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WE migration Theory

Symbols

Symbol Name Units

x ⇔ (x1, x2, x3) position vector (x3 is depth) m

y ⇔ (y1, y2, y3) position vector (y3 is depth) m
t time s

ω circular frequency s−1

p ⇔ (p1, p2, p3) slowness vector (p3 is vertical slowness) s m−1

ψ P-wave scalar potential

ϕ spectrum of ψ
A amplitude

C ⇔ Cijkl elastic coefficients N m−3

σ ⇔ σij stress N m−2

u ⇔ (u1, u2, u3) displacement vector m

λ Lamé parameter N m−3

v P-wave velocity m s−1

ρ density kg m−3

W extrapolation operator

R reflection operator
r a single element of R

φ angle measured from the normal to a reflector rad / deg
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WE migration Theory

Introduction

• The path between a source at depth −x3, a boundary at depth 0, and a
receiver at depth −x3 may be represented as follows

Source → Down → Reflect → Up → Receive

• Symbolically, for each ω, the path can be written

ψS|−x3 → Wx3 → R0 → W−x3
→ ψR|−x3
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WE migration Theory

Figure 1: Snapshot of a propagating wavefield in an elastic medium.
(Courtesy of L. Fishman)
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WE migration Theory

• An elementary equation for modeling is

ψR|−x3 = [W−x3 R0 Wx3 ψS|−x3]−x3

• An elementary equation for imaging is

[

W−1
−x3

ψR|−x3

]

[Wx3 ψS|−x3]
−1

= R0

• In general, R and W are heterogeneous and anisotropic
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WE migration Theory

Reflection operator R0

• At a boundary between elastic media, ...

ρI,CI

ρT ,CT

x3 = 0

x3 < 0

x3 > 0

... we have continuity equations:
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1. Continuity of displacement u = (u1, u2, u3)

[

u+ + u−
]

I
= u+

T

2. Continuity of stress σ

[

σ+ + σ−
]

I
= σ+

T

• For small deformations, C relates σ and u through

σij = Cijkl
1

2
[uk,l + ul,k]
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• In terms of u, continuity of σ becomes

[

Cijkl

[

u+
k,l + u+

l,k + u−k,l + u−l,k

]]

I

=
[

Cijkl

[

u+
k,l + u+

l,k

]]

T

• Given u+
I , u−

I , and CI we can compute CT

• Practical realities make CT estimation difficult

– only
[

u−3
]

I
(land), or pressure (sea) are recorded

– measurements of u+
I in the far field are rare

– only a scalar estimate of CI is obtained

• To gain insight, try a simpler model of the medium
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• Consider, then, a boundary between fluid media

ρI, λI

ρR, λT

• Fluids don’t support shear, so the continuity equations simplify

1. Continuity of displacement

[

u+
3 + u−3

]

I
=

[

u+
3

]

T
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2. Continuity of stress

[

λ
[

u+
3,3 + u−3,3

]]

I
=

[

λu+
3,3

]

T

• In the Fourier domain

u±3 (x3, ω) =
1

2π

∫

ωA (p3, ω) e± i ωp3 x3dp3

and

u±3,3 (x3, ω) = ±
1

2π

∫

i ω2 p3A (p3, ω) e± i ωp3 x3dp3

• Then, for a boundary at x3 = 0, the continuity equations become

1. Continuity of displacement

[

A+ +A−
]

I
=

[

A+
]

T
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2. Continuity of stress

[

λ p3

[

A+ −A−
]]

I
=

[

−λ p3A
+
]

T

• Define r = [A−/A+]I, and use the continuity equations to get

r =
[λ p3]I − [λ p3]T
[λ p3]I + [λ p3]T

• For reflection of the plane wave defined by p2 = 0, we have from the
scalar wave-equation

λ p3 =
λ

v

√

1 − (v p1)
2

= ρ v

√

1 − (v p1)
2
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• So r in a fluid is depends on p according to

r =
ZT − ZI
ZI + ZT

,

where

Z (p1) = ρ v

√

1 − (v p1)
2

• Reflectivity r is angle dependent
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Figure 2: Acoustic reflectivity in angle coordinates.

SISS University of Calgary

Page 13 of 86
Ferguson



WE migration Theory

Figure 3: Close up of seismic reflection.
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n̂

∆ x
1

k̂

d̂

u

v

− ∆ x
3

∆ x
2

Figure 4: Unit vector n̂ is normal to a plane wave, d̂ is normal to a reflecting
boundary, and k̂ is normal to the recording surface. Vectors u and v are
in-the-plane of the plane wave.
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Plane waves

• Ray parameters p1, p2, and p3 define a plane wave in (x1, x2, x3) where

p3 =
1

v

√

1 − (v p1)
2
− (v p2)

2

– The equation for p3 comes from FT
{

∇2ψ +
(

ω
v

)2
ψ = 0

}

, where

ψ (x, ω) = 1

(2π)3

∫

ω ϕ (p, ω) ei ω [p·x−t] dp, and v is constant

• Given vectors u and v in the plane of the plane wave, normal n̂I to the
plane wave is computed

n̂I =
u × v

|u × v|
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– n̂I points in the direction of propagation of the incident plane-wave

• At a boundary, angle φ between n̂I and normal d̂ to the boundary
provides wavenumber pn̂I from which to compute r

(

pn̂I

)

according to

pn̂I =
sinφ

v
=

1

v

∣

∣

∣
n̂I×d̂

∣

∣

∣

• Given, u =
(

∆x1 î + 0 ĵ − ∆x3 k̂
)

, and v =
(

∆x1 î + ∆x2 ĵ + 0 k̂
)

for

example, u × v is

u × v = ∆x3 ∆x2 î + ∆x3 ∆x1 ĵ + ∆x1 ∆x2 k̂
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• For plane waves, write travel time in terms of p3

∆xj =
∆t

pj
=

∆x3 p3

pj
,

and û × v̂ becomes

u × v = ∆x2
3 p3

[

1

p2
î +

1

p1
ĵ +

p3

p1 p2
k̂

]

=
∆x2

3 p3

p1 p2

[

p1̂i + p2̂j + p3k̂
]

• Normal n̂I = u×v
|u×v| to the incident plane-wave is then computed as

n̂I =
u × v

|u × v|
=
p1 î + p2 ĵ + p3 k̂
√

p2
1 + p2

2 + p2
3
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– recall, p3 = 1
v

√

1 − (v p1)
2
− (v p2)

2
, so n̂I ⇒ n̂I (p1, p2)

• Given incident unit-vector n̂I and normal to the boundary d̂, reflection

coefficient r
(

pn̂I = 1
v

∣

∣

∣
n̂I × d̂

∣

∣

∣

)

may now be computed

• As an example, for a horizontal boundary, d̂ =
(

0 î + 0 ĵ + k̂
)

, and

n̂I × d̂ is computed as

n̂I × d̂ = n̂I × k̂ =
p2 î + p1 ĵ

√

p2
1 + p2

2 + p2
3

,
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and effective wavenumber pn̂I is

pn̂I =
1

v

∣

∣

∣
n̂I × k̂

∣

∣

∣
=

1

v

√

p2
1 + p2

2

p2
1 + p2

2 + p2
3

• Then, for a horizontal boundary in 2D, p2 = 0, p3 = 1
v

√

1 − (v p1)
2
, and

pn̂I ⇒ p1

pn̂I

∣

∣

p2=0
=

1

v

p1
√

p2
1 + p2

3

=
1

v

p1
√

1/v2
= p1,

as expected
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π − 2φ

π − φ

φ

n̂I n̂R

d̂

Figure 5: A model of reflection from a dipping boundary.
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Plane-wave reflection

• Following reflection, n̂I and d̂ are related to reflected plane-wave n̂R =
(

nR1 î + nR2 ĵ + nR3 k̂
)

through a unit-vector â

– â is normal to the plane containing n̂I, d̂, and n̂R

• From n̂I × d̂ and sinφ =
∣

∣

∣
n̂I × d̂

∣

∣

∣
we have

â =
n̂I × d̂
∣

∣

∣
n̂I × d̂

∣

∣

∣
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• Trig’ identity sin (π − φ) = sinφ =
∣

∣

∣
n̂I × d̂

∣

∣

∣
, and n̂R × d̂ give

â =
n̂R × d̂
∣

∣

∣
n̂I × d̂

∣

∣

∣

• From sin (π − 2φ) = sin (2φ) = 2 sinφ cosφ = 2
∣

∣

∣
n̂I × d̂

∣

∣

∣
n̂I · d̂, and

n̂R × n̂I we have

â =
n̂R × n̂I

2
∣

∣

∣
n̂I × d̂

∣

∣

∣
n̂I · d̂

• Three equations for â allow computation of (nR1, nR2, nR3)

– we must solve a system of equations
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• Once, (nR1, nR2, nR3) are known, ray parameters (pR1, pR2) of the
reflected wavefield are then calculated according to

n̂R = nR1̂i + nR2̂j + nR3k̂ =
pR1 î + pR2 ĵ + pR3 k̂
√

p2
R1 + p2

R2 + p2
R3

where pR3 = 1
v

√

1 − (v pR1)
2
− (v pR2)

2

• For example, when d̂ = k̂, we have

n̂I × d̂
∣

∣

∣
n̂I × d̂

∣

∣

∣

=
nI2 î + nI1 ĵ
√

n2
I1 + n2

I2

,
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and
n̂R × d̂
∣

∣

∣
n̂I × d̂

∣

∣

∣

=
nR2 î + nR1 ĵ
√

n2
I1 + n2

I2

,

so that nR1 = nI1 and nR2 = nI2

• Further, to compute nR3, we have

n̂R × n̂I

2
∣

∣

∣
n̂I × d̂

∣

∣

∣
n̂I · d̂

=
1

2nI3
√

n2
I1 + n2

I2







(nR2 nI3 − nR3 nI2) î

(nR1 nI3 − nR3 nI1) ĵ

(nR1 nI2 − nR2 nI1) k̂







T

,

where, from the î and ĵ components we have

nR3 = −nI3,
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and so,

n̂R = nI1̂i + nI2̂j − nI3k̂ =
p1 î + p2 ĵ − p3 k̂
√

p2
1 + p2

2 + p2
3

,

where p3 = 1
v

√

1 − (v p1)
2
− (v p2)

2

• As a check, for d̂ = k̂, n̂R · k̂ = cos θR = −p3/
√

p2
1 + p2

2 + p2
3, and

n̂I · k̂ = cos θI = p3/
√

p2
1 + p2

2 + p2
3, and |θR| = |θI| as expected
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Figure 6: Non-specular reflection.

Figure 7: Specular(ish) reflection.
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A model of the reflected wavefield

• A model of reflected wavefield ϕR is computed as

ϕR (pR) = r (pR,p) ϕI (p) ,

or, with coordinates pR = (pR1, pR2), and p = (p1, p2) written explicitly

ϕR (pR1, pR2) = r (pR1, pR2, p1, p2) ϕI (p1, p2)

• If d̂ is unknown, we allow the possibility thea incident plane-wave
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ϕI (p1, p2) reflects in all directions (scatters)













ϕR (−pN)
...

ϕR (0)
...

ϕR (pN)













pR2

=













r (−pN , p1, p2)
...

r (0, p1, p2)
...

r (pN , p1, p2)













pR2

ϕI (p1, p2)

where (−pN ≤ pR1 ≤ pN), pN = π
∆xω (Nyquist ray-parameter), and we

consider a single pR2 for simplicity

• Recognize that, for specular reflection, only one (unknown) combination
of pR and p results in non-zero r
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• For each pR, then, sum up all r ϕI for all incident p according to

ϕR (pR1, pR2) =













r (pR1, pR2,−pN)
...

r (pR1, pR2, 0)
...

r (pR1, pR2, pN)













T

p2













ϕI (−pN)
...

ϕI (0)
...

ϕI (pN)













p2

,

where (−pN ≤ p1 ≤ pN) and we consider a single p2 for simplicity

• We may consider, then, all combinations of ϕI and ϕR according to

~ϕR = R ~ϕI,

where
~ϕR = [ϕR (−pN) , · · · , ϕR (0) · · · , ϕR (pN)]

T
pR2
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and
~ϕI = [ϕI (−pN) , · · · , ϕI (0) · · · , ϕI (pN)]

T
p2

• Reflectivity r → R is now a matrix

R =













r (−pN ,−pN) · · · r (−pN , 0) · · · r (−pN , pN)
... . . . ... ...

r (0,−pN) · · · r (0, 0) · · · r (0, pN)
... · · · . . . ...

r (pN ,−pN) · · · r (pN , 0) · · · r (pN , pN)













(pR2,p2)

• Further we may consider M incident plane-waves and M reflected plane-
waves simultaneously according to

~~ϕR = R ~~ϕI,
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where
~~ϕR = [~ϕ1, · · · , ~ϕM ]R ,

and
~~ϕI = [~ϕ1, · · · , ~ϕM ]I

• Then, to determine the complete reflected-wavefield, compute ϕR for all
combinations of p2 and pR2

• Given R, and using the above model, all specular reflections are computed
automatically for all incident plane-waves
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Extrapolation operator W

• From the phase-shift theorem, spectrum ϕ0 of wavefield ψ at boundary
x3 = 0 is computed from ϕ±∆x3 according to

ϕ (p1, p2, ω)|x3=0 = ϕ (p1, p2, ω)|x3=±∆x3
e∓ iω p3 ∆x3,

where

ϕ (p1, p2, ω)|x3=u
=

1

2π

∫

ψ (x, t) eiω [p1 x1+p2 x2−t] δ (x3 − u) dx dt

• Wavefield ψx3=0 is then computed from ϕx3=0 by inverse transform
(p1 → x1, p2 → x2, ω → t)
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• For a single frequency ω, then, we have

ψ (x1, x2)|x3=0 =

∫

ψ (y1, y2)|x3=±∆x3
W (x1, x2, y1, y2)|∓∆x3

dy1 dy2

where, (y1, y2) are space coordinates of the wavefield at depth x3 =
±∆x3 and,

W ⇔ W (x1, x2, y1, y2, ω)|∓∆x3

=
1

(2π)
2

∫

ω2e−iωp1[x1−y1] e−iωp2[x2−y2] e∓ iωp3∆x3dp1 dp2

• Of course, p3 ⇔ p3 (p1, p2, v)
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• If v ⇔ v (x), then p3 ⇔ p3 (x, p1, p2, ω) and

ψ (x1, x2)|x3=0 ≈

∫

ψ (y1, y2)|x3=±∆x3
W (x1, x2, y1, y2)|∓∆x3

dy1 dy2

• In matrix-vector format for constant-velocity media

~~ψ0 = W∓∆x3

~~ψ±∆x3,

and for variable-velocity media

~~ψ0 ≈ W∓∆x3

~~ψ±∆x3
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Summary

• Reflectivity r (p) is derived, commonly, for horizontal reflectors

• Modification r (p) ⇒ r (pn̂ (p)) permits use of derived r for 3D, dipping
boundaries

• When dip is known, the direction of reflected plane-waves pR (p) is
deduced

• When dip is not known, r ⇒ R, and specular reflection corresponds to
non-zero elements

• W±∆x3 are related closely to Fourier integrals - exact in constant-velocity
media, approximate in variable-velocity media
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Figure 1: Snapshot of a propagating wavefield in an elastic medium.
(Courtesy of L. Fishman)
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From last WE class

• From a simple model of reflection

ψI|−x3 → Wx3 → R0 → W−x3
→ ψR|−x3 .

we arrive at a simple model of imaging

[

W−1
−x3

ψR|−x3

]

[Wx3 ψS|x3]
−1

= R0

• What is R?

SISS University of Calgary
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– Compute acoustic reflectivity r
(

pn̂I

)

for dipping boundaries according

to incident plane-wave

(

p1, p2,
1
v

√

1 − (v p1)
2
− (v p2)

2

)

pn̂I =
1

v

∣

∣

∣
n̂I × d̂

∣

∣

∣
,

where d̂ is normal to the boundary, and

n̂I =
p1 î + p2 ĵ + p3 k̂
√

p2
1 + p2

2 + p2
3

– Compute reflected spectrum ϕ (pR) when d̂ is known

ϕR (pR) = r (pR,p) ϕI (p) ,
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and when d̂ is unknown, compute as

[

~~ϕR

]

pR2

= R
[

~~ϕI

]

p2

,

for all source spectra and reflected spectra

• Matrix R corresponds to fixed values of p2 and pR2, and non-zero
elements correspond to specular reflection - it converts ϕI (p) to ϕR (pR)
at the boundary

• All reflected wavefields may then be modeled by looping over p2 and
pR2, followed by inverse transform ϕ (pR1, pR2, ω) ⇒ ψ (x1, x2, t)

• What is W?
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– Extrapolation operator W works in heterogeneous media according to

~~ψ0 ≈ W∓∆x3

~~ψ±∆x3,

where

W ⇔ W (x1, x2, y1, y2, ω)|∓∆x3

=
1

(2π)
2

∫

ω2e−iωp1[x1−y1] e−iωp2[x2−y2] e∓ iωp3∆x3dp1 dp2,

and p3 ⇒ p3 (v (x))
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Figure 2: R for a boundary with dip d̂.
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Practical reflection

• When the incident and reflected wavefields
[

~~ϕI

]

p2

and
[

~~ϕR

]

pR2

are

known, R is estimated by

[R]pR2,p2
=

[

~~ϕR

]

pR2

[

~~ϕI

]−1

p2

• For
[

~~ϕI

]−1

p2

to exist ~~ϕI must be square and have a non-zero determinant

– for square ~~ϕI, the numbers of shots and receivers is the same, and
the spacing is equal - when this is not so, damped least-squares or
conjugate gradients can be used
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• The result is large matrices and a huge computational cost to resolve
each R (x) in the subsurface

– for example, inversion of ~~ϕI followed by multiplication by ~~ϕR requires
100’s Gflops (estimated for 1000 shots and 1000 receivers) - this is
the innermost calculation

– the innermost calculation lies within three loops: frequency, and the
two slownesses pR2 and p2
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...

for w1 to wN

for p1 to pN

for pR1 to pRN

...

100’s of Gflops calculation

...

end

end

end

...

Figure 3: For each x in the subsurface, a very expensive calculation lies
within 3 loops.
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Figure 4: RpR2=p2=0 for a boundary with dip d̂ = k̂.
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• If we know that d̂ for the boundary is the normal k̂, (pR1, pR2) = (p1, p2),
and R becomes diagonal

R =













r (−pN ,−pN) · · · 0 · · · 0
... . . . ... ...
0 · · · r (0, 0) · · · 0
... · · · . . . ...
0 · · · 0 · · · r (pN , pN)













p2

,

• We can then reduce matrix equation for R to a scalar quotient

r (p1, p2) =
ϕR (p1, p2)

ϕI (p1, p2)
,

that may be computed for individual gathers of data
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• For a common-shot gather in 2D (p2 = 0), for example, r for shot S̃
may be computed as













r (p−N)
...

r (0)
...

r (pN)













S̃

=



















ϕR(p−N)
ϕI(p−N)

...
ϕR(0)
ϕI(0)...
ϕR(pN)
ϕI(pN)



















S̃

,

where p−N ≤ p ≤ pN

• For a common-angle gather in 3D, let p2 = p̃2, and then r may be
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computed as













r (p−N)
...

r (0)
...

r (pN)













p̃2

=



















ϕR(p−N)
ϕI(p−N)

...
ϕR(0)
ϕI(0)...
ϕR(pN)
ϕI(pN)



















p̃2

,

• Computation of r above is done for each ω, so average r̄ may be
computed by summing them up

r̄ (p1, p2) =
∑

ω

ϕR (p1, p2, ω)

ϕI (p1, p2, ω)
,
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• The sum over ω is equivalent to an IFT ω → t for t = 0

r̄ (p1, p2) =
1

2π

∫

ϕR (p1, p2, ω)

ϕI (p1, p2, ω)
ei ω [t=0] dω,

– this is the t = 0 imaging condition

• Further, if we are not interested in variation of r with (p1, p2), we may
produce a single r̂ at x by summing over (p1, p2)

r̂ =
∑

ω

∑

p1

∑

p2

ϕR (p1, p2, ω)

ϕI (p1, p2, ω)
,

where we employ the t = 0 imaging condition as well

– this is stacking over p1 and p2
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• Stacking and the t = 0 imaging condition help reduce random noise, and
they reduce the data volume in a rational way

• In practice, frequently, due probably to early use of W operators cast
entirely in x, r̄ is computed in x as

r̄ (x1, x2)x3=0 =
∑

ω

ψR (x1, x2, ω)x3=0

ψI (x1, x2, ω)x3=0

,

where x3 = 0 is the depth to the boundary

– this implies, however, that r is independent of (p1, p2)

• For the example of a common-shot gather in 2D x2 = 0, then, r̄ is
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computed in x as













r̄ (x−N)
...

r̄ (0)
...

r̄ (xN)













S̃

=
∑

ω



















ψR(x−N)
ψI(x−N)

...
ψR(0)
ψI(0)...
ψR(xN)
ψI(xN)



















S̃

,

returns r that varies with x (offset) for each shot gather (x3 = 0 is
suppressed here for brevity)

– any relationship, however, between r̄ (x) and r (p) obtained analytically
is broken, and inversion of r̄ (x) does not have much meaning in an
absolute sense

– in a relative sense, inversion of r̄ (x) has meaning - i.e. basic AVO
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• Stacking of common-shot gathers may then be done in an x consistent
way according to

r̂ (x) =
∑

S

r̄ (x)S
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Practical W

• For simplicity, in 2D media (x ⇔ (x1, x3)) and (x ⇔ (y1, y3)), our
expression for W is

W ⇔ W (x, y, ω)|±∆x3
=

1

2π

∫

ω e−iωp[x−y] α (p3, ω)±∆ x3
dp,

where

α (p3 (x, p) , ω)±∆x3
= e

± i ω
v(x)

√
1−(v(x) p)2∆x3

• Because α disrupts the symmetry of the Fourier kernal, computational
cost for W is ∝ Cost {FT} ∝ N2 rather than N log2N (N is the
number of receivers)
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• For 3D, cost ∝ N4

– a Tflop for 1000 × 1000 receivers

• For efficiency, use a series for α

α (x, p, ω)±∆x3
≈

n
∑

j=0

aj (x, ω)±∆x3
bj (p, ω)±∆x3

where 0 ≤ n <∞

• So that

W (x, y, ω)±∆x3
=

n
∑

j=0

aj (x, ω)±∆x3

1

2π

∫

ω e−iωp[x−y] bj (p, ω)±∆x3
dp,
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and wavefield ψ0 is computed

ψ (x, ω)0 =

n
∑

j=0

aj (x, ω)±∆x3

∫

ϕ (p, ω)∓∆x3
e−iωp x bj (p, ω)±∆x3

ω dp,

where ϕ (p, ω)∓∆x3
=

∫

ψ (y)∓∆x3
ei ω p y dy

• Now, cost ∝ n× Cost {FFT} = nN log2N (∝ 2nN2 log2N in 3D)

– ∝ 10n Mflops for 1000 × 1000 receivers
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Summary

• R very expensive to estimate

– a Gflop computation within 3 loops for every subsurface point x

– numbers of sources and receivers must be the same and they must
have even spacing (or the cost goes up)

• Assume horizontal boundaries

– a scalar calculation within 2 loops
– work with individual gathers of data - robust for irregular

shots/reviver’s

• The sum of r over ω is equivalent to the t = 0 imaging condition
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• The x consistent sum of r over gathers (common shot, common receiver,
common offset, common p, common mid-point, ...) is stacking

• Estimates of r computed in x are valid in a relative sense only

• Extrapolation operator W has a computational cost ∝ N 4 when applied
in 3D

• Factor α into series α (x,p) ≈
∑n
j aj (x) bj (p) for cost ∝

2nN2 log2N
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From last WE class

• In 2D space-coordinates, and relative reflection coefficient r̂ is given by

r̂ (x1)x3=0 =
∑

ω

∑

G

[

ψR (x1, ω)x3=0

ψI (x1ω)x3=0

]

G

,

where G represents a gather like a shot gather or a CMP

• Using W, wavefields ψR and ψI on the boundary are computed

ψR (x1)0 =

∫

ψR (y1)−∆x3
W (x1, y1)−∆x3

dy1,

SISS University of Calgary

Page 61 of 86
Ferguson



WE migration Practice

and

ψI (x1)0 =

∫

ψI (y1)−∆x3
W (x1, y1)−∆x3

dy1,

where extrapolator W is given by

W (x, y, ω)±∆x3
=

1

2π

∫

ωe−iωp1[x1−y1]α (x1, p3, ω)±∆x3
dp1

and extrapolation-symbol α is

α (x1, p3, ω)±∆x3
= e±∆x3 i ω p3(x1,p1)

≈

n
∑

j=0

aj (x1, ω)±∆x3
bj (p1, ω)±∆x3

• For N <<∞, cost is reduced from N 2 to nN log2N
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Figure 1: a) Expansion of ecos θ. b) Expansion of ecos θ−1.
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Fourier finite difference migration

• To ensure stability, calculate vertical slowness p3 according to

p3 (x1, p1) =
ω

v (x1)

[

<

{

√

1 − (v (x1) p1)
2

}

+

∣

∣

∣

∣

=

{

√

1 − (v (x1) p1)
2

}
∣

∣

∣

∣

]

for ∆x3, change the sign in the = part for −∆x3

– for horizontal boundaries, we force the evanescent region to decay
rapidly, but we must expect leakage for dipping boundaries

• To determine aj (x1) and bj (p1), recall cos θ = v p3, where θ is phase
angle and write α as

α = e±∆x3 i ω
v cos θ,
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as part of the expansion of α, we must approximate cos θ

• For the same number of terms, expansion of cos θ−1 has better properties
for reflections than does expansion of cos θ, so a better form for α is

α (x1, p1)±∆x3
= e

±∆x3 i k(x1)
[√

1−(v(x1) p1)
2−1

]

e±∆x3 i k(x1)

where k (x) = ω
v(x1)

, and p3 is written in terms of v (x1) and p1 explicitly

• Using
√

1 + u− 1 ∼
u

2
−
u2

8
+
u3

48
− · · · ,

and

eu ∼ 1 + u+
u2

2
+
u3

6
− · · · ,

expand e
±∆x3 i k(x1)

[√
1−(v(x1) p1)

2−1
]

in p1 and truncate to n terms
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• Collect x1 dependent terms to get

a (x1)j = e±∆x3 i k(x1) γj (x1) ,

and collect p1 dependent terms to get

b (p1)j = (ω p1)
2j

where the first five terms (0 ≤ j ≤ n = 4) are

γ0 = 1
γ1 = −i π ∆z

k

γ2 = −1/4 i π ∆z−1/2 π2 ∆z2 k

k3

γ3 = −1/8 iπ ∆z−1/4 π2 ∆z2 k+1/6 i π3 ∆z3 k2

k5

γ4 = −5/64 i π ∆z−5/32 π2 ∆z2 k+1/8 i π3 ∆z3 k2+1/24 π4 ∆z4k3

k7
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• In space coordinates, bj is applied using finite differences according to

∂2

∂x2
f (x) =

∫

(i k1)
2j
F (k1) e

i k1 x1 dkx ≈
f (x+ ∆x) − 2f (x) + f (x− ∆x)

∆x2
,

where the substitution ω p1 = k1 has been made

• Algorithms based on this factorization are called Fourier finite-difference
methods or FD migration, sometimes ω − x migration

• FD migration copes with strong v (x) at the expense of steep dips
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Figure 2: SEG/EAGE salt model.
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Figure 3: Exploding reflector data.
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Figure 4: Finite difference migration (n = 4, 65 degree).
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Split-step Fourier migration

1. Compute v̄ = mean (v) and expand u (x1, p1) =

√

1 − (v (x1) p1)
2

about v̄ using

u (v + v̄) = u (v̄) +
∂u

∂v
(v − v̄) + · · ·

2. Truncate the series at zeroth order, and the resulting approximation for
α is given by

αSS (x1, p1)±∆x3
≈ a0 (x1)±∆x3

b0 (p1)±∆x3

where
a0 (x1)±∆x3

= e±∆x3 i k(x1),
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and

b0 (p1, ω)±∆x3
= e

±∆x3 i ω
v̄

[√
1−(v̄ p1)

2−1
]
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Generalized screen migration

1. Compute v̌ = min (v)

2. Factor αSS (v̌) from α so that

α (x1, p1)±∆x3
= αSS (x1, p1) e

±∆x3 i [ω p3(x1,p1)−ω p̌3(p1)−k(x1)+ǩ]
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3. Expand the exponential to first order,

e±∆x3 i [ω p3(x1,p1)−ω p̌3(p1)−k(x1)+ǩ]

= 1 ± ∆x3 i
[

ω p3 (x1, p1) − ω p̌3 (p1) − k (x1) + ǩ
]

= 1 ± ∆x3 i







ω p̌3 (p1)





√

1 −
ǩ2 − k (x1)

2

ω p̌2
3

− 1



 − k (x1) + ǩ







4. Expand

√

1 − ǩ2−k2(x1)

ω p̌2
3

− 1 about ω p1, and truncate to n terms

5. Collect x1 dependent terms to get

aj (x1) = λj (x1) e
±∆x3 i k(x1)
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6. Collect p1 dependent terms to get

bj (p1) = κj (p1) e
±∆x3 i ω

v̌

[√
1−(v̌ p1)

2−1
]

where

λ0 = 1

λ1 = 1
2

(

ǩ2 − k (x1)
2
)

λ2 = 1
8

(

ǩ2 − k (x1)
2
)2

λ3 = 1
16

(

ǩ2 − k (x1)
2
)3

λ4 = 5
128

(

ǩ2 − k (x1)
2
)4
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and
κ0 = ω p̌3

κ1 = (ω p̌3)
−1

κ2 = (ω p̌3)
−3

κ3 = (ω p̌3)
−5

κ4 = (ω p̌3)
−7
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Figure 5: Zero offset migration of the SEG salt model. a) 65◦ FD. b) GS.
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Figure 6: Zero offset migration of the SEG salt model. a) SS. b) BL.
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Figure 7: Zero offset migration of the SEG salt model. a) PSPI. b) Hybrid.
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Figure 8: a) f − x. b) SS. c) PSPI. D) GS. E). BL. F) Hybrid.
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Figure 9: a) f − x. b) SS. c) PSPI. D) GS. E). BL. F) Hybrid.
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Figure 10: Marmousi reflectivity for zero offset.
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Figure 11: Kirchhoff migration of Marmousi (S. Gray).
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Figure 12: f − x migration of Marmousi (Delft University).
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Figure 13: PSPI migration of Marmousi (Nutec).
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Figure 14: GB migration of Marmousi (R. Hill).
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