemirovsky, El Ghaoui, . . .

New Standard Convex Problem Classes

## Some new standard convex problem classes

- second-order cone program (SOCP)
- geometric program (GP) (and entropy problems)
- semidefinite program (SDP)
for these new problem classes we have
- complete duality theory, similar to LP
- good algorithms, and robust, reliable software
- wide variety of new applications


## Second-order cone program

second-order cone program (SOCP) has form

$$
\begin{array}{ll}
\operatorname{minimize} & c_{0}^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m
\end{array}
$$

with variable $x \in \mathbf{R}^{n}$

- includes LP and QP as special cases
- nondifferentiable when $A_{i} x+b_{i}=0$
- new IP methods can solve (almost) as fast as LPs


## Example: robust linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \operatorname{Prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m
\end{array}
$$

where $a_{i} \sim \mathcal{N}\left(\bar{a}_{i}, \Sigma_{i}\right)$
equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \bar{a}_{i}^{T} x+\Phi^{-1}(\eta)\left\|\Sigma_{i}^{1 / 2} x\right\|_{2} \leq 1, \quad i=1, \ldots, m
\end{array}
$$

where $\Phi$ is (unit) normal CDF
robust LP is an SOCP for $\eta \geq 0.5(\Phi(\eta) \geq 0)$

## Geometric program (GP)

log-sum-exp function:

$$
\operatorname{lse}(x)=\log \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)
$$

. . . a smooth convex approximation of the max function
geometric program:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{lse}\left(A_{0} x+b_{0}\right) \\
\text { subject to } & \operatorname{lse}\left(A_{i} x+b_{i}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

$A_{i} \in \mathbf{R}^{m_{i} \times n}, b_{i} \in \mathbf{R}^{m_{i}} ;$ variable $x \in \mathbf{R}^{n}$

## Entropy problems

unnormalized negative entropy is convex function

$$
-\mathbf{e n t r}(x)=\sum_{i=1}^{n} x_{i} \log \left(x_{i} / \mathbf{1}^{T} x\right)
$$

defined for $x_{i} \geq 0, \mathbf{1}^{T} x>0$
entropy problem:

$$
\begin{aligned}
\begin{aligned}
\text { minimize } & -\operatorname{entr}\left(A_{0} x+b_{0}\right) \\
\text { subject to } & -\operatorname{entr}\left(A_{i} x+b_{i}\right) \leq 0, \quad i=1, \ldots, m
\end{aligned} \\
A_{i} \in \mathbf{R}^{m_{i} \times n}, b_{i} \in \mathbf{R}^{m_{i}}
\end{aligned}
$$

## Solving GPs (and entropy problems)

- GP and entropy problems are duals (if we solve one, we solve the other)
- new IP methods can solve large scale GPs (and entropy problems) almost as fast as LPs
- applications in many areas:
- information theory, statistics
- communications, wireless power control
- digital and analog circuit design


## Semidefinite program

semidefinite program (SDP):

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} A_{1}+\cdots+x_{n} A_{n} \preceq B
\end{array}
$$

- $B, A_{i}$ are symmetric matrices; variable is $x \in \mathbf{R}^{n}$
- $\preceq$ is matrix inequality; constraint is linear matrix inequality (LMI)
- SDP can be expressed as convex problem as

$$
\lambda_{\max }\left(x_{1} A_{1}+\cdots+x_{n} A_{n}-B\right) \leq 0
$$

or handled directly as cone problem

## Early SDP applications

(around 1990 on)

- control (many)
- combinatorial optimization \& graph theory (many)


## More recent SDP applications

- structural optimization: Ben-Tal, Nemirovsky, Kocvara, Bendsoe, . . .
- signal processing: Vandenberghe, Stoica, Lorenz, Davidson, Shaked, Nguyen, Luo, Sturm, Balakrishnan, Saadat, Fu, de Souza, . . .
- circuit design: El Gamal, Vandenberghe, Boyd, Yun, . . .
- algebraic geometry:

Parrilo, Sturmfels, Lasserre, de Klerk, Pressman, Pasechnik, . . .

- communications and information theory: Rasmussen, Rains, Abdi, Moulines, . . .
- quantum computing:

Kitaev, Waltrous, Doherty, Parrilo, Spedalieri, Rains, . . .

- finance: lyengar, Goldfarb, . . .


## Moment problems

$$
\mu_{i}=\mathbf{E} t^{i}, \quad i=1, \ldots, 2 n
$$

for some probability distribution on $\mathbf{R}$ if and only if

$$
H(\mu)=\left[\begin{array}{ccccc}
1 & \mu_{1} & \cdots & \mu_{n-1} & \mu_{n} \\
\mu_{1} & \mu_{2} & \cdots & \mu_{n} & \mu_{n+1} \\
\vdots & \vdots & & \vdots & \vdots \\
\mu_{n-1} & \mu_{n} & \cdots & \mu_{2 n-2} & \mu_{2 n-1} \\
\mu_{n} & \mu_{n+1} & \cdots & \mu_{2 n-1} & \mu_{2 n}
\end{array}\right] \succeq 0
$$

- an LMI in $\mu$
- similar results for bounded and half-bounded intervals; trigonometric moments


## Moment bounds via SDP

problem: given bounds on moments, $\underline{\mu}_{i} \leq \mathbf{E} t^{i} \leq \bar{\mu}_{i}$, find bounds on

$$
\mathbf{E}\left(c_{0}+c_{1} t+\cdots+c_{2 n} t^{2 n}\right)=c^{T} \mu
$$

$$
\begin{array}{ll}
\operatorname{maximize}(\text { minimize }) & \mathbf{E}\left(c_{0}+c_{1} t+\cdots+c_{2 n} t^{2 n}\right) \\
\text { subject to } & \underline{\mu}_{i} \leq \mathbf{E} t^{i} \leq \bar{\mu}_{i}, \quad i=1, \ldots, 2 n
\end{array}
$$

over all probability distributions on $\mathbf{R}$
can be expressed as SDP

$$
\begin{array}{ll}
\text { maximize (minimize) } & c^{T} \mu \\
\text { subject to } & \underline{\mu}_{i} \leq \mu_{i} \leq \bar{\mu}_{i}, \quad H(\mu) \succeq 0
\end{array}
$$

## Portfolio risk

- portfolio of $n$ assets invested for single period
- $w_{i}$ is amount of investment in asset $i$
- returns of assets is random vector $r$ with mean $\bar{r}$, covariance $\Sigma$
- portfolio return is random variable $r^{T} w$
- mean portfolio return is $\bar{r}^{T} w$; variance is $V=w^{T} \Sigma w$
value at risk \& probability of loss are related to portfolio variance $V$


## Risk bound with uncertain covariance

now suppose:

- $w$ is known (and fixed)
- have only partial information about $\Sigma$, i.e.,

$$
L_{i j} \leq \Sigma_{i j} \leq U_{i j}, \quad i, j=1, \ldots, n
$$

problem: how large can portfolio variance $V=w^{T} \Sigma w$ be?

## Risk bound via SDP

can get (tight) bound on $V$ via SDP:

$$
\begin{array}{ll}
\operatorname{maximize} & w^{T} \Sigma w \\
\text { subject to } & \Sigma \succeq 0 \\
& L_{i j} \leq \Sigma_{i j} \leq U_{i j}
\end{array}
$$

(note extra constraint $\Sigma \succeq 0$ )
many extensions possible, e.g., optimize portfolio $w$ with worst-case variance limit

## Risk bounding example

variance bounding with sign constraints on $\Sigma$ :

$$
w=\left[\begin{array}{r}
1 \\
2 \\
-.5 \\
.5
\end{array}\right], \quad \Sigma=\left[\begin{array}{cccc}
1 & + & + & ? \\
+ & 1 & - & - \\
+ & - & 1 & + \\
? & - & + & 1
\end{array}\right]
$$

$$
\left(i . e ., \Sigma_{12} \geq 0, \Sigma_{23} \leq 0, \ldots\right)
$$

result: maximum value of $V$ is 10.1 , with

$$
\Sigma=\left[\begin{array}{rrrr}
1.00 & 0.80 & 0.00 & 0.50 \\
0.80 & 1.00 & -.58 & 0.00 \\
0.00 & -.58 & 1.00 & 0.46 \\
0.50 & 0.00 & 0.46 & 1.00
\end{array}\right]
$$

(which has rank 3 , so $\mathrm{LMI} \Sigma \succeq 0$ is active)

# Relaxations \& Randomization 

## Relaxations \& randomization

convex optimization is increasingly used

- to find good bounds for hard (i.e., nonconvex) problems, via relaxation
- as a heuristic for finding good suboptimal points, often via randomization


## Example: Boolean least-squares

Boolean least-squares problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|^{2} \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- basic problem in digital communications
- could check all $2^{n}$ possible values of $x \ldots$
- an NP-hard problem, and very hard in practice
- many heuristics for approximate solution


## Boolean least-squares as matrix problem

$$
\begin{aligned}
\|A x-b\|^{2} & =x^{T} A^{T} A x-2 b^{T} A x+b^{T} b \\
& =\operatorname{Tr} A^{T} A X-2 b^{T} A^{T} x+b^{T} b
\end{aligned}
$$

where $X=x x^{T}$
hence can express BLS as

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr} A^{T} A X-2 b^{T} A x+b^{T} b \\
\text { subject to } & X_{i i}=1, \quad X \succeq x x^{T}, \quad \operatorname{rank}(X)=1
\end{array}
$$

.. still a very hard problem

## SDP relaxation for BLS

ignore rank one constraint, and use

$$
X \succeq x x^{T} \Longleftrightarrow\left[\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right] \succeq 0
$$

to obtain SDP relaxation (with variables $X, x$ )

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr} A^{T} A X-2 b^{T} A^{T} x+b^{T} b \\
\text { subject to } & X_{i i}=1, \quad\left[\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right] \succeq 0
\end{array}
$$

- optimal value of SDP gives lower bound for BLS
- if optimal matrix is rank one, we're done


## Interpretation via randomization

- can think of variables $X, x$ in SDP relaxation as defining a normal distribution $z \sim \mathcal{N}\left(x, X-x x^{T}\right)$, with $\mathbf{E} z_{i}^{2}=1$
- SDP objective is $\mathbf{E}\|A z-b\|^{2}$
suggests randomized method for BLS:
- find $X^{\star}, x^{\star}$, optimal for SDP relaxation
- generate $z$ from $\mathcal{N}\left(x^{\star}, X^{\star}-x^{\star} x^{\star}\right)$
- take $x=\operatorname{sgn}(z)$ as approximate solution of BLS (can repeat many times and take best one)


## Example

- (randomly chosen) parameters $A \in \mathbf{R}^{150 \times 100}, b \in \mathbf{R}^{150}$
- $x \in \mathbf{R}^{100}$, so feasible set has $2^{100} \approx 10^{30}$ points

LS approximate solution: minimize $\|A x-b\|$ s.t. $\|x\|^{2}=n$, then round yields objective $8.7 \%$ over SDP relaxation bound
randomized method: (using SDP optimal distribution)

- best of 20 samples: $3.1 \%$ over SDP bound
- best of 1000 samples: $2.6 \%$ over SDP bound



## Interior-Point Methods

## Interior-point methods

- handle linear and nonlinear convex problems Nesterov \& Nemirovsky
- based on Newton's method applied to 'barrier' functions that trap $x$ in interior of feasible region (hence the name IP)
- worst-case complexity theory: \# Newton steps $\sim \sqrt{\text { problem size }}$
- in practice: \# Newton steps between 20 \& 50 (!)
- over wide range of problem dimensions, type, and data
- 1000 variables, 10000 constraints feasible on PC; far larger if structure is exploited
- readily available (commercial and noncommercial) packages


## Log barrier

for convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

we define logarithmic barrier as

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right)
$$

- $\phi$ is convex, smooth on interior of feasible set
- $\phi \rightarrow \infty$ as $x$ approaches boundary of feasible set


## Central path

## central path is curve

$$
x^{\star}(t)=\underset{x}{\operatorname{argmin}}\left(t f_{0}(x)+\phi(x)\right), \quad t \geq 0
$$

- $x^{\star}(t)$ is strictly feasible, i.e., $f_{i}(x)<0$
- $x^{\star}(t)$ can be computed by, e.g., Newton's method
- intuition suggests $x^{\star}(t)$ converges to optimal as $t \rightarrow \infty$
- using duality can prove $x^{\star}(t)$ is $m / t$-suboptimal


## Barrier method

a.k.a. path-following method

$$
\begin{aligned}
& \text { given strictly feasible } x, t>0, \mu>1 \\
& \text { repeat } \\
& \text { 1. compute } x:=x^{\star}(t) \\
& \quad \text { (using Newton's method, starting from } x \text { ) } \\
& \text { 2. exit if } m / t<\text { tol } \\
& \text { 3. } t:=\mu t
\end{aligned}
$$

duality gap reduced by $\mu$ each outer iteration

## Typical convergence of IP method



## Typical effort versus problem dimensions

- LPs with $n$ vbles, $2 n$ constraints
- 100 instances for each of 20 problem sizes
- avg \& std dev shown



## Computational effort per Newton step

- Newton step effort dominated by solving linear equations to find primal-dual search direction
- equations inherit structure from underlying problem
- equations same as for least-squares problem of similar size and structure
conclusion:
we can solve a convex problem with about the same effort as solving 20-50 least-squares problems


## Problem structure

common types of structure:

- sparsity
- state structure
- Toeplitz, circulant, Hankel; displacement rank
- Kronecker, Lyapunov structure
- symmetry


## Exploiting sparsity

- well developed, since late 1970s
- direct (sparse factorizations) and iterative methods (CG, LSQR)
- standard in general purpose LP, QP, GP, SOCP implementations
- can solve problems with $10^{5}, 10^{6}$ vbles, constraints (depending on sparsity pattern)


## Other interior-point methods

more sophisticated IP algorithms

- primal-dual, incomplete centering, infeasible start
- use same ideas, e.g., central path, log barrier
- readily available (commercial and noncommercial packages)
typical performance: $20-50$ Newton steps (!)
- over wide range of problem dimensions, problem type, and problem data


## Conclusions

## Conclusions

convex optimization

- theory fairly mature; practice has advanced tremendously last decade
- qualitatively different from general nonlinear programming
- cost only $30 \times$ more than least-squares, but far more expressive
- lots of applications still to be discovered


## Some references

- Semidefinite Programming, SIAM Review 1996
- Applications of Second-order Cone Programming, LAA 1999
- Linear Matrix Inequalities in System and Control Theory, SIAM 1994
- Interior-point Polynomial Algorithms in Convex Programming, SIAM 1994, Nesterov \& Nemirovsky
- Lectures on Modern Convex Optimization, SIAM 2001, Ben Tal \& Nemirovsky


## Shameless promotion

## Convex Optimization, Boyd \& Vandenberghe

- published by Cambridge University Press 2003; ready soon
- complete text available now (and in future) at www.stanford.edu/~ $b o y d / c v x b o o k . h t m l$

