Wave-equation migration: Theory

Robert J. Ferguson
Jackson School of Geosciences
University of Texas, Austin

Symbols

Symbol	Name	Units
$\mathbf{x} \Leftrightarrow\left(x_{1}, x_{2}, x_{3}\right)$	position vector $\left(x_{3}\right.$ is depth)	m
$\mathbf{y} \Leftrightarrow\left(y_{1}, y_{2}, y_{3}\right)$	position vector $\left(y_{3}\right.$ is depth $)$	m
t	time	s
ω	circular frequency	$\mathrm{s}-1$
$\mathbf{p} \Leftrightarrow\left(p_{1}, p_{2}, p_{3}\right)$	slowness vector $\left(p_{3}\right.$ is vertical slowness $)$	$\mathrm{s} \mathrm{m}-1$
ψ	P-wave scalar potential	
φ	spectrum of ψ	
A	amplitude	$\mathrm{N} \mathrm{m}-3$
$\mathbf{C} \Leftrightarrow C_{i j k l}$	elastic coefficients	$\mathrm{N} \mathrm{m}-2$
$\sigma \Leftrightarrow \sigma_{i j}$	stress	m
$\mathbf{u} \Leftrightarrow\left(u_{1}, u_{2}, u_{3}\right)$	displacement vector	$\mathrm{N} \mathrm{m}-3$
λ	Lamé parameter	$\mathrm{m} \mathrm{s}-1$
v	P-wave velocity	$\mathrm{kg} \mathrm{m}^{-3}$
ρ	density	
\mathbf{W}	extrapolation operator	
\mathbf{R}	reflection operator	a single element of \mathbf{R}
r	angle measured from the normal to a reflector	$\mathrm{rad} / \mathrm{deg}$
ϕ		

Introduction

- The path between a source at depth $-x_{3}$, a boundary at depth 0 , and a receiver at depth $-x_{3}$ may be represented as follows

$$
\begin{array}{|l|}
\hline \text { Source } \rightarrow \text { Down } \rightarrow \text { Reflect } \rightarrow \text { Up } \rightarrow \text { Receive } \\
\hline
\end{array}
$$

- Symbolically, for each ω, the path can be written

$$
\psi_{S}\left|-x_{3} \rightarrow \mathbf{W}_{x_{3}} \rightarrow \mathbf{R}_{0} \rightarrow \mathbf{W}_{-x_{3}} \rightarrow \psi_{R}\right|-x_{3}
$$

Figure 1: Snapshot of a propagating wavefield in an elastic medium. (Courtesy of L. Fishman)

- An elementary equation for modeling is

$$
\left.\psi_{R}\right|_{-x_{3}}=\left[\left.\mathbf{W}_{-x_{3}} \mathbf{R}_{0} \mathbf{W}_{x_{3}} \psi_{S}\right|_{-x_{3}}\right]_{-x_{3}}
$$

- An elementary equation for imaging is

$$
\left[\left.\mathbf{W}_{-x_{3}}^{-1} \psi_{R}\right|_{-x_{3}}\right]\left[\left.\mathbf{W}_{x_{3}} \psi_{S}\right|_{-x_{3}}\right]^{-1}=\mathbf{R}_{0}
$$

- In general, \mathbf{R} and \mathbf{W} are heterogeneous and anisotropic

Reflection operator $\mathbf{R}_{\mathbf{0}}$

- At a boundary between elastic media, ...

... we have continuity equations:

1. Continuity of displacement $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$

$$
\left[\mathbf{u}^{+}+\mathbf{u}^{-}\right]_{I}=\mathbf{u}_{T}^{+}
$$

2. Continuity of stress σ

$$
\left[\sigma^{+}+\sigma^{-}\right]_{I}=\sigma_{T}^{+}
$$

- For small deformations, \mathbf{C} relates σ and \mathbf{u} through

$$
\sigma_{i j}=C_{i j k l} \frac{1}{2}\left[u_{k, l}+u_{l, k}\right]
$$

- In terms of \mathbf{u}, continuity of σ becomes

$$
\begin{aligned}
& {\left[C_{i j k l}\left[u_{k, l}^{+}+u_{l, k}^{+}+u_{k, l}^{-}+u_{l, k}^{-}\right]\right]_{I}} \\
& =\left[C_{i j k l}\left[u_{k, l}^{+}+u_{l, k}^{+}\right]\right]_{T}
\end{aligned}
$$

- Given $\mathbf{u}_{I}^{+}, \mathbf{u}_{I}^{-}$, and \mathbf{C}_{I} we can compute \mathbf{C}_{T}
- Practical realities make \mathbf{C}_{T} estimation difficult
- only $\left[u_{3}^{-}\right]_{I}$ (land), or pressure (sea) are recorded
- measurements of \mathbf{u}_{I}^{+}in the far field are rare
- only a scalar estimate of \mathbf{C}_{I} is obtained
- To gain insight, try a simpler model of the medium
- Consider, then, a boundary between fluid media

- Fluids don't support shear, so the continuity equations simplify

1. Continuity of displacement

$$
\left[u_{3}^{+}+u_{3}^{-}\right]_{I}=\left[u_{3}^{+}\right]_{T}
$$

2. Continuity of stress

$$
\left[\lambda\left[u_{3,3}^{+}+u_{3,3}^{-}\right]\right]_{I}=\left[\lambda u_{3,3}^{+}\right]_{T}
$$

- In the Fourier domain

$$
u_{3}^{ \pm}\left(x_{3}, \omega\right)=\frac{1}{2 \pi} \int \omega A\left(p_{3}, \omega\right) e^{ \pm i \omega p_{3} x_{3}} d p_{3}
$$

and

$$
u_{3,3}^{ \pm}\left(x_{3}, \omega\right)= \pm \frac{1}{2 \pi} \int i \omega^{2} p_{3} A\left(p_{3}, \omega\right) e^{ \pm i \omega p_{3} x_{3}} d p_{3}
$$

- Then, for a boundary at $x_{3}=0$, the continuity equations become

1. Continuity of displacement

$$
\left[A^{+}+A^{-}\right]_{I}=\left[A^{+}\right]_{T}
$$

2. Continuity of stress

$$
\left[\lambda p_{3}\left[A^{+}-A^{-}\right]\right]_{I}=\left[-\lambda p_{3} A^{+}\right]_{T}
$$

- Define $r=\left[A^{-} / A^{+}\right]_{I}$, and use the continuity equations to get

$$
r=\frac{\left[\lambda p_{3}\right]_{I}-\left[\lambda p_{3}\right]_{T}}{\left[\lambda p_{3}\right]_{I}+\left[\lambda p_{3}\right]_{T}}
$$

- For reflection of the plane wave defined by $p_{2}=0$, we have from the scalar wave-equation

$$
\lambda p_{3}=\frac{\lambda}{v} \sqrt{1-\left(v p_{1}\right)^{2}}=\rho v \sqrt{1-\left(v p_{1}\right)^{2}}
$$

- So r in a fluid is depends on p according to

$$
r=\frac{Z_{T}-Z_{I}}{Z_{I}+Z_{T}}
$$

where

$$
Z\left(p_{1}\right)=\rho v \sqrt{1-\left(v p_{1}\right)^{2}}
$$

- Reflectivity r is angle dependent

Figure 2: Acoustic reflectivity in angle coordinates.

Figure 3: Close up of seismic reflection.

Figure 4: Unit vector $\hat{\mathrm{n}}$ is normal to a plane wave, $\hat{\mathrm{d}}$ is normal to a reflecting boundary, and $\hat{\mathbf{k}}$ is normal to the recording surface. Vectors \mathbf{u} and \mathbf{v} are in-the-plane of the plane wave.

Plane waves

- Ray parameters p_{1}, p_{2}, and p_{3} define a plane wave in $\left(x_{1}, x_{2}, x_{3}\right)$ where

$$
p_{3}=\frac{1}{v} \sqrt{1-\left(v p_{1}\right)^{2}-\left(v p_{2}\right)^{2}}
$$

- The equation for p_{3} comes from $F T\left\{\nabla^{2} \psi+\left(\frac{\omega}{v}\right)^{2} \psi=0\right\}$, where $\psi(\mathbf{x}, \omega)=\frac{1}{(2 \pi)^{3}} \int \omega \varphi(\mathbf{p}, \omega) e^{i \omega[\mathbf{p} \cdot \mathbf{x}-t]} d \mathbf{p}$, and v is constant
- Given vectors \mathbf{u} and \mathbf{v} in the plane of the plane wave, normal $\hat{\mathbf{n}}_{I}$ to the plane wave is computed

$$
\hat{\mathbf{n}}_{I}=\frac{\mathbf{u} \times \mathbf{v}}{|\mathbf{u} \times \mathbf{v}|}
$$

- $\hat{\mathbf{n}}_{I}$ points in the direction of propagation of the incident plane-wave
- At a boundary, angle ϕ between $\hat{\mathbf{n}}_{I}$ and normal $\hat{\mathbf{d}}$ to the boundary provides wavenumber $p_{\hat{\mathbf{n}}_{I}}$ from which to compute $r\left(p_{\hat{\mathbf{n}}_{I}}\right)$ according to

$$
p_{\hat{\mathbf{n}}_{I}}=\frac{\sin \phi}{v}=\frac{1}{v}\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right|
$$

- Given, $\mathbf{u}=\left(\Delta x_{1} \hat{\mathbf{i}}+0 \hat{\mathbf{j}}-\Delta x_{3} \hat{\mathbf{k}}\right)$, and $\mathbf{v}=\left(\Delta x_{1} \hat{\mathbf{i}}+\Delta x_{2} \hat{\mathbf{j}}+0 \hat{\mathbf{k}}\right)$ for example, $\mathbf{u} \times \mathbf{v}$ is

$$
\mathbf{u} \times \mathbf{v}=\Delta x_{3} \Delta x_{2} \hat{\mathbf{i}}+\Delta x_{3} \Delta x_{1} \hat{\mathbf{j}}+\Delta x_{1} \Delta x_{2} \hat{\mathbf{k}}
$$

- For plane waves, write travel time in terms of p_{3}

$$
\Delta x_{j}=\frac{\Delta t}{p_{j}}=\frac{\Delta x_{3} p_{3}}{p_{j}},
$$

and $\hat{\mathbf{u}} \times \hat{\mathbf{v}}$ becomes

$$
\mathbf{u} \times \mathbf{v}=\Delta x_{3}^{2} p_{3}\left[\frac{1}{p_{2}} \hat{\mathbf{i}}+\frac{1}{p_{1}} \hat{\mathbf{j}}+\frac{p_{3}}{p_{1} p_{2}} \hat{\mathbf{k}}\right]=\frac{\Delta x_{3}^{2} p_{3}}{p_{1} p_{2}}\left[p_{1} \hat{\mathbf{i}}+p_{2} \hat{\mathbf{j}}+p_{3} \hat{\mathbf{k}}\right]
$$

- Normal $\hat{\mathbf{n}}_{I}=\frac{\mathbf{u} \times \mathbf{v}}{|\mathbf{u} \times \mathbf{v}|}$ to the incident plane-wave is then computed as

$$
\hat{\mathbf{n}}_{I}=\frac{\mathbf{u} \times \mathbf{v}}{|\mathbf{u} \times \mathbf{v}|}=\frac{p_{1} \hat{\mathbf{i}}+p_{2} \hat{\mathbf{j}}+p_{3} \hat{\mathbf{k}}}{\sqrt{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}}
$$

- recall, $p_{3}=\frac{1}{v} \sqrt{1-\left(v p_{1}\right)^{2}-\left(v p_{2}\right)^{2}}$, so $\hat{\mathbf{n}}_{I} \Rightarrow \hat{\mathbf{n}}_{I}\left(p_{1}, p_{2}\right)$
- Given incident unit-vector $\hat{\mathbf{n}}_{I}$ and normal to the boundary $\hat{\mathbf{d}}$, reflection coefficient $r\left(p_{\hat{\mathbf{n}}_{I}}=\frac{1}{v}\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right|\right)$ may now be computed
- As an example, for a horizontal boundary, $\hat{\mathbf{d}}=(0 \hat{\mathbf{i}}+0 \hat{\mathbf{j}}+\hat{\mathbf{k}})$, and $\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}$ is computed as

$$
\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}=\hat{\mathbf{n}}_{I} \times \hat{\mathbf{k}}=\frac{p_{2} \hat{\mathbf{i}}+p_{1} \hat{\mathbf{j}}}{\sqrt{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}}
$$

and effective wavenumber $p_{\hat{\mathbf{n}}_{I}}$ is

$$
p_{\hat{\mathbf{n}}_{I}}=\frac{1}{v}\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{k}}\right|=\frac{1}{v} \sqrt{\frac{p_{1}^{2}+p_{2}^{2}}{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}}
$$

- Then, for a horizontal boundary in 2D, $p_{2}=0, p_{3}=\frac{1}{v} \sqrt{1-\left(v p_{1}\right)^{2}}$, and $p_{\hat{\mathbf{n}}_{I}} \Rightarrow p_{1}$

$$
\left.p_{\hat{\mathbf{n}}_{I}}\right|_{p_{2}=0}=\frac{1}{v} \frac{p_{1}}{\sqrt{p_{1}^{2}+p_{3}^{2}}}=\frac{1}{v} \frac{p_{1}}{\sqrt{1 / v^{2}}}=p_{1}
$$

as expected

Figure 5: A model of reflection from a dipping boundary.

Plane-wave reflection

- Following reflection, $\hat{\mathbf{n}}_{I}$ and $\hat{\mathbf{d}}$ are related to reflected plane-wave $\hat{\mathbf{n}}_{R}=$ $\left(n_{R 1} \hat{\mathbf{i}}+n_{R 2} \hat{\mathbf{j}}+n_{R 3} \hat{\mathbf{k}}\right)$ through a unit-vector $\hat{\mathbf{a}}$
- $\hat{\mathbf{a}}$ is normal to the plane containing $\hat{\mathbf{n}}_{I}$, $\hat{\mathbf{d}}$, and $\hat{\mathbf{n}}_{R}$
- From $\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}$ and $\sin \phi=\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right|$ we have

$$
\hat{\mathbf{a}}=\frac{\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}}{\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right|}
$$

- Trig' identity $\sin (\pi-\phi)=\sin \phi=\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right|$, and $\hat{\mathbf{n}}_{R} \times \hat{\mathbf{d}}$ give

$$
\hat{\mathbf{a}}=\frac{\hat{\mathbf{n}}_{R} \times \hat{\mathbf{d}}}{\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right|}
$$

- From $\sin (\pi-2 \phi)=\sin (2 \phi)=2 \sin \phi \cos \phi=2\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right| \hat{\mathbf{n}}_{I} \cdot \hat{\mathbf{d}}$, and $\hat{\mathbf{n}}_{R} \times \hat{\mathbf{n}}_{I}$ we have

$$
\hat{\mathbf{a}}=\frac{\hat{\mathbf{n}}_{R} \times \hat{\mathbf{n}}_{\mathbf{I}}}{2\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right| \hat{\mathbf{n}}_{I} \cdot \hat{\mathbf{d}}}
$$

- Three equations for â allow computation of ($n_{R 1}, n_{R 2}, n_{R 3}$)
- we must solve a system of equations
- Once, $\left(n_{R 1}, n_{R 2}, n_{R 3}\right)$ are known, ray parameters $\left(p_{R 1}, p_{R 2}\right)$ of the reflected wavefield are then calculated according to

$$
\hat{\mathbf{n}}_{R}=n_{R 1} \hat{\mathbf{i}}+n_{R 2} \hat{\mathbf{j}}+n_{R 3} \hat{\mathbf{k}}=\frac{p_{R 1} \hat{\mathbf{i}}+p_{R 2} \hat{\mathbf{j}}+p_{R 3} \hat{\mathbf{k}}}{\sqrt{p_{R 1}^{2}+p_{R 2}^{2}+p_{R 3}^{2}}}
$$

where $p_{R 3}=\frac{1}{v} \sqrt{1-\left(v p_{R 1}\right)^{2}-\left(v p_{R 2}\right)^{2}}$

- For example, when $\hat{\mathbf{d}}=\hat{\mathbf{k}}$, we have

$$
\frac{\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}}{\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right|}=\frac{n_{I 2} \hat{\mathbf{i}}+n_{I 1} \hat{\mathbf{j}}}{\sqrt{n_{I 1}^{2}+n_{I 2}^{2}}}
$$

and

$$
\frac{\hat{\mathbf{n}}_{R} \times \hat{\mathbf{d}}}{\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right|}=\frac{n_{R 2} \hat{\mathbf{i}}+n_{R 1} \hat{\mathbf{j}}}{\sqrt{n_{I 1}^{2}+n_{I 2}^{2}}}
$$

so that $n_{R 1}=n_{I 1}$ and $n_{R 2}=n_{I 2}$

- Further, to compute $n_{R 3}$, we have

$$
\frac{\hat{\mathbf{n}}_{R} \times \hat{\mathbf{n}}_{I}}{2\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right| \hat{\mathbf{n}}_{I} \cdot \hat{\mathbf{d}}}=\frac{1}{2 n_{I 3} \sqrt{n_{I 1}^{2}+n_{I 2}^{2}}}\left[\begin{array}{c}
\left(n_{R 2} n_{I 3}-n_{R 3} n_{I 2}\right) \hat{\mathbf{i}} \\
\left(n_{R 1} n_{I 3}-n_{R 3} n_{I 1}\right) \hat{\mathbf{j}} \\
\left(n_{R 1} n_{I 2}-n_{R 2} n_{I 1}\right) \hat{\mathbf{k}}
\end{array}\right]^{T}
$$

where, from the $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ components we have

$$
n_{R 3}=-n_{I 3}
$$

and so,

$$
\hat{\mathbf{n}}_{R}=n_{I 1} \hat{\mathbf{i}}+n_{I 2} \hat{\mathbf{j}}-n_{I 3} \hat{\mathbf{k}}=\frac{p_{1} \hat{\mathbf{i}}+p_{2} \hat{\mathbf{j}}-p_{3} \hat{\mathbf{k}}}{\sqrt{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}}
$$

where $p_{3}=\frac{1}{v} \sqrt{1-\left(v p_{1}\right)^{2}-\left(v p_{2}\right)^{2}}$

- As a check, for $\hat{\mathbf{d}}=\hat{\mathbf{k}}, \hat{\mathbf{n}}_{R} \cdot \hat{\mathbf{k}}=\cos \theta_{R}=-p_{3} / \sqrt{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}$, and $\hat{\mathbf{n}}_{I} \cdot \hat{\mathbf{k}}=\cos \theta_{I}=p_{3} / \sqrt{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}$, and $\left|\theta_{R}\right|=\left|\theta_{I}\right|$ as expected

Figure 6: Non-specular reflection.

Figure 7: Specular(ish) reflection.

A model of the reflected wavefield

- A model of reflected wavefield φ_{R} is computed as

$$
\varphi_{R}\left(\mathbf{p}_{R}\right)=r\left(\mathbf{p}_{R}, \mathbf{p}\right) \varphi_{I}(\mathbf{p}),
$$

or, with coordinates $\mathbf{p}_{R}=\left(p_{R 1}, p_{R 2}\right)$, and $\mathbf{p}=\left(p_{1}, p_{2}\right)$ written explicitly

$$
\varphi_{R}\left(p_{R 1}, p_{R 2}\right)=r\left(p_{R 1}, p_{R 2}, p_{1}, p_{2}\right) \varphi_{I}\left(p_{1}, p_{2}\right)
$$

- If \hat{d} is unknown, we allow the possibility thea incident plane-wave
$\varphi_{I}\left(p_{1}, p_{2}\right)$ reflects in all directions (scatters)

$$
\left[\begin{array}{c}
\varphi_{R}\left(-p_{N}\right) \\
\vdots \\
\varphi_{R}(0) \\
\vdots \\
\varphi_{R}\left(p_{N}\right)
\end{array}\right]_{p_{R 2}}=\left[\begin{array}{c}
r\left(-p_{N}, p_{1}, p_{2}\right) \\
\vdots \\
r\left(0, p_{1}, p_{2}\right) \\
\vdots \\
r\left(p_{N}, p_{1}, p_{2}\right)
\end{array}\right]_{p_{R 2}} \varphi_{I}\left(p_{1}, p_{2}\right)
$$

where $\left(-p_{N} \leq p_{R 1} \leq p_{N}\right), p_{N}=\frac{\pi}{\Delta x \omega}$ (Nyquist ray-parameter), and we consider a single $p_{R 2}$ for simplicity

- Recognize that, for specular reflection, only one (unknown) combination of \mathbf{p}_{R} and \mathbf{p} results in non-zero r
- For each \mathbf{p}_{R}, then, sum up all $r \varphi_{I}$ for all incident \mathbf{p} according to

$$
\varphi_{R}\left(p_{R 1}, p_{R 2}\right)=\left[\begin{array}{c}
r\left(p_{R 1}, p_{R 2},-p_{N}\right) \\
\vdots \\
r\left(p_{R 1}, p_{R 2}, 0\right) \\
\vdots \\
r\left(p_{R 1}, p_{R 2}, p_{N}\right)
\end{array}\right]_{p_{2}}^{T}\left[\begin{array}{c}
\varphi_{I}\left(-p_{N}\right) \\
\vdots \\
\varphi_{I}(0) \\
\vdots \\
\varphi_{I}\left(p_{N}\right)
\end{array}\right]_{p_{2}}
$$

where ($-p_{N} \leq p_{1} \leq p_{N}$) and we consider a single p_{2} for simplicity

- We may consider, then, all combinations of φ_{I} and φ_{R} according to

$$
\vec{\varphi}_{R}=\mathbf{R} \vec{\varphi}_{I},
$$

where

$$
\vec{\varphi}_{R}=\left[\varphi_{R}\left(-p_{N}\right), \cdots, \varphi_{R}(0) \cdots, \varphi_{R}\left(p_{N}\right)\right]_{p_{R 2}}^{T}
$$

and

$$
\vec{\varphi}_{I}=\left[\varphi_{I}\left(-p_{N}\right), \cdots, \varphi_{I}(0) \cdots, \varphi_{I}\left(p_{N}\right)\right]_{p_{2}}^{T}
$$

- Reflectivity $r \rightarrow \mathbf{R}$ is now a matrix

$$
\mathbf{R}=\left[\begin{array}{ccccc}
r\left(-p_{N},-p_{N}\right) & \cdots & r\left(-p_{N}, 0\right) & \cdots & r\left(-p_{N}, p_{N}\right) \\
\vdots & \ddots & \vdots & & \vdots \\
r\left(0,-p_{N}\right) & \cdots & r(0,0) & \cdots & r\left(0, p_{N}\right) \\
\vdots & & \cdots & \ddots & \vdots \\
r\left(p_{N},-p_{N}\right) & \cdots & r\left(p_{N}, 0\right) & \cdots & r\left(p_{N}, p_{N}\right)
\end{array}\right]_{\left(p_{R 2}, p_{2}\right)}
$$

- Further we may consider M incident plane-waves and M reflected planewaves simultaneously according to

$$
\overrightarrow{\vec{\varphi}}_{R}=\mathbf{R} \overrightarrow{\vec{\varphi}}_{I}
$$

where

$$
\overrightarrow{\vec{\varphi}}_{R}=\left[\vec{\varphi}_{1}, \cdots, \vec{\varphi}_{M}\right]_{R}
$$

and

$$
\overrightarrow{\vec{\varphi}_{I}}=\left[\vec{\varphi}_{1}, \cdots, \vec{\varphi}_{M}\right]_{I}
$$

- Then, to determine the complete reflected-wavefield, compute φ_{R} for all combinations of p_{2} and $p_{R 2}$
- Given R, and using the above model, all specular reflections are computed automatically for all incident plane-waves

Extrapolation operator W

- From the phase-shift theorem, spectrum φ_{0} of wavefield ψ at boundary $x_{3}=0$ is computed from $\varphi_{ \pm \Delta x_{3}}$ according to

$$
\left.\varphi\left(p_{1}, p_{2}, \omega\right)\right|_{x_{3}=0}=\left.\varphi\left(p_{1}, p_{2}, \omega\right)\right|_{x_{3}= \pm \Delta x_{3}} e^{\mp i \omega p_{3} \Delta x_{3}}
$$

where

$$
\left.\varphi\left(p_{1}, p_{2}, \omega\right)\right|_{x_{3}=u}=\frac{1}{2 \pi} \int \psi(\mathbf{x}, t) e^{i \omega\left[p_{1} x_{1}+p_{2} x_{2}-t\right]} \delta\left(x_{3}-u\right) d \mathbf{x} d t
$$

- Wavefield $\psi_{x_{3}=0}$ is then computed from $\varphi_{x_{3}=0}$ by inverse transform $\left(p_{1} \rightarrow x_{1}, p_{2} \rightarrow x_{2}, \omega \rightarrow t\right)$
- For a single frequency ω, then, we have

$$
\left.\psi\left(x_{1}, x_{2}\right)\right|_{x_{3}=0}=\left.\left.\int \psi\left(y_{1}, y_{2}\right)\right|_{x_{3}= \pm \Delta x_{3}} W\left(x_{1}, x_{2}, y_{1}, y_{2}\right)\right|_{\mp \Delta x_{3}} d y_{1} d y_{2}
$$

where, $\left(y_{1}, y_{2}\right)$ are space coordinates of the wavefield at depth $x_{3}=$ $\pm \Delta x_{3}$ and,

$$
\begin{aligned}
& \left.\mathbf{W} \Leftrightarrow W\left(x_{1}, x_{2}, y_{1}, y_{2}, \omega\right)\right|_{\mp \Delta x_{3}} \\
& =\frac{1}{(2 \pi)^{2}} \int \omega^{2} e^{-i \omega p_{1}\left[x_{1}-y_{1}\right]} e^{-i \omega p_{2}\left[x_{2}-y_{2}\right]} e^{\mp i \omega p_{3} \Delta x_{3}} d p_{1} d p_{2}
\end{aligned}
$$

- Of course, $p_{3} \Leftrightarrow p_{3}\left(p_{1}, p_{2}, v\right)$
- If $v \Leftrightarrow v(\mathbf{x})$, then $p_{3} \Leftrightarrow p_{3}\left(\mathbf{x}, p_{1}, p_{2}, \omega\right)$ and

$$
\left.\left.\left.\psi\left(x_{1}, x_{2}\right)\right|_{x_{3}=0} \approx \int \psi\left(y_{1}, y_{2}\right)\right|_{x_{3}= \pm \Delta x_{3}} W\left(x_{1}, x_{2}, y_{1}, y_{2}\right)\right|_{\mp \Delta x_{3}} d y_{1} d y_{2}
$$

- In matrix-vector format for constant-velocity media

$$
\stackrel{\overrightarrow{\psi_{0}}}{0}=\mathbf{W}_{\mp \Delta x_{3}} \overrightarrow{\vec{\psi}}_{ \pm \Delta x_{3}}
$$

and for variable-velocity media

$$
\overrightarrow{\vec{\psi}}_{0} \approx \mathbf{W}_{\mp \Delta x_{3}} \overrightarrow{\vec{\psi}}_{ \pm \Delta x_{3}}
$$

Summary

- Reflectivity $r(p)$ is derived, commonly, for horizontal reflectors
- Modification $r(p) \Rightarrow r\left(p_{\hat{\mathbf{n}}}(\mathbf{p})\right)$ permits use of derived r for 3D, dipping boundaries
- When dip is known, the direction of reflected plane-waves $\mathbf{p}_{R}(\mathbf{p})$ is deduced
- When dip is not known, $r \Rightarrow \mathbf{R}$, and specular reflection corresponds to non-zero elements
- $\mathbf{W}_{ \pm \Delta x_{3}}$ are related closely to Fourier integrals - exact in constant-velocity media, approximate in variable-velocity media

Wave-equation migration: practice

Robert J. Ferguson
Jackson School of Geosciences
University of Texas, Austin

Figure 1: Snapshot of a propagating wavefield in an elastic medium. (Courtesy of L. Fishman)

From last WE class

- From a simple model of reflection

$$
\left.\psi_{I}\right|_{-x_{3}} \rightarrow \mathbf{W}_{x_{3}} \rightarrow \mathbf{R}_{0} \rightarrow \mathbf{W}_{-x_{3}} \rightarrow \psi_{R} \mid-x_{3}
$$

we arrive at a simple model of imaging

$$
\left[\left.\mathbf{W}_{-x_{3}}^{-1} \psi_{R}\right|_{-x_{3}}\right]\left[\left.\mathbf{W}_{x_{3}} \psi_{S}\right|_{x_{3}}\right]^{-1}=\mathbf{R}_{0}
$$

- What is \mathbf{R} ?
- Compute acoustic reflectivity $r\left(p_{\hat{\mathbf{n}}_{I}}\right)$ for dipping boundaries according to incident plane-wave $\left(p_{1}, p_{2}, \frac{1}{v} \sqrt{1-\left(v p_{1}\right)^{2}-\left(v p_{2}\right)^{2}}\right)$

$$
p_{\hat{\mathbf{n}}_{I}}=\frac{1}{v}\left|\hat{\mathbf{n}}_{I} \times \hat{\mathbf{d}}\right|,
$$

where $\hat{\mathbf{d}}$ is normal to the boundary, and

$$
\hat{\mathbf{n}}_{I}=\frac{p_{1} \hat{\mathbf{i}}+p_{2} \hat{\mathbf{j}}+p_{3} \hat{\mathbf{k}}}{\sqrt{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}}
$$

- Compute reflected spectrum $\varphi\left(\mathbf{p}_{R}\right)$ when $\hat{\mathbf{d}}$ is known

$$
\varphi_{R}\left(\mathbf{p}_{R}\right)=r\left(\mathbf{p}_{R}, \mathbf{p}\right) \varphi_{I}(\mathbf{p}),
$$

and when \hat{d} is unknown, compute as

$$
\left[\overrightarrow{\vec{\varphi}}_{R}\right]_{p_{R 2}}=\mathbf{R}\left[\overrightarrow{\vec{\varphi}_{I}}\right]_{p_{2}}
$$

for all source spectra and reflected spectra

- Matrix \mathbf{R} corresponds to fixed values of p_{2} and $p_{R 2}$, and non-zero elements correspond to specular reflection - it converts $\varphi_{I}(\mathbf{p})$ to $\varphi_{R}\left(\mathbf{p}_{\mathbf{R}}\right)$ at the boundary
- All reflected wavefields may then be modeled by looping over p_{2} and $p_{R 2}$, followed by inverse transform $\varphi\left(p_{R 1}, p_{R 2}, \omega\right) \Rightarrow \psi\left(x_{1}, x_{2}, t\right)$
- What is W?
- Extrapolation operator \mathbf{W} works in heterogeneous media according to

$$
\overrightarrow{\vec{\psi}}_{0} \approx \mathbf{W}_{\mp \Delta x_{3}} \overrightarrow{\vec{\psi}}_{ \pm \Delta x_{3}}
$$

where

$$
\begin{aligned}
& \quad \begin{array}{l}
\left.\mathbf{W} \Leftrightarrow W\left(x_{1}, x_{2}, y_{1}, y_{2}, \omega\right)\right|_{\mp \Delta x_{3}} \\
=\frac{1}{(2 \pi)^{2}} \int \omega^{2} e^{-i \omega p_{1}\left[x_{1}-y_{1}\right]} e^{-i \omega p_{2}\left[x_{2}-y_{2}\right]} e^{\mp i \omega p_{3} \Delta x_{3}} d p_{1} d p_{2}, \\
\text { and } p_{3} \Rightarrow p_{3}(v(\mathbf{x}))
\end{array} \text {. }
\end{aligned}
$$

Figure 2: \mathbf{R} for a boundary with dip $\hat{\mathbf{d}}$.

Practical reflection

- When the incident and reflected wavefields $\left[\vec{\varphi}_{I}\right]_{p_{2}}$ and $\left[\vec{\varphi}_{R}\right]_{p_{R 2}}$ are known, \mathbf{R} is estimated by

$$
[\mathbf{R}]_{p_{R 2}, p_{2}}=\left[\overrightarrow{\vec{\varphi}}_{R}\right]_{p_{R 2}}\left[\overrightarrow{\vec{\varphi}}_{I}\right]_{p 2}^{-1}
$$

- For $\left[\overrightarrow{\vec{\varphi}}_{I}\right]_{p_{2}}^{-1}$ to exist $\overrightarrow{\vec{\varphi}}_{I}$ must be square and have a non-zero determinant
- for square $\overrightarrow{\vec{\varphi}}_{I}$, the numbers of shots and receivers is the same, and the spacing is equal - when this is not so, damped least-squares or conjugate gradients can be used
- The result is large matrices and a huge computational cost to resolve each $\mathbf{R}(\mathbf{x})$ in the subsurface
- for example, inversion of $\overrightarrow{\vec{\varphi}}_{I}$ followed by multiplication by $\overrightarrow{\vec{\varphi}}_{R}$ requires 100's Gflops (estimated for 1000 shots and 1000 receivers) - this is the innermost calculation
- the innermost calculation lies within three loops: frequency, and the two slownesses $p_{R 2}$ and p_{2}

```
:
for w1 to wN
    for p1 to pN
        for pR1 to pRN
            100's of Gflops calculation
            end
        end
    end
```

!

Figure 3: For each \mathbf{x} in the subsurface, a very expensive calculation lies within 3 loops.

Figure 4: $\mathbf{R}_{p_{R 2}=p_{2}=0}$ for a boundary with dip $\hat{\mathbf{d}}=\hat{\mathbf{k}}$.

- If we know that $\hat{\mathbf{d}}$ for the boundary is the normal $\hat{\mathbf{k}},\left(p_{R 1}, p_{R 2}\right)=\left(p_{1}, p_{2}\right)$, and \mathbf{R} becomes diagonal

$$
\mathbf{R}=\left[\begin{array}{ccccc}
r\left(-p_{N},-p_{N}\right) & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & & \vdots \\
0 & \cdots & r(0,0) & \cdots & 0 \\
\vdots & & \cdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & r\left(p_{N}, p_{N}\right)
\end{array}\right]_{p_{2}}
$$

- We can then reduce matrix equation for \mathbf{R} to a scalar quotient

$$
r\left(p_{1}, p_{2}\right)=\frac{\varphi_{R}\left(p_{1}, p_{2}\right)}{\varphi_{I}\left(p_{1}, p_{2}\right)}
$$

that may be computed for individual gathers of data

- For a common-shot gather in 2D $\left(p_{2}=0\right)$, for example, r for shot \tilde{S} may be computed as

$$
\left[\begin{array}{c}
r\left(p_{-N}\right) \\
\vdots \\
r(0) \\
\vdots \\
r\left(p_{N}\right)
\end{array}\right]_{\tilde{S}}=\left[\begin{array}{c}
\frac{\varphi_{R}\left(p_{-N}\right)}{\varphi_{I}\left(p_{-N}\right)} \\
\vdots \\
\frac{\varphi_{R}(0)}{\varphi_{I}(0)} \\
\vdots \\
\frac{\varphi_{R}\left(p_{N}\right)}{\varphi_{I}\left(p_{N}\right)}
\end{array}\right]_{\tilde{S}},
$$

where $p_{-N} \leq p \leq p_{N}$

- For a common-angle gather in 3D, let $p_{2}=\tilde{p_{2}}$, and then r may be
computed as

$$
\left[\begin{array}{c}
r\left(p_{-N}\right) \\
\vdots \\
r(0) \\
\vdots \\
r\left(p_{N}\right)
\end{array}\right]_{\tilde{p}_{2}}=\left[\begin{array}{c}
\frac{\varphi_{R}\left(p_{-N}\right)}{\varphi_{I}\left(p_{-N}\right)} \\
\vdots \\
\frac{\varphi_{R}(0)}{\varphi_{I}(0)} \\
\vdots \\
\frac{\varphi_{R}\left(p_{N}\right)}{\varphi_{I}\left(p_{N}\right)}
\end{array}\right]_{\tilde{p}_{2}}
$$

- Computation of r above is done for each ω, so average \bar{r} may be computed by summing them up

$$
\bar{r}\left(p_{1}, p_{2}\right)=\sum_{\omega} \frac{\varphi_{R}\left(p_{1}, p_{2}, \omega\right)}{\varphi_{I}\left(p_{1}, p_{2}, \omega\right)}
$$

- The sum over ω is equivalent to an IFT $\omega \rightarrow t$ for $t=0$

$$
\bar{r}\left(p_{1}, p_{2}\right)=\frac{1}{2 \pi} \int \frac{\varphi_{R}\left(p_{1}, p_{2}, \omega\right)}{\varphi_{I}\left(p_{1}, p_{2}, \omega\right)} e^{i \omega[t=0]} d \omega
$$

- this is the $t=0$ imaging condition
- Further, if we are not interested in variation of r with $\left(p_{1}, p_{2}\right)$, we may produce a single \hat{r} at \mathbf{x} by summing over $\left(p_{1}, p_{2}\right)$

$$
\hat{r}=\sum_{\omega} \sum_{p_{1}} \sum_{p_{2}} \frac{\varphi_{R}\left(p_{1}, p_{2}, \omega\right)}{\varphi_{I}\left(p_{1}, p_{2}, \omega\right)},
$$

where we employ the $t=0$ imaging condition as well

- this is stacking over p_{1} and p_{2}
- Stacking and the $t=0$ imaging condition help reduce random noise, and they reduce the data volume in a rational way
- In practice, frequently, due probably to early use of W operators cast entirely in \mathbf{x}, \bar{r} is computed in \mathbf{x} as

$$
\bar{r}\left(x_{1}, x_{2}\right)_{x_{3}=0}=\sum_{\omega} \frac{\psi_{R}\left(x_{1}, x_{2}, \omega\right)_{x_{3}=0}}{\psi_{I}\left(x_{1}, x_{2}, \omega\right)_{x_{3}=0}}
$$

where $x_{3}=0$ is the depth to the boundary

- this implies, however, that r is independent of $\left(p_{1}, p_{2}\right)$
- For the example of a common-shot gather in 2D $x_{2}=0$, then, \bar{r} is
computed in \mathbf{x} as

$$
\left[\begin{array}{c}
\bar{r}\left(x_{-N}\right) \\
\vdots \\
\bar{r}(0) \\
\vdots \\
\bar{r}\left(x_{N}\right)
\end{array}\right]_{\tilde{S}}=\sum_{\omega}\left[\begin{array}{c}
\frac{\psi_{R}\left(x_{-N}\right)}{\psi_{I}\left(x_{-N}\right)} \\
\vdots \\
\frac{\psi_{R}(0)}{\psi_{I}(0)} \\
\vdots \\
\frac{\psi_{R}\left(x_{N}\right)}{\psi_{I}\left(x_{N}\right)}
\end{array}\right]_{\tilde{S}}
$$

returns r that varies with \mathbf{x} (offset) for each shot gather $\left(x_{3}=0\right.$ is suppressed here for brevity)

- any relationship, however, between $\bar{r}(\mathbf{x})$ and $r(p)$ obtained analytically is broken, and inversion of $\bar{r}(\mathbf{x})$ does not have much meaning in an absolute sense
- in a relative sense, inversion of $\bar{r}(\mathbf{x})$ has meaning - i.e. basic AVO
- Stacking of common-shot gathers may then be done in an \mathbf{x} consistent way according to

$$
\hat{r}(\mathbf{x})=\sum_{S} \bar{r}(\mathbf{x})_{S}
$$

Practical W

- For simplicity, in 2D media $\left(\mathbf{x} \Leftrightarrow\left(x_{1}, x_{3}\right)\right)$ and $\left(\mathbf{x} \Leftrightarrow\left(y_{1}, y_{3}\right)\right)$, our expression for \mathbf{W} is

$$
\left.\mathbf{W} \Leftrightarrow W(x, y, \omega)\right|_{ \pm \Delta x_{3}}=\frac{1}{2 \pi} \int \omega e^{-i \omega p[x-y]} \alpha\left(p_{3}, \omega\right)_{ \pm \Delta x_{3}} d p,
$$

where

$$
\alpha\left(p_{3}(x, p), \omega\right)_{ \pm \Delta x_{3}}=e^{ \pm i \frac{\omega}{v(x)} \sqrt{1-(v(x) p)^{2}} \Delta x_{3}}
$$

- Because α disrupts the symmetry of the Fourier kernal, computational cost for \mathbf{W} is $\propto \operatorname{Cost}\{\mathrm{FT}\} \propto N^{2}$ rather than $N \log _{2} N$ (N is the number of receivers)
- For 3D, cost $\propto N^{4}$
- a Tflop for 1000×1000 receivers
- For efficiency, use a series for α

$$
\alpha(x, p, \omega)_{ \pm \Delta x_{3}} \approx \sum_{j=0}^{n} a_{j}(x, \omega)_{ \pm \Delta x_{3}} b_{j}(p, \omega)_{ \pm \Delta x_{3}}
$$

where $0 \leq n<\infty$

- So that

$$
W(x, y, \omega)_{ \pm \Delta x_{3}}=\sum_{j=0}^{n} a_{j}(x, \omega)_{ \pm \Delta x_{3}} \frac{1}{2 \pi} \int \omega e^{-i \omega p[x-y]} b_{j}(p, \omega)_{ \pm \Delta x_{3}} d p
$$

and wavefield ψ_{0} is computed
$\psi(x, \omega)_{0}=\sum_{j=0}^{n} a_{j}(x, \omega)_{ \pm \Delta x_{3}} \int \varphi(p, \omega)_{\mp \Delta x_{3}} e^{-i \omega p x} b_{j}(p, \omega)_{ \pm \Delta x_{3}} \omega d p$,
where $\varphi(p, \omega)_{\mp \Delta x_{3}}=\int \psi(y)_{\mp \Delta x_{3}} e^{i \omega p y} d y$

- Now, cost $\propto n \times \operatorname{Cost}\{\mathrm{FFT}\}=n N \log _{2} N\left(\propto 2 n N^{2} \log _{2} N\right.$ in 3D)
$-\propto 10 n$ Mflops for 1000×1000 receivers

Summary

- \mathbf{R} very expensive to estimate
- a Gflop computation within 3 loops for every subsurface point \mathbf{x}
- numbers of sources and receivers must be the same and they must have even spacing (or the cost goes up)
- Assume horizontal boundaries
- a scalar calculation within 2 loops
- work with individual gathers of data - robust for irregular shots/reviver's
- The sum of r over ω is equivalent to the $t=0$ imaging condition
- The \mathbf{x} consistent sum of r over gathers (common shot, common receiver, common offset, common p, common mid-point, ...) is stacking
- Estimates of r computed in \mathbf{x} are valid in a relative sense only
- Extrapolation operator \mathbf{W} has a computational cost $\propto N^{4}$ when applied in 3D
- Factor α into series $\alpha(\mathbf{x}, \mathbf{p}) \approx \sum_{j}^{n} a_{j}(\mathbf{x}) b_{j}(\mathbf{p})$ for cost \propto $2 n N^{2} \log _{2} N$

Wave-equation migration: examples

Robert J. Ferguson
Jackson School of Geosciences
University of Texas, Austin

August 28, 2006

From last WE class

- In 2D space-coordinates, and relative reflection coefficient \hat{r} is given by

$$
\hat{r}\left(x_{1}\right)_{x_{3}=0}=\sum_{\omega} \sum_{G}\left[\frac{\psi_{R}\left(x_{1}, \omega\right)_{x_{3}=0}}{\psi_{I}\left(x_{1} \omega\right)_{x_{3}=0}}\right]_{G},
$$

where G represents a gather like a shot gather or a CMP

- Using \mathbf{W}, wavefields ψ_{R} and ψ_{I} on the boundary are computed

$$
\psi_{R}\left(x_{1}\right)_{0}=\int \psi_{R}\left(y_{1}\right)_{-\Delta x_{3}} W\left(x_{1}, y_{1}\right)_{-\Delta x_{3}} d y_{1}
$$

and

$$
\psi_{I}\left(x_{1}\right)_{0}=\int \psi_{I}\left(y_{1}\right)_{-\Delta x_{3}} W\left(x_{1}, y_{1}\right)_{-\Delta x_{3}} d y_{1}
$$

where extrapolator W is given by

$$
W(x, y, \omega)_{ \pm \Delta x_{3}}=\frac{1}{2 \pi} \int \omega e^{-i \omega p_{1}\left[x_{1}-y_{1}\right]} \alpha\left(x_{1}, p_{3}, \omega\right)_{ \pm \Delta x_{3}} d p_{1}
$$

and extrapolation-symbol α is

$$
\begin{aligned}
\alpha\left(x_{1}, p_{3}, \omega\right)_{ \pm \Delta x_{3}} & =e^{ \pm \Delta x_{3} i \omega p_{3}\left(x_{1}, p_{1}\right)} \\
& \approx \sum_{j=0}^{n} a_{j}\left(x_{1}, \omega\right)_{ \pm \Delta x_{3}} b_{j}\left(p_{1}, \omega\right)_{ \pm \Delta x_{3}}
\end{aligned}
$$

- For $N \ll \infty$, cost is reduced from N^{2} to $n N \log _{2} N$
a)

b)

Figure 1: a) Expansion of $e^{\cos \theta}$. b) Expansion of $e^{\cos \theta-1}$. University of Calgary

Fourier finite difference migration

- To ensure stability, calculate vertical slowness p_{3} according to

$$
p_{3}\left(x_{1}, p_{1}\right)=\frac{\omega}{v\left(x_{1}\right)}\left[\Re\left\{\sqrt{1-\left(v\left(x_{1}\right) p_{1}\right)^{2}}\right\}+\left|\Im\left\{\sqrt{1-\left(v\left(x_{1}\right) p_{1}\right)^{2}}\right\}\right|\right]
$$

for Δx_{3}, change the sign in the \Im part for $-\Delta x_{3}$

- for horizontal boundaries, we force the evanescent region to decay rapidly, but we must expect leakage for dipping boundaries
- To determine $a_{j}\left(x_{1}\right)$ and $b_{j}\left(p_{1}\right)$, recall $\cos \theta=v p_{3}$, where θ is phase angle and write α as

$$
\alpha=e^{ \pm \Delta x_{3} i \frac{\omega}{v} \cos \theta}
$$

as part of the expansion of α, we must approximate $\cos \theta$

- For the same number of terms, expansion of $\cos \theta-1$ has better properties for reflections than does expansion of $\cos \theta$, so a better form for α is

$$
\left.\alpha\left(x_{1}, p_{1}\right)_{ \pm \Delta x_{3}}=e^{ \pm \Delta x_{3} i k\left(x_{1}\right)\left[\sqrt{1-\left(v\left(x_{1}\right) p_{1}\right)^{2}}-1\right.}\right] e^{ \pm \Delta x_{3} i k\left(x_{1}\right)}
$$

where $k(x)=\frac{\omega}{v\left(x_{1}\right)}$, and p_{3} is written in terms of $v\left(x_{1}\right)$ and p_{1} explicitly

- Using

$$
\sqrt{1+u}-1 \sim \frac{u}{2}-\frac{u^{2}}{8}+\frac{u^{3}}{48}-\cdots
$$

and

$$
e^{u} \sim 1+u+\frac{u^{2}}{2}+\frac{u^{3}}{6}-\cdots
$$

expand $e^{ \pm \Delta x_{3} i k\left(x_{1}\right)}\left[\sqrt{1-\left(v\left(x_{1}\right) p_{1}\right)^{2}}-1\right]$ in p_{1} and truncate to n terms

- Collect x_{1} dependent terms to get

$$
a\left(x_{1}\right)_{j}=e^{ \pm \Delta x_{3} i k\left(x_{1}\right)} \gamma_{j}\left(x_{1}\right),
$$

and collect p_{1} dependent terms to get

$$
b\left(p_{1}\right)_{j}=\left(\omega p_{1}\right)^{2 j}
$$

where the first five terms $(0 \leq j \leq n=4)$ are

$$
\begin{aligned}
& \gamma_{0}=1 \\
& \gamma_{1}=-\frac{i \pi \Delta z}{k} \\
& \gamma_{2}=\frac{-1 / 4 i \pi \Delta z-1 / 2 \pi^{2} \Delta z^{2} k}{k^{3}} \\
& \gamma_{3}=\frac{-1 / 8 i \pi \Delta z-1 / 4 \pi^{2} \Delta z^{2} k+1 / 6 i \pi^{3} \Delta z^{3} k^{2}}{k^{5}} \\
& \gamma_{4}=\frac{-5 / 64 i \pi \Delta z-5 / 32 \pi^{2} \Delta z^{2} k+1 / 8 i \pi^{3} \Delta z^{3} k^{2}+1 / 24 \pi^{4} \Delta z^{4} k^{3}}{k^{7}}
\end{aligned}
$$

- In space coordinates, b_{j} is applied using finite differences according to

$$
\frac{\partial^{2}}{\partial x^{2}} f(x)=\int\left(i k_{1}\right)^{2 j} F\left(k_{1}\right) e^{i k_{1} x_{1}} d k_{x} \approx \frac{f(x+\Delta x)-2 f(x)+f(x-\Delta x)}{\Delta x^{2}},
$$

where the substitution $\omega p_{1}=k_{1}$ has been made

- Algorithms based on this factorization are called Fourier finite-difference methods or FD migration, sometimes $\omega-x$ migration
- FD migration copes with strong $v(x)$ at the expense of steep dips

Figure 2: SEG/EAGE salt model.

Figure 3: Exploding reflector data.

Figure 4: Finite difference migration ($n=4,65$ degree).

Split-step Fourier migration

1. Compute $\bar{v}=$ mean (v) and expand $u\left(x_{1}, p_{1}\right)=\sqrt{1-\left(v\left(x_{1}\right) p_{1}\right)^{2}}$ about \bar{v} using

$$
u(v+\bar{v})=u(\bar{v})+\frac{\partial u}{\partial v}(v-\bar{v})+\cdots
$$

2. Truncate the series at zeroth order, and the resulting approximation for α is given by

$$
\alpha_{\mathrm{SS}}\left(x_{1}, p_{1}\right)_{ \pm \Delta x_{3}} \approx a_{0}\left(x_{1}\right)_{ \pm \Delta x_{3}} b_{0}\left(p_{1}\right)_{ \pm \Delta x_{3}}
$$

where

$$
a_{0}\left(x_{1}\right)_{ \pm \Delta x_{3}}=e^{ \pm \Delta x_{3} i k\left(x_{1}\right)}
$$

and

$$
b_{0}\left(p_{1}, \omega\right)_{ \pm \Delta x_{3}}=e^{ \pm \Delta x_{3} i \frac{\omega}{\bar{v}}\left[\sqrt{1-\left(\bar{v} p_{1}\right)^{2}}-1\right]}
$$

Generalized screen migration

1. Compute $\check{v}=\min (v)$
2. Factor $\alpha_{\mathrm{SS}}(\breve{v})$ from α so that

$$
\alpha\left(x_{1}, p_{1}\right)_{ \pm \Delta x_{3}}=\alpha_{\mathrm{SS}}\left(x_{1}, p_{1}\right) e^{ \pm \Delta x_{3} i\left[\omega p_{3}\left(x_{1}, p_{1}\right)-\omega \check{p}_{3}\left(p_{1}\right)-k\left(x_{1}\right)+\check{k}\right]}
$$

3. Expand the exponential to first order,

$$
\begin{aligned}
& e^{ \pm \Delta x_{3} i\left[\omega p_{3}\left(x_{1}, p_{1}\right)-\omega \check{p}_{3}\left(p_{1}\right)-k\left(x_{1}\right)+\check{k}\right]} \\
&=1 \pm \Delta x_{3} i\left[\omega p_{3}\left(x_{1}, p_{1}\right)-\omega \check{p}_{3}\left(p_{1}\right)-k\left(x_{1}\right)+\check{k}\right] \\
&= 1 \pm \Delta x_{3} i\left\{\omega \check{p}_{3}\left(p_{1}\right)\left[\sqrt{1-\frac{\check{k}^{2}-k\left(x_{1}\right)^{2}}{\omega \check{p}_{3}^{2}}}-1\right]-k\left(x_{1}\right)+\check{k}\right\}
\end{aligned}
$$

4. Expand $\sqrt{1-\frac{\check{k}^{2}-k^{2}\left(x_{1}\right)}{\omega \check{p}_{3}^{2}}}-1$ about ωp_{1}, and truncate to n terms
5. Collect x_{1} dependent terms to get

$$
a_{j}\left(x_{1}\right)=\lambda_{j}\left(x_{1}\right) e^{ \pm \Delta x_{3} i k\left(x_{1}\right)}
$$

6. Collect p_{1} dependent terms to get

$$
b_{j}\left(p_{1}\right)=\kappa_{j}\left(p_{1}\right) e^{ \pm \Delta x_{3} i \frac{\omega}{v}\left[\sqrt{1-\left(\check{v} p_{1}\right)^{2}}-1\right]}
$$

where

$$
\begin{aligned}
& \lambda_{0}=1 \\
& \lambda_{1}=\frac{1}{2}\left(\check{k}^{2}-k\left(x_{1}\right)^{2}\right) \\
& \lambda_{2}=\frac{1}{8}\left(\check{k}^{2}-k\left(x_{1}\right)^{2}\right)^{2} \\
& \lambda_{3}=\frac{1}{16}\left(\check{k}^{2}-k\left(x_{1}\right)^{2}\right)^{3} \\
& \lambda_{4}=\frac{5}{128}\left(\check{k}^{2}-k\left(x_{1}\right)^{2}\right)^{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& \kappa_{0}=\omega \check{p}_{3} \\
& \kappa_{1}=\left(\omega \check{p}_{3}\right)^{-1} \\
& \kappa_{2}=\left(\omega \check{p}_{3}\right)^{-3} \\
& \kappa_{3}=\left(\omega \check{p}_{3}\right)^{-5} \\
& \kappa_{4}=\left(\omega \check{p}_{3}\right)^{-7}
\end{aligned}
$$

Figure 5: Zero offset migration of the SEG salt model. a) $65^{\circ} \mathrm{FD}$. b) GS.

Figure 6: Zero offset migration of the SEG salt model. a) SS. b) BL.

Figure 7: Zero offset migration of the SEG salt model. a) PSPI. b) Hybrid.

Figure 8: a) $f-x$. b) SS. c) PSPI. D) GS. E). BL. F) Hybrid.

Figure 9: a) $f-x$. b) SS. c) PSPI. D) GS. E). BL. F) Hybrid.

Figure 10: Marmousi reflectivity for zero offset.

Figure 11: Kirchhoff migration of Marmousi (S. Gray).

Figure 12: $f-x$ migration of Marmousi (Delft University).

Figure 13: PSPI migration of Marmousi (Nutec).

Figure 14: GB migration of Marmousi (R. Hill).

