EXPONENTIAL SUMS OVER
 MULTIPLICATIVE GROUPS IN FIELDS OF PRIME ORDER AND RELATED COMBINATORIAL PROBLEMS

Sergei Konyagin

Let p be a prime, and \mathbb{Z}_{p} be the set of the residues classes modulo p. Then $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}$ is the multiplicative group of the field \mathbb{Z}_{p}. We take an arbitrary subgroup G of the group \mathbb{Z}_{p}^{*}.

For $u \in \mathbb{R}$ we denote $e(u)=\exp (2 \pi i u)$. Observe that $e(x / p)=e(y / p)$ if $x \equiv y(\bmod p)$. Thus, $e(a / p)$ is correctly defined for $a \in \mathbb{Z}_{p}$.

The main subject of my talks is the estimation of exponential sums over G :

$$
S(a, G)=\sum_{x \in G} e(a x / p), \quad a \in \mathbb{Z}_{p}
$$

Typeset by $\mathcal{A} \mathcal{M} \mathcal{S}$-TEX

These sums have numerous applications in additive problems modulo p, pseudo-random generators, coding theory, theory of algebraic curves and other problems.

Trivially,

$$
|S(a, G)| \leq|G| .
$$

We are interested in obtaining nontrivial estimates for $S(a, G)$:

$$
S(a, G)=o(|G|) \quad\left(p \rightarrow \infty, a \in \mathbb{Z}_{p}^{*}\right)
$$

or, for some $\delta>0$,

$$
S(a, G) \leq C(\delta)|G| p^{-\delta} \quad\left(a \in \mathbb{Z}_{p}^{*}\right)
$$

Also, related combinatorial problems including the sums-products problem in \mathbb{Z}_{p} and additive properties of groups G will be discussed.

The first lecture will be introductory. In the second lecture I suppose to talk about the using of Stepanov's method for study additive properties of groups G and exponential sums over G and also about the sums- products problem modulo p. In the concluding lecture some recent results related to exponential sums and additive properties of subsets of \mathbb{Z}_{p} will be discussed.

Let $m \in \mathbb{N}, \mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}$ be the set of the residues modulo m. If p is a prime, then \mathbb{Z}_{p} is a field of order p. Let $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}$ be the set of invertible elements in \mathbb{Z}_{p}. We take an arbitrary subgroup G of the group \mathbb{Z}_{p}^{*}. Let $t=|G|$. For brevity, we will write $a \equiv b$ instead of $a \equiv b(\bmod p)$.

For $u \in \mathbb{R}$ we denote $e(u)=\exp (2 \pi i u)$. The function $e(\cdot)$ is 1-periodic, and this allows us to talk about $e(a / p)$ for $a \in \mathbb{Z}_{p}$.

The main subject of my talks is the estimation of exponential sums over G :

$$
S(a, G)=\sum_{x \in G} e(a x / p), \quad a \in \mathbb{Z}_{p}
$$

There are some equivalent and related problems.

1. Exponential sums with exponential functions. Let $g \in \mathbb{Z}_{p}^{*}$ and $\operatorname{ord}_{p}(g)=t$, namely

$$
t=\left\{\min \left\{k>0: g^{k} \equiv 1\right\}\right\}
$$

For $a \in \mathbb{Z}_{p}$ we consider

$$
S(a, g)=\sum_{k=0}^{t-1} e\left(a g^{k} / p\right)
$$

Let G be the group generated by g. We have

$$
G=\left\{g^{k}: k=0, \ldots, t-1\right\}
$$

Hence,

$$
S(a, g)=S(a, G)
$$

Conversely, if G is an arbitrary subgroup of \mathbb{Z}_{p}^{*} then G is generated by some $g \in \mathbb{Z}_{p}^{*}$ as a subgroup of a cyclic group \mathbb{Z}_{p}^{*}, and we can consider an exponential sum over G as an exponential sum with an exponential function.
2. Gaussian sums. Let $n \in \mathbb{N}, m \in \mathbb{N}, a \in \mathbb{Z}_{m}$. Consider the sum

$$
S_{n}(a, m)=\sum_{x \in \mathbb{Z}_{m}} e\left(a x^{n} / m\right)
$$

Clearly, $S_{n}(0, m)=m$. The simplest case is $n=1$. For $a \in \mathbb{Z}_{m} \backslash\{0\}$ we have

$$
S_{1}(a, m)=\sum_{x=0}^{m-1} e(a x / m)=\frac{e(m a / m)-e(0)}{e(a / m)-1}=0
$$

Thus, we have

$$
\sum_{x \in \mathbb{Z}_{m}} e(a x / m)=\left\{\begin{array}{l}
m, a=0 \\
0, a \in \mathbb{Z}_{m} \backslash\{0\}
\end{array}\right.
$$

This simple property is a basic tool for using exponential sums in study of different problems modulo m.
K. Gauss evaluated $S_{2}(a, m)$ and, in particular, proved that $\left|S_{2}(a, p)\right|=\sqrt{p}$ for $a \in \mathbb{Z}_{p}^{*}$. Sometimes $S_{n}(a, m)$ are called Gaussian sums.

For arbitrary $n \in \mathbb{N}$ denote $d=\operatorname{gcd}(n, p-1)$, $t=(p-1) / d$. Consider the congruence

$$
\begin{equation*}
x^{n} \equiv 1 \tag{1.1}
\end{equation*}
$$

Let g_{0} be a primitive root modulo p. If $x=g_{0}^{u}, 0 \leq u<$ $p-1$, then (1.1) is equivalent to the congruence

$$
n u \equiv 0(\bmod (p-1))
$$

Or

$$
\begin{equation*}
u \equiv 0(\bmod t) \tag{1.2}
\end{equation*}
$$

The number of $u, 0 \leq u<p-1$, satisfying (1.2), is $(p-1) / t=d$. Therefore, for every $y \in \mathbb{Z}_{p}^{*}$ the congruence

$$
x^{n} \equiv y
$$

either does not have solutions or has d solutions. It is easy to see that $G=\left\{x^{n}: x \in \mathbb{Z}_{p}^{*}\right\}$ is a subgroup of \mathbb{Z}_{p}^{*} and $|G|=t$.

Now we can write $S_{n}(a)$ as follows

$$
\begin{gathered}
S_{n}(a)=1+\sum_{x \in \mathbb{Z}_{p}^{*}} e\left(a x^{n} / p\right) \\
=1+\sum_{y \in \mathbb{Z}_{p}^{*}} e(a y / p)\left|\left\{x \in \mathbb{Z}_{p}^{*}: x^{n} \equiv y\right\}\right| \\
=1+\sum_{y \in G} d e(a x / p)=1+\frac{p-1}{t} S(a, G)
\end{gathered}
$$

We can estimate $S(a, G)$ trivially:
(1.3)

$$
|S(a, G)| \leq \sum_{x \in G}|e(a x / p)|=\sum_{x \in G} 1=|G|
$$

This estimate corresponds to a trivial estimate for Gaussian sums

$$
\left|S_{n}(a)\right| \leq p
$$

Clearly, inequality (1.3) is equality if $a=0$. We are interested in obtaining nontrivial estimates for $S(a, G)$:
$(1.4) \quad S(a, G)=o(|G|) \quad\left(p \rightarrow \infty, a \in \mathbb{Z}_{p}^{*}\right)$ or, for some $\delta>0$.

$$
\begin{equation*}
S(a, G) \ll|G| p^{-\delta} \quad\left(a \in \mathbb{Z}_{p}^{*}\right) \tag{1.5}
\end{equation*}
$$

Recall that $U \ll V$ means $|U| \leq C V$ where $C>0$ may be an absolute constant or depend on some specified parameters. Of course, in (1.4) and (1.5) we assume that a pair (p, G) belongs to some set of pairs. Trivially, (1.4) does not hold in general. If $|G|=1$, then for any $a \in \mathbb{Z}_{p}$ we have $|S(a, G)|=1$. If $p>2,|G|=2$, that is, $G=\{1,-1\}$, then

$$
\begin{gathered}
S(1, G)=e(1 / p)+e(-1 / p)=2 \cos (2 \pi / p) \\
=|G|+O\left(p^{-2}\right) .
\end{gathered}
$$

We can expect that (1.4) or (1.5) holds if $|G|$ is not too small comparatively to p.

If $\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)|$ is small comparatively to

 $t=|G|$, then we can deduce that for any $a \in \mathbb{Z}_{p}^{*}$ the fractional parts $\{a x / p\}, x \in G$, are well-distributed on $[0,1)$. To formulate this precisely, let us take an arbitrary real sequence $\left\{u_{1}, \ldots, u_{t}\right\}$ and define its discrepancy as$$
\begin{gathered}
D=D_{t}\left(u_{1}, \ldots, u_{t}\right) \\
=\sup _{0 \leq \alpha<\beta \leq 1}\left|\frac{A([\alpha, \beta) ; t)}{t}-(\beta-\alpha)\right|,
\end{gathered}
$$

where $A([\alpha, \beta) ; t)=\left|\left\{j:\left\{u_{j}\right\} \in[\alpha, \beta)\right\}\right|$. Thus, D is small if the distribution of the sequence $\left\{u_{1}, \ldots, u_{t}\right\}$ is close to the uniform one. The theorem of Erdős and Turan asserts that for any $n \in \mathbb{N}$

$$
D \leq \frac{6}{m+1}+\frac{4}{\pi} \sum_{h=1}^{m}\left(\frac{1}{h}-\frac{1}{m+1}\right)\left|\frac{1}{t} \sum_{j=1}^{t} e\left(h u_{j}\right)\right| .
$$

Take $a_{0} \in \mathbb{Z}_{p}^{*}$ and $\left\{u_{1}, \ldots, u_{t}\right\}=\left\{a_{0} x / p: x \in G\right\}$. Then the last inequality can be written as

$$
D \leq \frac{6}{m+1}+\frac{4}{\pi t} \sum_{h=1}^{m}\left(\frac{1}{h}-\frac{1}{m+1}\right)\left|S\left(a_{0} h, G\right)\right| .
$$

Therefore, if $m<p$, then
(1.6)

$$
D \ll \frac{1}{m}+\log (m+1) \max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)| / t .
$$

Assume that for some $\eta \in[1 / p, 1]$ we have the estimate
(1.7)

$$
\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)| / t \leq \eta .
$$

Then, taking

$$
m=\left[\frac{\eta^{-1}}{\log \left(\eta^{-1}\right)+1}\right]
$$

we deduce from (1.6)
(1.8)
$D \ll \eta\left(\log \left(\eta^{-1}\right)+1\right)$.
In particular,
(1.4) $\quad S(a, G)=o(|G|) \quad\left(p \rightarrow \infty, a \in \mathbb{Z}_{p}^{*}\right)$
implies

$$
D \rightarrow 0 \quad(p \rightarrow \infty) .
$$

From the definition of the discrepancy we see that if $0 \leq \alpha<\beta \leq 1$ and $\beta-\alpha>D_{t}\left(u_{1}, \ldots, u_{t}\right)$ then $[\alpha, \beta) \cap\left\{u_{1}, \ldots, u_{t}\right\} \neq \emptyset$. In our case $\left\{u_{1}, \ldots, u_{t}\right\}=$ $\left\{a_{0} x / p: x \in G\right\}$ we get from (1.8) under supposition (1.7) that there is an absolute constant $C>0$ such that for $h \in \mathbb{N}, h \geq C \eta\left(\log \left(\eta^{-1}\right)+1\right) p, n \in \mathbb{Z}$, and $a_{0} \in \mathbb{Z}_{p}^{*}$ the congruence

$$
\begin{equation*}
n+j \equiv a_{0} x, x \in G,|j| \leq h, \tag{1.9}
\end{equation*}
$$

has at least one solution. For small η this holds under weaker restrictions on h.

Proposition 1.1. Assume that (1.7) holds, $h \in \mathbb{N}$, $h=[\eta p /(1+\eta)], n \in \mathbb{Z}$, and $a_{0} \in \mathbb{Z}_{p}^{*}$. Then (1.9) has at least one solution.

Thus, Proposition 1.1 asserts that if exponential sums over G are small then $a_{0} G$ does not produce large gaps. To prove of Proposition 1.1 we use the following Lemma. Lemma 1.2. Let $X \subset \mathbb{Z}_{p}$. Then

$$
\sum_{a \in \mathbb{Z}_{p}}\left|\sum_{x \in X} e(a x / p)\right|^{2}=p|X| .
$$

Proof of Lemma 1.2. We have

$$
\begin{gathered}
\sum_{a \in \mathbb{Z}_{p}}\left|\sum_{x \in X} e(a x / p)\right|^{2} \\
=\sum_{a \in \mathbb{Z}_{p}} \sum_{x \in X} e(a x / p) \sum_{x \in X} e(-a x / p) \\
=\sum_{a \in \mathbb{Z}_{p}} \sum_{x_{1} \in X} e\left(a x_{1} / p\right) \sum_{x_{2} \in X} e\left(-a x_{2} / p\right) \\
=\sum_{a \in \mathbb{Z}_{p}} \sum_{x_{1}, x_{2} \in X} e\left(a\left(x_{1}-x_{2}\right) / p\right) \\
=\sum_{x_{1}, x_{2} \in X} \sum_{a \in \mathbb{Z}_{p}} e\left(a\left(x_{1}-x_{2}\right) / p\right) \\
=\sum_{x_{1}=x_{2} \in X} p=p|X|,
\end{gathered}
$$

as required.
In fact, we can treat

$$
\left\{\sum_{x \in X} e(a x / p)\right\}_{a \in \mathbb{Z}_{p}}
$$

as the Fourier transform of the characteristic function of the set X, and Lemma 1.2 is merely Parseval's identity.

Proposition 1.1. Assume that (1.7) holds, $h \in \mathbb{N}$, $h=[\eta p /(1+\eta)], n \in \mathbb{Z}$, and $a_{0} \in \mathbb{Z}_{p}^{*}$. Then the congruence

$$
\begin{equation*}
n+j \equiv a_{0} x, x \in G,|j| \leq h \tag{1.9}
\end{equation*}
$$

has at least one solution.
Proof of Proposition 1.1. Assume that congruence (1.9) is unsolvable. Then

$$
0=\sum_{x \in G} \sum_{u, v=0}^{h} \sum_{a \in \mathbb{Z}_{p}^{*}} e\left(a\left(a_{0} x-n-u+v\right) / p\right)
$$

Changing the order of summation, separating the term $t(h+1)^{2}$ corresponding to $a=0$, and using (1.7) we get

$$
\begin{aligned}
& t(h+1)^{2} \leq \sum_{a \in \mathbb{Z}_{p}^{*}}\left|\sum_{x \in G} \sum_{u, v=0}^{h} e\left(a\left(a_{0} x-n-u+v\right) / p\right)\right| \\
& =\sum_{a \in \mathbb{Z}_{p}^{*}}\left|\sum_{x \in G} e\left(a a_{0} x / p\right)\right|\left|\sum_{u=0}^{h} e(a u / p)\right|^{2} \\
& (1.10) \quad \leq \eta t \sum_{a \in \mathbb{Z}_{p}^{*}}\left|\sum_{u=0}^{h} e(a u / p)\right|^{2}
\end{aligned}
$$

Next, by Lemma 1.2,

$$
\begin{gathered}
\sum_{a \in \mathbb{Z}_{p}^{*}}\left|\sum_{u=0}^{h} e(a u / p)\right|^{2} \\
=\sum_{a \in \mathbb{Z}_{p}}\left|\sum_{u=0}^{h} e(a u / p)\right|^{2}-(h+1)^{2} \\
=p(h+1)-(h+1)^{2}
\end{gathered}
$$

After substitution of this equality into inequality (1.10) we get

$$
t(h+1)^{2} \leq \eta t\left(p(h+1)-(h+1)^{2}\right)
$$

or, equivalently,

$$
\begin{aligned}
& 1 \leq \eta\left(\frac{p}{h+1}-1\right) \\
& h+1 \leq \eta p /(1+\eta)
\end{aligned}
$$

But this does not agree with the choice of h $(h=[\eta p /(1+\eta)])$. This completes the proof of the proposition.

Exponential sums over subgroups can be applied to the study of $1 / p$-pseudo-random generators of Blum, Blum, and Shub. Let $g \geq 2$ be an integer. We consider the g-ary expansion of $1 / p$. If g is fixed then we can expect (and this is true indeed) that for many primes p there is no large correlation among close digits in this expansion, and we can talk about a pseudo-random generator. Let G be the subgroup of \mathbb{Z}_{p}^{*} generated by g, $t=|G|$. It is easy to see that t is the (least) period of the g-ary expansion of $1 / p$. We are interested in appearances of a sequence $\left(d_{1}, \ldots, d_{k}\right)$ of g-ary digits in the expansion. Denote by $\sigma_{j}, 0 \leq \sigma_{j} \leq g-1$, the g-ary digits of $1 / p$:

$$
\frac{1}{p}=\sum_{j=1}^{\infty} \sigma_{j} g^{-j}
$$

We observe that, for j and any g-ary string we have $\sigma_{j+i}=d_{i}$ for all $i=1, \ldots, k$, if and only if

$$
\begin{equation*}
\frac{E}{g^{k}} \leq\left\{\frac{g^{j}}{p}\right\}<\frac{E+1}{g^{k}} \tag{1.11}
\end{equation*}
$$

where $E=d_{1} g^{k-1}+d_{2} g^{k-2}+\cdots+d_{k}$.

Solvability of inequalities (1.11) both together is equivalent to solvability of the congruence $y \equiv x \in G$ for some y from the interval

$$
\frac{E p}{g^{k}} \leq y<\frac{(E+1) p}{g^{k}}
$$

which follows from the solvability of the congruence

$$
n+j \equiv x, x \in G,|j| \leq h
$$

where

$$
n=\left[\frac{(2 E+1) p}{2 g^{k}}\right], \quad h=\left[\frac{p}{2 g^{k}}-1\right] .
$$

By Proposition 1.1, this congruence is solvable if

$$
\begin{equation*}
\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)| / t \leq \eta \tag{1.7}
\end{equation*}
$$

and

$$
\frac{p}{2 g^{k}}-1 \geq \eta p /(1+\eta)
$$

So, the g-ary expansion of $1 / p$ contains any string of length k if $k \leq c \log (1 / \eta) / \log g$ for some absolute constant $c>0$.

Moreover, we can estimate the number $N_{p}\left(d_{1}, \ldots, d_{k}\right)$ of appearances of the string $\left(d_{1}, \ldots, d_{k}\right)$ in the period of the g-ary expansion of $1 / p$ in terms of the discrepancy D of the set $\{x / p: x \in G\}$. Observe that
$N_{p}\left(d_{1}, \ldots, d_{k}\right)=\left|\left\{x \in G: \frac{E}{g^{k}} \leq\{x / p\}<\frac{(E+1)}{g^{k}}\right\}\right|$.
By the definition of the discrepancy, we have

$$
\left|N_{p}\left(d_{1}, \ldots, d_{k}\right)-\frac{t}{g^{k}}\right| \leq D t
$$

Hence, if D is much smaller than $1 / g^{k}$ then all strings of length k appear approximately with the same frequency.

The following magnitude is important in the study of hyperelliptic curves. Let $T(p)$ be the largest t with the property that there exists a group $G \subset \mathbb{Z}_{p}^{*},|G|=t$, such that for some $a_{0} \in \mathbb{Z}_{p}^{*}$ all the smallest positive residues of $a_{0} x, x \in G$, belong to the interval $[1,(p-1) / 2]$. Clearly $T(p)$ is odd. Also, we claim that the following inequality holds

$$
\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)|>t / 3 .
$$

Indeed, otherwise (1.7) holds with $\eta=1 / 3$, and we can use Proposition 1.1 with $h=[p / 4]$ and $n=(p+1) / 2+h$. Hence, for some $x \in G$ we have

$$
n+j \equiv a_{0} x, x \in G,|j| \leq h
$$

Therefore, $a_{0} x$ is not congruent to any number from the interval $[1,(p-1) / 2]$. Thus, we get the following.

Proposition 1.3. Let t_{0} be such that for every group $G \subset \mathbb{Z}_{p}^{*}$ of an odd order with $|G|>t_{0}$ we have

$$
\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)| \leq|G| / 3
$$

Then $T(p) \leq t_{0}$.

Estimates for exponential sums over subgroups are closely related to additive properties of subgroups.

Proposition 1.4. Let $\delta>0$ be such that
$\left(1.5^{\prime}\right) \quad|S(a, G)| \leq|G| p^{-\delta} \quad\left(a \in \mathbb{Z}_{p}^{*}\right)$,
$b_{1}, \ldots, b_{d} \in \mathbb{Z}_{p}^{*}$. Then the number N of the solutions to the congruence
(1.12) $\quad \sum_{j=1} b_{j} x_{j} \equiv 0 \quad\left(x_{1}, \ldots, x_{d} \in X\right)$
satisfies the inequality
(1.13)

$$
\left|N-\frac{|G|^{d}}{p}\right|<|G|^{d} p^{-\delta d}
$$

In particular, $N>0$ if $d \geq 1 / \delta$.
We note that if δ and $d>1 / \delta$ are fixed and (1.5) holds for the family of pairs (p, G) then (1.13) gives an asymptotic formula for the number of the solutions of (1.12) as $p \rightarrow \infty$.

Proof of Proposition 1.4. We have

$$
\begin{aligned}
& \qquad \begin{aligned}
p N= & \sum_{x_{1}, \ldots, x_{d} \in G} \sum_{a \in \mathbb{Z}_{p}} e\left(a \sum_{j=1} b_{j} x_{j} / p\right) \\
= & \sum_{a \in \mathbb{Z}_{p}} \prod_{j=1}^{d} \sum_{x_{j} \in G} e\left(a b_{j} x_{j} / p\right) \\
& =\sum_{a \in \mathbb{Z}_{p}} \prod_{j=1}^{d} S\left(a b_{j}, G\right) .
\end{aligned}
\end{aligned}
$$

Separating the term $|G|^{d}$ corresponding to $a=0$, we get

$$
\begin{aligned}
& \left|p N-|G|^{d}\right|=\left|\sum_{a \in \mathbb{Z}_{p}^{*}} \prod_{j=1}^{d} S\left(a b_{j}, G\right)\right| \\
& \quad \leq(p-1)\left(\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)|\right)^{d},
\end{aligned}
$$

and using (1.5') completes the proof of the proposition.

In a particular case $b_{1}=\cdots=b_{d-1}=-1, b_{d}=b$, congruence (1.12) has a form

$$
b x_{d} \equiv \sum_{j=1}^{d-1} x_{j}
$$

or

$$
b \equiv \sum_{j=1}^{d-1} x_{j} / x_{d}
$$

Observing that $x_{j} / x_{d} \in G$ we obtain the following.
Corollary 1.5. If (1.5') holds and $d \geq 1 / \delta$ then for every $b \in \mathbb{Z}_{p}^{*}$ the congruence

$$
b \equiv \sum_{j=1}^{d-1} x_{j}, \quad x_{j} \in X
$$

is solvable.
Corollary 1.5 gives a simple estimate for a number of summands in Waring problem for G.

To estimate $S(a, G)$ we need one more simple lemma. Lemma 1.6. For any $a \in \mathbb{Z}_{p}$ and $x \in G$ we have $S(a, G)=S(a x, G)$.

Proof.

$$
\begin{aligned}
S(a x, G) & =\sum_{y \in G} e(a x y / p)=\sum_{z=x y, y \in G} e(a z / p) \\
& =\sum_{z \in G} e(a z / p)=S(a, G)
\end{aligned}
$$

Now we are ready to prove the simplest estimate for $|S(a, G)|$.

Theorem 1.7. We have
$(1.15) \quad\left|S\left(a_{0}, G\right)\right| \leq \sqrt{p} \quad\left(a_{0} \in \mathbb{Z}_{p}^{*}\right)$.

Proof. By Lemma 1.6 and Lemma 1.2, we get

$$
\begin{aligned}
& |G|\left|S\left(a_{0}, G\right)\right|^{2}=\sum_{x \in G}\left|S\left(a_{0} x, G\right)\right|^{2} \\
& \quad \leq \sum_{a \in G}|S(a, G)|^{2}=p|G|
\end{aligned}
$$

and the theorem follows.

So, we have a nontrivial estimate for exponential sums over G (namely, (1.5')) provided that $|G| \geq p^{1 / 2+\delta}$. Our aim is to weaken this inequality for $|G|$.

However, it turns out that there is no nontrivial estimate
(1.4) $\quad S(a, G)=o(|G|) \quad\left(p \rightarrow \infty, a \in \mathbb{Z}_{p}^{*}\right)$
if $|G| \ll \log p$.
Theorem 1.8. For every $u>0$ there are $p(u)$ and $v>0$ such that for $p \geq p(u)$ inequality

$$
\begin{equation*}
|G| \leq u \log p \tag{1.16}
\end{equation*}
$$

implies

$$
\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)| \geq v|G|
$$

Proof. Take some $T \in \mathbb{N}, T \leq t=|G|$, and some $X \subset$ G with $|X|=T$. By pigeonhole principle, there is an integer $a, 1 \leq a<p$, such that $\|a x / p\| \leq p^{-1 / T}$ for all $x \in X$, where $\|z\|$ denotes the distance form z to the nearest integer. Therefore, there is an interval $[\alpha, \beta) \in[0,1), \beta-\alpha \leq p^{-1 / T}$, and a set $Y \subset X,|Y| \geq$ $T / 2$, such that $\{a x / p\} \in[\alpha, \beta)$ for all $x \in Y$. Thus, we have the following estimate for the discrepancy D of the set $\{a x / p: x \in G\}$:

$$
\begin{equation*}
D \geq \frac{|Y|}{t}-(\beta-\alpha) \geq \frac{|Y|}{t}-p^{1 / T} \tag{1.17}
\end{equation*}
$$

If $|G| \leq \log p$ we take $T=t$. Then $|Y| \geq t / 2$, and (1.17) implies

$$
D \geq 1 / 2-1 / e
$$

If $|G|>\log p$ (and, thus, $u>1$) we take $T=[\log p /(3 u)]$ and $p(u)$ so that $T \geq 1$ for $p \geq p(u)$. Then

$$
|Y| \geq \max (1,[\log p /(6 u)]>\log p /(12 u)
$$

and, by (1.17),

$$
D>\frac{(\log p) /(12 u)}{u \log p}-e^{-3 u}=\frac{1}{12 u^{2}}-e^{-3 u}>0
$$

So, in both cases we have $D \geq c(u)>0$, and inequality
(1.7)

$$
\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)| / t \leq \eta
$$

cannot hold for small $\eta>0$ since it would imply

$$
D \ll \eta\left(\log \left(\eta^{-1}\right)+1\right)
$$

But the last inequality is not compatible with our lower estimates for D if η is small enough. This completes the proof of Theorem 1.8.

Also, one can prove lower estimates for $|S(a, G)|$ using results on Turan's problem. Let t and N be positive integers. It is required to evaluate or to estimate

$$
U_{t}(N)=\min _{\alpha_{1}, \ldots, \alpha_{t}} \max _{a=1, \ldots, N}\left|\sum_{j=1}^{t} e\left(a \alpha_{j}\right)\right| .
$$

Taking $G=\left\{x_{1}, \ldots, x_{t}\right\}, \alpha_{j}=e\left(x_{j} / p\right)$, we see that

$$
\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)| \geq U_{t}(p-1) .
$$

Theorem 1.8 follows from H. Montgomery's lower estimates for $U_{t}(p-1)$. H. Montgomery conjectured that for $a \in \mathbb{Z}_{p}^{*}$

$$
|S(a, G)| \leq(1+\eta)\left(2 t \log \frac{p^{2}}{t}\right)^{1 / 2}
$$

where $\eta \rightarrow 0$ as $p \rightarrow \infty$. If this is true, then $S(a, G)=$ $o(|G|)$ as $|G| / \log p \rightarrow \infty$.

Observe that neither of these proofs uses that G is a group. Thus, the following is true.

Theorem 1.8'. For every $u>0$ there are $p(u)$ and $v>0$ such that for $p \geq p(u)$ and $X \subset \mathbb{Z}_{p}$ inequality
$|X| \leq u \log p$
implies

$$
\max _{a \in \mathbb{Z}_{p}^{*}}\left|\sum_{x \in X} e(a x / p)\right| \geq v|X| .
$$

To get better estimates for $S(a, G)$ we define, for $k \in \mathbb{N}, T_{k}(G)$ as the number of the solutions to the congruence

$$
x_{1}+\cdots+x_{k} \equiv x_{k+1}+\cdots+x_{2 k}, \quad x_{j} \in G
$$

Clearly, $T_{1}(G)=t$, and, for any k,

$$
\begin{equation*}
t^{k} \leq T_{k}(G) \leq t^{2 k-1} \tag{1.17}
\end{equation*}
$$

Identity (1.14) in our case can be written as

$$
\begin{equation*}
p T_{k}(G)=\sum_{a \in \mathbb{Z}_{p}}|S(a, G)|^{2 k} \tag{1.18}
\end{equation*}
$$

It easily follows from (1.18) that

(1.19) $\quad T_{k}(G) \geq|S(0, G)|^{2 k} / p=t^{2 k} / p$
and
$(1.20) \quad T_{k+1}(G) / t^{2(k+1)} \leq T_{k}(G) / t^{2 k}$.
Moreover, (1.18) shows that $T_{k}(G) / t^{2 k}$ is close to $1 / p$ for large k if all sums $|S(a, G)|, a \in \mathbb{Z}_{p}^{*}$, are small. In particular, it follows from Proposition 1.4 or directly from (1.18) that if we have
$\left(1.5^{\prime}\right) \quad S(a, G) \leq|G| p^{-\delta} \quad\left(a \in \mathbb{Z}_{p}^{*}\right)$,
and $2 k \geq 1 / \delta$, then $T_{k}(G) \leq 2 t^{2 k} / p$. We will show now that, conversely, if $T_{k}(G)$ is close to $t^{2 k} / p$ for some small k, then we can get bound $|S(a, G)|$ well.

Proposition 1.9. We have
(1.21) $\quad\left|S\left(a_{0}, G\right)\right| \leq\left(p T_{k}(G) / t\right)^{1 /(2 k)} \quad\left(a_{0} \in \mathbb{Z}_{p}^{*}\right)$.

Proof. By Lemma 1.6 and (1.18), we get

$$
\begin{aligned}
& t\left|S\left(a_{0}, G\right)\right|^{2 k}=\sum_{x \in G}\left|S\left(a_{0} x, G\right)\right|^{2} \\
& \quad \leq \sum_{a \in G}|S(a, G)|^{2 k}=p T_{k}(G)
\end{aligned}
$$

and the proposition follows.
In particular, if $T_{k}(G) / t^{2 k} \leq t p^{-\varepsilon} / p$ then

$$
|S(a, G)| \leq|G| p^{-\varepsilon /(2 k)} \quad\left(a \in \mathbb{Z}_{p}^{*}\right)
$$

Observe that Theorem 1.7 is a particular case of Proposition 1.9 for $k=1$. If we use a trivial estimate $T_{k}(G) \leq t^{2 k-1}$ we get only

$$
|S(a, G)| \leq\left(p t^{2 k-1} / t\right)^{1 /(2 k)}=t\left(p / t^{2}\right)^{1 /(2 k)}
$$

This estimate is worse than the trivial one $|S(a, G)| \leq t$ if $|G|<p^{1 / 2}$ and worse than the simplest estimate $|S(a, G)| \leq p^{1 / 2}$ if $|G|>p^{1 / 2}$. However, if $|G|$ is close to $p^{1 / 2}$ then any improvement of the trivial inequality $T_{k}(G) \leq t^{2 k-1}$ will improve estimates for $|S(a, G)|$.

Let $m \in \mathbb{N}, \mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}$ be the set of the residues modulo m. If p is a prime, then \mathbb{Z}_{p} is a field of order p. Let $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}$ be the set of invertible elements in \mathbb{Z}_{p}. We take an arbitrary subgroup G of the group \mathbb{Z}_{p}^{*}. Let $t=|G|$. For brevity, we will write $a \equiv b$ instead of $a \equiv b(\bmod p)$.

For $u \in \mathbb{R}$ we denote $e(u)=\exp (2 \pi i u)$. The function $e(\cdot)$ is 1-periodic, and this allows us to talk about $e(a / p)$ for $a \in \mathbb{Z}_{p}$.

The main subject of my talks is the estimation of exponential sums over G :

$$
S(a, G)=\sum_{x \in G} e(a x / p), \quad a \in \mathbb{Z}_{p}
$$

We can estimate $S(a, G)$ trivially:
(1.3) $\quad|S(a, G)| \leq \sum_{x \in G}|e(a x / p)|=\sum_{x \in G} 1=|G|$.

Clearly, inequality (1.3) is equality if $a=0$. We are interested in obtaining nontrivial estimates for $S(a, G)$:
(1.4) $\quad S(a, G)=o(|G|) \quad\left(p \rightarrow \infty, a \in \mathbb{Z}_{p}^{*}\right)$
or, for some $\delta>0$.
(1.5)

$$
S(a, G) \ll|G| p^{-\delta} \quad\left(a \in \mathbb{Z}_{p}^{*}\right)
$$

We proved the simplest estimate for $|S(a, G)|$.
Theorem 1.7. We have
$(1.15) \quad|S(a, G)| \leq \sqrt{p} \quad\left(a \in \mathbb{Z}_{p}^{*}\right)$.
So, we have a nontrivial estimate for exponential sums over G (namely, (1.5)) provided that $|G| \geq p^{1 / 2+\delta}$. Our aim is to weaken this inequality for $|G|$.

To get better estimates for $S(a, G)$ we define, for $k \in \mathbb{N}, T_{k}(G)$ as the number of the solutions to the congruence

$$
x_{1}+\cdots+x_{k} \equiv x_{k+1}+\cdots+x_{2 k}, \quad x_{j} \in G .
$$

Clearly, $T_{1}(G)=t$, and, for any k,

$$
\begin{equation*}
t^{k} \leq T_{k}(G) \leq t^{2 k-1} . \tag{1.17}
\end{equation*}
$$

Also, we have
(1.18)

$$
p T_{k}(G)=\sum_{a \in \mathbb{Z}_{p}}|S(a, G)|^{2 k} .
$$

It easily follows from (1.18) that

$$
\begin{equation*}
T_{k}(G) \geq|S(0, G)|^{2 k} / p=t^{2 k} / p \tag{1.19}
\end{equation*}
$$

We proved the following.
Proposition 1.9. We have
(1.21) $\quad|S(a, G)| \leq\left(p T_{k}(G) / t\right)^{1 /(2 k)} \quad\left(a \in \mathbb{Z}_{p}^{*}\right)$.

In particular, if $T_{k}(G) / t^{2 k} \leq t p^{-\varepsilon} / p$ then

$$
|S(a, G)| \leq|G| p^{-\varepsilon /(2 k)} \quad\left(a \in \mathbb{Z}_{p}^{*}\right) .
$$

Observe that Theorem 1.7 is a particular case of Proposition 1.9 for $k=1$. If we use a trivial estimate $T_{k}(G) \leq t^{2 k-1}$ we get only

$$
|S(a, G)| \leq\left(p t^{2 k-1} / t\right)^{1 /(2 k)}=t\left(p / t^{2}\right)^{1 /(2 k)} .
$$

This estimate is worse than the trivial one $|S(a, G)| \leq t$ if $|G|<p^{1 / 2}$ and worse than the simplest estimate $|S(a, G)| \leq p^{1 / 2}$ if $|G|>p^{1 / 2}$. However, if $|G|$ is close to $p^{1 / 2}$ then any improvement of the trivial inequality $T_{k}(G) \leq t^{2 k-1}$ will improve estimates for $|S(a, G)|$.

Such an improvement was made by Shparlinski who used the following result of A. Garcia and J. F. Voloch.

Theorem 2.1. For $b \in \mathbb{Z}_{p}$ denote by $N_{2}(b)$ the number of solutions to the congruence $x_{1}+x_{2} \equiv b, x_{1}, x_{2} \in G$. If
(2.1)

$$
|G|<\frac{p-1}{(p-1)^{1 / 4}+1},
$$

then for any $b \in \mathbb{Z}_{p}^{*}$ we have

$$
\begin{equation*}
N_{2}(b) \leq 4|G|^{2 / 3} . \tag{2.2}
\end{equation*}
$$

Using (2.2), one can nontrivially estimate $T_{2}(G)$ provided that (2.1) holds. Recall that $T_{2}(G)$ is the number of solutions to
(2.3) $\quad x_{1}+x_{2} \equiv x_{3}+x_{4}, \quad x_{j} \in G$.

The number of solutions to (2.3) with $x_{3}+x_{4} \equiv 0$ is at most $|G|^{2}$. Next, if $x_{3}+x_{4} \not \equiv 0$, then, by (2.2), there are at most $4|G|^{2 / 3}$ pairs $\left(x_{1}, x_{2}\right)$ satisfying (2.3) Therefore,

$$
\begin{equation*}
T_{2}(G) \leq p^{2}+4 p^{8 / 3}<5 p^{8 / 3} \tag{2.4}
\end{equation*}
$$

Now we can estimate exponential sums using Proposition 1.9
(1.21) $\quad|S(a, G)| \leq\left(p T_{k}(G) / t\right)^{1 /(2 k)} \quad\left(a \in \mathbb{Z}_{p}^{*}\right)$.
for $k=2$:

$$
|S(a, G)| \leq(5 p)^{1 / 4}|G|^{5 / 12} \quad\left(a \in \mathbb{Z}_{p}^{*}\right)
$$

This is better than the estimate $p^{1 / 2}$ for $|G| \leq p^{3 / 5-\delta}$, $p \geq p(\delta)$, and better than the trivial $|G|$ for $|G| \geq$ $p^{3 / 7+\delta}, p \geq p(\delta)$. Observing that (2.1) holds for $|G| \leq$ $p^{3 / 4-\delta}, p \geq p(\delta)$. Thus, the improvement was made for $p^{3 / 7+\delta} \leq|G| \leq p^{3 / 5-\delta}, p \geq p(\delta)$.
D. R. Heath-Brown succeeded in applying Stepanov's method to the proof of the theorem of Garcia and Voloch. Moreover, in our joint paper we used his technique to improve estimate (2.4) for $T_{2}(G)$ if $|G| \leq p^{2 / 3}$.
Theorem 2.2. If $|G| \leq p^{2 / 3}$, then
(2.5)

$$
T_{2}(G) \ll|G|^{5 / 2}
$$

We are not able to improve the estimate of Garcia and Voloch

$$
N_{2}(b) \ll|G|^{2 / 3}
$$

for all $b \in \mathbb{Z}_{p}^{*}$, but it can be improved in average, and this implies (2.5). I shall present the proof of (2.5), but first let us discuss its applications. To estimate exponential sums $S(a, G)$, one can use Proposition 1.9; however, the following more general fact sometimes gives better estimates.

Theorem 2.3. If $k, l \in \mathbb{N}$, $a \in \mathbb{Z}_{p}^{*}$, then
(2.6) $\quad|S(a, G)| \leq\left(p T_{k}(G) T_{l}(G)\right)^{1 /(2 k l)} t^{1-1 / k-1 / l}$.

Clearly, for $l=1$ Theorem 2.3 is just Proposition 1.9. For $k=l$ (2.6) can be written as
(2.7) $|S(a, G)| \leq\left(\frac{T_{k}(G) p^{1 / 2}}{t^{2 k}}\right)^{1 /\left(k^{2}\right)} t$.

Clearly, (2.7) supersedes the trivial estimate $|S(a, G)| \leq t$ if and only if

$$
\begin{equation*}
T_{k}(G)<t^{2 k} p^{-1 / 2} \tag{2.8}
\end{equation*}
$$

In the most interesting case $|G|<p^{1 / 2}(2.8)$ is weaker than the condition $T_{k}(G)<t^{2 k} t / p$ required to have any benefit from Proposition 1.9.

Theorem 2.3 probably has to be attributed to
A. A. Karatsuba who in fact proved the following.

Theorem 2.4. Let $X \subset \mathbb{Z}_{p}^{*}$. For $k \in \mathbb{N}$ by $T_{k}(X)$ denote the number of the solutions to the congruence

$$
x_{1}+\cdots+x_{k} \equiv x_{k+1}+\cdots+x_{2 k}, \quad x_{j} \in X
$$

Then for $k, l \in \mathbb{N}$, $a \in \mathbb{Z}_{p}^{*}$, we have

$$
\left|\sum_{x, y \in X} e(a x y / p)\right| \leq\left(p T_{k}(X) T_{l}(X)\right)^{1 /(2 k l)}|X|^{2-1 / k-1 / l}
$$

Theorem 2.4 is similar to the results proven for estimates of H. Weil's sums by I. M. Vinogradov's method. Theorem 2.3 is contained in Theorem 2.4 since

$$
\sum_{x, y \in G} e(a x y / p)=|G| \sum_{z \in G} e(a z / p)=|G| S(a, G)
$$

Combining Theorem 2.2 with Theorem 2.3 for $k=$ $1, l=2$ if $p^{1 / 2}<|G| \leq p^{2 / 3}$ and for $k=l=2$ if $|G| \leq p^{1 / 2}$ we get for $a \in \mathbb{Z}_{p}^{*}$
(2.9) $\quad|S(a, G)| \ll p^{1 / 4}|G|^{3 / 8} \quad\left(p^{1 / 2}<|G| \leq p^{2 / 3}\right)$,
$(2.10) \quad|S(a, G)| \ll p^{1 / 8}|G|^{5 / 8} \quad\left(|G| \leq p^{1 / 2}\right)$.

Observe that (2.9) supersedes the simplest estimate $|S(a, G)| \leq p^{1 / 2}$ for $|G| \leq p^{2 / 3-\delta}, p \geq p(\delta)$, and (2.10) supersedes the trivial estimate $|S(a, G)| \leq|G|$ for $|G| \geq$ $p^{1 / 3+\delta}, p \geq p(\delta)$. For $|G| \geq p^{2 / 3}$ we cannot prove anything better than $|S(a, G)| \ll p^{1 / 2}$.

Let me recall the definition of $1 / p$-pseudo-random generators of Blum, Blum, and Shub. Take an integer $g \geq 2$. We consider the g-ary expansion of $1 / p$. If g is fixed then we can expect (and this is true indeed) that for many primes p there is no large correlation among close digits in this expansion, and we can talk about a pseudo-random generator. Let G be the subgroup of \mathbb{Z}_{p}^{*} generated by $g, t=|G|$. It is easy to see that t is the (least) period of the g-ary expansion of $1 / p$. We are interested in appearances of a sequence $\left(d_{1}, \ldots, d_{k}\right)$ of g-ary digits in the expansion. We have proved that if

$$
\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)| / t \leq \eta
$$

and
(2.11) $\quad \frac{p}{2 g^{k}}-1 \geq \eta p /(1+\eta)$
then the g-ary expansion of $1 / p$ contains any string of length k. It is easy to see that (2.11) holds if $k \leq$ $(\log (1 / \eta)-C) / \log g$ for some absolute constant C.

Let me stress that we do not expect that the digits of the g-ary expansion of $1 / p$ are well-distributed for ALL large p. For example, take $g=2$. If p is a Mersenne prime (that is, $p=2^{q}-1$), then the expansion has the string $(0, \ldots, 0,1)$ of size q as its period; thus, the sequence is very far from being pseudo-random. However, we can say that for ALMOST ALL primes the sequence of digits is in a sense well-distributed.

Fix g and take a large $L \in \mathbb{N}$. Also,let $T \in \mathbb{N}$. Let us estimate the number N of primes $p \leq g^{L}$ such that the order of g in \mathbb{Z}_{p} is at most T. We have

$$
\begin{aligned}
N \leq \sum_{t \leq T} \mid\left\{p: g^{t}\right. & \equiv 1(\bmod p)\} \mid=\sum_{t \leq T} w\left(g^{t}-1\right) \\
& \ll \sum_{t \leq T} t \leq T^{2}
\end{aligned}
$$

On the other hand, the number of primes $p \leq g^{L}$ is $\gg g^{L} / L$. Therefore, for every fixed $\varepsilon>0$, specifying $T=g^{(1 / 2-\varepsilon) L}$, we see that for almost all primes $p \leq g^{L}$ the order of g in \mathbb{Z}_{p} is $>T \geq p^{1 / 2-\varepsilon}$. This means that the proportion of exceptional primes amongst all the primes $\leq g^{L}$ tends to 0 as $L \rightarrow \infty$.

Next, if G is the subgroup of \mathbb{Z}_{p}^{*} generated by $g, t=$ $|G|>p^{1 / 2-\varepsilon}$, than, by (2.9) and (2.10),
(2.9) $\quad|S(a, G)| \ll p^{1 / 4}|G|^{3 / 8} \quad\left(p^{1 / 2}<|G| \leq p^{2 / 3}\right)$,
(2.10) $\quad|S(a, G)| \ll p^{1 / 8}|G|^{5 / 8} \quad\left(|G| \leq p^{1 / 2}\right)$.
we have

$$
\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)| / t \leq \eta
$$

with $\eta \ll p^{-\frac{1}{16}+\frac{3}{8} \varepsilon}$. This implies, that the g-ary expansion of $1 / p$ contains any string of length $\leq\left(\frac{1}{16}-\frac{3}{8} \varepsilon\right) L-C$. Moreover, for large L all the strings of length $\leq\left(\frac{1}{16}-\varepsilon\right) L$ will appear with approximately the same frequency. Observe that we cannot prove any results of this type using the simplest estimate $|S(a, G)| \leq$ $p^{1 / 2}$.

We (SK, I. Shparlinski) can prove more: for almost all primes $p \leq g^{L}$ the g-ary expansion of $1 / p$ contains any string of length $\leq \frac{3}{37} L$.

Now we shall make some preparations to prove the estimate for $T_{2}(G)$. Take some cosets G_{1}, \ldots, G_{s} of the group G in \mathbb{Z}_{p}^{*}. For any coset G_{j} denote

$$
N_{j}=\left|\left\{x \in G: x-1 \in G_{j}\right\}\right|
$$

Lemma 2.5. Let $|G|=t$ and suppose that a positive integer L satisfies the conditions
(2.12) $\quad L<t, \quad t L \leq p, \quad s<L^{3} /(2 t)$.

Then

$$
\sum_{j=1}^{s} N_{j} \leq \frac{2 t L}{[t / L]}
$$

Proof. Let $K=[t / L]$. We shall begin by taking a polynomial $\Phi(X, Y, Z)$, for which

$$
\operatorname{deg}_{X} \Phi<K, \quad \operatorname{deg}_{Y} \Phi<L, \quad \operatorname{deg}_{Z} \Phi<L
$$

For $j=1, \ldots, s$ we define the sets

$$
R_{j}=\left\{x \in G: x-1 \in G_{j}\right\}, \quad R=\bigcup_{j=1}^{s} R_{j}
$$

Clearly,

$$
\sum_{j=1}^{s} N_{j}=|R|
$$

The underlying idea is then to arrange that the polynomial

$$
\Psi(X)=\Phi\left(X, X^{t},(X-1)^{t}\right)
$$

has a zero of order at least K at each point $x \in R$. We will therefore be able to conclude that

$$
K \sum_{j=1}^{s} N_{j} \leq \operatorname{deg} \Psi
$$

provided that Ψ does not vanish identically. We note that
$\operatorname{deg} \Psi \leq \operatorname{deg}_{X} \Phi+t \operatorname{deg}_{Y} \Phi+t \operatorname{deg}_{Z} \Phi \leq K-1+2 t(L-1)$,
whence

$$
\sum_{j=1}^{s} N_{j} \leq \frac{K-1+2 t(L-1)}{K}<\frac{2 t L}{[t / L]}
$$

provided that Ψ does not vanish identically.

In order for Ψ to have a zero of multiplicity at least K at a point x, we need

$$
\left.\left(\frac{d}{d x}\right)^{n} \Psi(X)\right|_{X=x}=0 \quad(n<K)
$$

Since $x \neq 0,1$ for $x \in R$, this will be equivalent to
(2.13)

$$
\left.(X(X-1))^{n}\left(\frac{d}{d x}\right)^{n} \Psi(X)\right|_{X=x}=0
$$

We now observe that

$$
\begin{aligned}
X^{m}\left(\frac{d}{d x}\right)^{m} X^{u} & =\frac{u!}{(u-m)!} X^{u} \\
X^{m}\left(\frac{d}{d x}\right)^{m} X^{t v} & =\frac{(t v)!}{(t v-m)!} X^{t v} \\
(X-1)^{m}\left(\frac{d}{d x}\right)^{m}(X-1)^{t w} & =\frac{(t w)!}{(t w-m)!}(X-1)^{t w}
\end{aligned}
$$

It follows that

$$
\begin{gathered}
(X(X-1))^{k}\left(\frac{d}{d X}\right)^{k} X^{u} X^{t v}(X-1)^{t w} \\
=P_{k, u, v, w}(X) X^{t v}(X-1)^{t w}
\end{gathered}
$$

where $P_{k, u, v, w}$ either vanishes or is a polynomial of degree at most $k+u$. We therefore deduce that for any $j=1, \ldots, s$ and for any $x \in R_{j}$, we have

$$
\begin{gathered}
\left.(X(X-1))^{k}\left(\frac{d}{d x}\right)^{k} X^{u} X^{t v}(X-1)^{t w}\right|_{X=x} \\
=a_{j}^{w} P_{k, u, v, w}(x)
\end{gathered}
$$

where $a_{j}=y^{t}$ for $y \in G_{j}$; the crucial argument here is that y^{t} does not depend on the choice of $y \in G$ or $y \in G_{j}$.

We now write

$$
\Phi(X, Y, Z)=\sum_{u, v, w} \lambda_{u, v, w} X^{u} Y^{v} Z^{w}
$$

and

$$
P_{k, j}(X)=\sum_{u, v, w} \lambda_{u, v, w} a_{j}^{w} P_{k, u, v, w}(X)
$$

so that $\operatorname{deg} P_{k, j}<A+k$ and
$\left.(X(X-1))^{k}\left(\frac{d}{d X}\right)^{k} \Phi\left(X, X^{t},(X-1)^{t}\right)\right|_{X=x}=P_{k, j}(x)$
for any $x \in R_{j}$. We shall arrange, by appropriate choice of the coefficients $\lambda_{u, v, w}$, that $P_{k, j}(X)$ vanishes identically for $k<K$. This will ensure that

$$
\begin{equation*}
\left.(X(X-1))^{n}\left(\frac{d}{d x}\right)^{n} \Psi(X)\right|_{X=x}=0 \tag{2.13}
\end{equation*}
$$

holds at every point $x \in R$. Each polynomial $P_{k, j}(X)$ has at most $K+k<2 K$ coefficients which are linear forms in the original $\lambda_{u, v, w}$. Thus if

$$
\begin{equation*}
s K(2 K)<K L^{2} \tag{2.14}
\end{equation*}
$$

there will be a set of coefficients $\lambda_{u, v, w}$, not all zero, for which the polynomials $P_{k, j}(X)$ vanish for all $k<K$. But, since $K=[t / L] \leq t / L$ and $s<L^{3} /(2 t)$,

$$
s K(2 K)=2 s K^{2} \leq 2 s K t / L<K L^{2}
$$

and (2.14) holds.

We must now consider whether the polynomial $\Phi\left(X, X^{t},(X-1)^{t}\right)$ can vanish if $\Phi(X, Y, Z)$ does not. We shall write

$$
\Phi(X, Y, Z)=\sum_{w} \Phi_{w}(X, Y) Z^{w}
$$

and take w_{0} to be the smallest value w for which $\Phi_{w}(X, Y)$ is not identically zero. It follows that

$$
\begin{gathered}
\Phi\left(X, X^{t},(X-1)^{t}\right) \\
=(X-1)^{t w_{0}} \sum_{w_{0} \leq w \leq B} \Phi_{w}\left(X, X^{t}\right)(X-1)^{t\left(w-w_{0}\right)},
\end{gathered}
$$

so that if $\Phi\left(X, X^{t},(X-1)^{t}\right)$ is identically zero, we must have
(2.15) $\quad \Phi_{w_{0}}\left(X, X^{t}\right) \equiv 0\left(\bmod (X-1)^{t}\right)$.

We show, by induction on N, that if a polynomial $f(X) \in \mathbb{Z}_{p}[X]$ of degree $\operatorname{deg} f<p$ is a sum of $N \geq 1$ distinct monomials, then $(X-1)^{N}$ cannot divide $f(X)$. The case $N=1$ is trivial. Now suppose that $N>1$ and let

$$
f(X)=\sum_{w} c_{w} x^{W}
$$

where w runs over N distinct values. Then the polynomial

$$
g(X)=X f^{\prime}(X)-W f(X)=\sum_{w} c_{w}(w-W) X^{w}
$$

where $W=\operatorname{deg} w$, contains exactly $N-1$ terms. (Notice that $c_{w}(w-W) \in \mathbb{Z}_{p}$ is nonzero for $w<W$ since $W<p$.$) We then see that if (X-1)^{N}$ divides $f(X)$, then $(X-1)^{N-1}$ divides $g(X)$ contrary to our induction hypothesis.

We have

$$
\operatorname{deg} \Phi_{w_{0}}\left(X, X^{t}\right) \leq K-1+t(L-1)<t L
$$

Therefore, the congruence
(2.15)

$$
\Phi_{w_{0}}\left(X, X^{t}\right) \equiv 0\left(\bmod (X-1)^{t}\right)
$$

is impossible provided that $K L \leq t, t L \leq p$. But these inequalities hold, and Lemma 2.5 is proven.

Now take all the costs G_{1}, \ldots, G_{n} of the group G in \mathbb{Z}_{p}^{*}; thus, $n=(p-1) / t$. Again, for any $\operatorname{coset} G_{j}$ we denote

$$
N_{j}=\left|\left\{x \in G: x-1 \in G_{j}\right\}\right| .
$$

Hence,

$$
\begin{gathered}
N_{j}=\left|\left\{x \in G, y \in G_{j}: x-1 \equiv y\right\}\right|, \\
t N_{j}=\left|\left\{x_{1}, x_{2} \in G, y \in G_{j}: x_{1}-x_{2} \equiv y\right\}\right|,
\end{gathered}
$$

and for any $y \in G_{j}$ we have

$$
N_{j}=\left|\left\{\left(x_{1}, x_{2}\right) \in G: x_{1}-x_{2} \equiv y\right\}\right| .
$$

Therefore,

$$
\begin{aligned}
& T_{2}(G)=\left|\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{j} \in G, x_{1}-x_{2} \equiv x_{3}-x_{4}\right\}\right| \\
& =\sum_{y \in \mathbb{Z}_{p}}\left|\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in G, x_{1}-x_{2} \equiv y\right\}\right|^{2} \\
& \leq t^{2}+\sum_{j=1}^{n} \sum_{y \in G_{j}}\left|\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in G, x_{1}-x_{2} \equiv y\right\}\right|^{2} \\
& (2.16) \quad=t^{2}+\sum_{j=1}^{n} \sum_{y \in G_{j}} N_{j}^{2}=t^{2}+t \sum_{j=1}^{n} N_{j}^{2} .
\end{aligned}
$$

Also, observe that

$$
\begin{aligned}
& t^{2}=\sum_{y \in \mathbb{Z}_{p}}\left|\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in G, x_{1}-x_{2} \equiv y\right\}\right| \\
& \geq \sum_{j=1}^{n} \sum_{y \in G_{j}}\left|\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in G, x_{1}-x_{2} \equiv y\right\}\right| \\
& =\sum_{j=1}^{n} \sum_{y \in G_{j}} N_{j}=t \sum_{j=1}^{n} N_{j}
\end{aligned}
$$

Hence,
(2.17)

$$
\sum_{j=1}^{n} N_{j} \leq t
$$

Now we are in position to prove Theorem 2.2.
Theorem 2.2. If $|G| \leq p^{2 / 3}$, then
(2.5)

$$
T_{2}(G) \ll|G|^{5 / 2}
$$

We assume that $t=|G|$ is large enough and the cosets G_{1}, \ldots, G_{n} are ordered in such a way that

$$
N_{1} \geq N_{2} \cdots \geq N_{n}
$$

Then for $1 \leq s \leq t^{1 / 2} / 3$ and $L=\left[(2 s t)^{1 / 3}\right]+1$ the conditions
(2.12) $\quad L<t, \quad t L \leq p, \quad s<L^{3} /(2 t)$.
of Lemma 2.5 are satisfied, and it can be applied giving

$$
\sum_{j=1}^{s} N_{j} \ll s^{2 / 3} t^{2 / 3}
$$

Hence,
(2.18) $\quad N_{s} \ll s^{-1 / 3} t^{2 / 3} \quad\left(s \leq t^{1 / 2} / 3\right)$.

For $s>t^{1 / 2} / 3$ the following estimate holds:
(2.19)

$$
N_{s} \leq N_{\left[t^{1 / 2} / 3\right]} \ll t^{1 / 2}
$$

Using (2.16) and combining the bounds (2.18) and (2.19) with (2.17) we get

$$
\begin{gathered}
T_{2}(G) \leq t^{2}+t \sum_{s=1}^{n} N_{s}^{2} \\
\leq t^{2}+t \sum_{s \leq t^{1 / 2} / 3} N_{s}^{2}+t \sum_{s>t^{1 / 2} / 3} N_{s}^{2} \\
\ll t^{2}+t \sum_{s \leq t^{1 / 2} / 3}\left(s^{-1 / 3} t^{2 / 3}\right)^{2}+t \sum_{s>t^{1 / 2} / 3} t^{1 / 2} N_{s} \\
\ll t^{2}+t \sum_{s \leq t^{1 / 2} / 3}\left(s^{-1 / 3} t^{2 / 3}\right)^{2}+t\left(t^{1 / 2}\right) t \ll t^{5 / 2},
\end{gathered}
$$

and we have the desired result.
Now we will prove a corollary from Lemma 2.5. If * is a binary operation on $\mathbb{Z}_{p}, A, B \subset \mathbb{Z}_{p}$, then we denote

$$
A * B=\{a * b: a \in A, b \in B\} .
$$

Corollary 2.7. (A. Glibichuk.) Let $B \subset G$ and $0<$ $|B| \leq p^{1 / 2}$. Then
(2.20)

$$
|G(B-B)| \gg|B|^{3 / 2}
$$

Proof. Let G_{1}, \ldots, G_{s} be all the cosets of G in \mathbb{Z}_{p}^{*} containing elements from $B-B$. Then $G_{j} \subset G(B-B)$ for $j=1, \ldots, s$, and hence
(2.21)

$$
|G(B-B)|=s|G|+1
$$

Inequality (2.20) follows immediately from (2.21) for $s>$ $|B|^{3 / 2} /(17|G|)$ (and, in particular, for $|G|>|B|^{3 / 2} / 17$). Thus, we can assume that
(2.22) $\quad|G| \leq|B|^{3 / 2} / 17, \quad s \leq|B|^{3 / 2} /(17|G|)$.

Also, assume that $|B|$ is large enough. Fixed $x_{0} \in B$. Recall that

$$
N_{j}=\left|\left\{x \in G: x-1 \in G_{j}\right\}\right|
$$

Equivalently,

$$
N_{j}=\left|\left\{x \in G: x-x_{0} \in G_{j}\right\}\right|
$$

Since for every $x \in B \backslash\left\{x_{0}\right\}$ we have $x-x_{0} \in G_{j}$ for some $j=1, \ldots, s$,
(2.23) $|B|-1=\sum_{j=1}^{s}\left|\left\{x \in B: x-x_{0} \in G_{j}\right\}\right| \leq \sum_{j=1}^{s} N_{j}$.

Take $L=\left[(2 s t)^{1 / 3}\right]+1$. Now we can use Lemma 2.5.
Lemma 2.5. Let $|G|=t$ and suppose that a positive integer L satisfies the conditions
(2.12) $\quad L<t, \quad t L \leq p, \quad s<L^{3} /(2 t)$.

Then

$$
\sum_{j=1}^{s} N_{j} \leq \frac{2 t L}{[t / L]}
$$

We have

$$
(2.24) \quad L \leq\left[\left(2|B|^{3 / 2} / 17\right)^{1 / 3}\right]+1<(|B|-1)^{1 / 2} / 2
$$

Therefore,

$$
\begin{aligned}
L<|B|^{1 / 2} \leq|B| & \leq t \\
t L<\left(|B|^{3 / 2} / 17\right)\left(|B|^{1 / 2}\right) & <|B|^{2}<p
\end{aligned}
$$

So, (2.12) are fulfilled. By Lemma 2.5 and (2.24),

$$
\sum_{j=1}^{s} N_{j} \leq 4 L^{2}<|B|-1
$$

but his does not agree with (2.23), and Corollary 2.7 follows.

Using Stepanov- Heath-Brown's method, Theorem 2.2 can be extended to $k>2$ provided that $|G| \leq p^{1 / 2}$. Theorem 2.8. If $|G| \leq p^{1 / 2}, k \in \mathbb{N}$, then
(2.25)

$$
T_{k}(G) \ll k|G|^{2 k-2+2^{1-k}}
$$

It follows from Theorem 2.3 that we can get nontrivial estimates for exponential sums if for some k and $\varepsilon>0$ we have
(2.26) $\quad T_{k}(G) \ll_{k, \varepsilon}|G|^{2 k} p^{-1 / 2-\varepsilon}$.

Namely, (2.26) implies $|S(a, G)|<_{k, \varepsilon} p^{-\varepsilon / k^{2}}|G|$ for $a \in \mathbb{Z}_{p}^{*}$. By Theorem 2.8, (2.26) holds for

$$
\begin{equation*}
|G| \geq p^{1 / 4+\varepsilon} \tag{2.27}
\end{equation*}
$$

and $k \geq k(\varepsilon)$. Thus, we have nontrivial estimates for exponential sums under supposition (2.27).

It is likely that Theorem 2.8 and restriction (2.27) correspond to natural thresholds of Stepanov- HeathBrown's method.

Let me mention a corollary from Theorem 2.8. For $b \in \mathbb{Z}_{p}, k \in \mathbb{N}$ we denote by $N_{k}(b)$ the number of the solutions to the congruence

$$
x_{1}+\cdots+x_{k} \equiv b, \quad x_{1}, \ldots, x_{k} \in G
$$

It is not difficult to prove that

$$
\begin{gathered}
\sum_{b \in k G} N_{k}(b)=|G|^{k}, \\
\sum_{b \in k G} N_{k}(b)^{2}=T_{k}(G)
\end{gathered}
$$

(we have checked this for $k=2$). Hence, by CauchySchwartz inequality

$$
|k G| \geq|G|^{2 k} / T_{k}(G)
$$

and from Theorem 2.8 we get the following.
Corollary 2.9. If $|G| \leq p^{1 / 2}, k \in \mathbb{N}$, then
(2.28)

$$
|k G| \gg_{k}|G|^{2-2^{1-k}}
$$

To weaken restriction
(2.27) $\quad|G| \geq p^{1 / 4+\varepsilon}$
we had to show that for $|G| \leq p^{1 / 4}$ and for some k and ε

$$
T_{k}(G) \ll|G|^{2 k-2-\varepsilon} .
$$

This would imply

$$
|k G| \gg|G|^{2+\varepsilon} .
$$

But before 2003 it was not clear how to exclude the situation
(2.29) $\quad \forall k \exists p, G:|G| \leq p^{1 / 4},|k G|<|G|^{2}$.

Now it is time to have an excursion to a very exciting number theoretical and combinatorial problem.
P. Erdős and E. Szemerédi asked the following question.

Problem 2.9. Is it true that for every nonempty finite $A \subset \mathbb{Z}$ and for every $\varepsilon>0$

$$
\max (|A+A|,|A A|) \gg_{\varepsilon}|A|^{2-\varepsilon} ?
$$

They proved that for some $\alpha>0$
(2.30) $\quad \max (|A+A|,|A A|) \gg|A|^{1+\alpha}$.
M. Nathanson established (2.30) for $\alpha=1 / 31$. This value was being improved by K. Ford, G. Elekes. J. Solymosi proved (2.30) for $\alpha=3 / 11-\varepsilon$ with an arbitrary $\varepsilon>0$; moreover, (2.30) is true for any nonempty finite $A \subset \mathbb{C}$.

It was naturally to ask if (2.30) holds for \mathbb{Z}_{p}, but it was clear that it could not hold in full generality: indeed, for $A=\mathbb{Z}_{p}$ we have $A+A=A A=A$. But it was reasonable to conjecture the validity of (2.30) for small A, say, $|A| \leq p^{1 / 2}$. This would exclude
(2.29)

$$
\forall k \exists p, G:|G| \leq p^{1 / 4}, N_{k}(G)<|G|^{2} .
$$

Indeed, take a large k and use (2.29) with k replaced by k^{2}. Then we have $|G| \leq p^{1 / 4}$,
(2.28)

$$
|k G| \gg_{k}|G|^{2-2^{1-k}}
$$

but, by (2.29),
(2.31)

$$
\left|k^{2} G\right|<|G|^{2}
$$

This inequality implies

$$
|k G| \leq\left|k^{2} G\right|<p^{1 / 2}
$$

Since

$$
k G+k G=2 k G, \quad(k G)(k G) \subset k^{2} G
$$

we deduce from conjectural (2.30)
$\left|k^{2} G\right| \geq \max (k G+k G,(k G)(k G))>_{k}|G|^{\left(2-2^{1-k}\right)(1+\alpha)}$,
but this does not agree with (2.30) for $k=k(\alpha)$ and sufficiently large p.

Unfortunately no existing proofs of (2.30) for integer, real or complex numbers could be used for \mathbb{Z}_{p}.

Let $m \in \mathbb{N}, \mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}$ be the set of the residues modulo m. If p is a prime, then \mathbb{Z}_{p} is a field of order p. Let $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}$ be the set of invertible elements in \mathbb{Z}_{p}. For brevity, we will write $a \equiv b$ instead of $a \equiv b(\bmod p)$.

If $*$ is a binary operation in a $\operatorname{ring} \mathcal{R}\left(\mathbb{Z}_{p}\right.$ or $\left.\mathbb{C}\right)$ on $\mathbb{Z}_{p}, A, B \subset \mathcal{R}$, then we denote

$$
A * B=\{a * b: a \in A, b \in B\} .
$$

P. Erdős and E. Szemerédi asked the following question.

Problem 2.9. Is it true that for every nonempty finite $A \subset \mathbb{Z}$ and for every $\varepsilon>0$

$$
\max (|A+A|,|A A|) \ggg_{\varepsilon}|A|^{2-\varepsilon} ?
$$

They proved that for some $\alpha>0$
(2.30) $\quad \max (|A+A|,|A A|) \gg|A|^{1+\alpha}$.
M. Nathanson established (2.30) for $\alpha=1 / 31$. This value was being improved by K. Ford, G. Elekes. J. Solymosi proved (2.30) for $\alpha=3 / 11-\varepsilon$ with an arbitrary $\varepsilon>0$; moreover, (2.30) is true for any nonempty finite $A \subset \mathbb{C}$.

It was naturally to ask if (2.30) holds for \mathbb{Z}_{p}, but it was clear that it could not hold in full generality: indeed, for $A=\mathbb{Z}_{p}$ we have $A+A=A A=A$. But it was reasonable to conjecture the validity of (2.30) for small A, say, $|A| \leq p^{1 / 2}$.

Unfortunately no existing proofs of (2.30) for integer, real or complex numbers could be used for \mathbb{Z}_{p}. The assistance came from Algebra and Measure Theory.
G. A. Edgar and C. Miller gave a very elegant solution to an old problem by proving that a Borel subring of \mathbb{R} either has Hausdorff dimension 0 or is equal to \mathbb{R}. Using their technique, among other deep ideas, J. Bourgain, N. Katz, and T. Tao in the beginning of 2003 proved the following.

Theorem 3.1. For any $\delta>0$ there exists $\varepsilon>0$ such that for any $A \subset \mathbb{Z}_{p}$ with $p^{\delta}<|A|<p^{1-\delta}$ we have

$$
\begin{equation*}
\max (|A+A|,|A A|)>_{\delta}|A|^{1+\varepsilon} . \tag{3.1}
\end{equation*}
$$

Actually, it is not difficult to see from the proof that one can write

$$
\max (|A+A|,|A A|) \gg|A| p^{c \delta}
$$

for $p^{1 / 2}<|A|<p^{1-\delta}$.

In the paper of J. Bourgain and SK (3.1) was improved for small A.

Theorem 3.2. There exists $c>0$ such that for any nonempty $A \subset \mathbb{Z}_{p}$ with $|A| \leq p^{1 / 2}$ we have
(3.2) $\quad \max (|A+A|,|A A|) \gg|A|^{1+c}$.

Another, more important, result of that paper, was related to exponential sums over subgroups.

We take an arbitrary subgroup G of the group \mathbb{Z}_{p}^{*}. Let $t=|G|$. For $u \in \mathbb{R}$ we denote $e(u)=\exp (2 \pi i u)$. The function $e(\cdot)$ is 1-periodic, and this allows us to talk about $e(a / p)$ for $a \in \mathbb{Z}_{p}$. We denote

$$
S(a, G)=\sum_{x \in G} e(a x / p)
$$

The following result has been established.
Theorem 3.3. For any $\delta>0$ there exists $\varepsilon>0$ such that for any G with $|G|>p^{\delta}$ we have
(3.3)

$$
\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)|<_{\delta}|G| p^{-\varepsilon}
$$

The proof of Theorem 3.3 uses the estimates in the sums- products problem. It suffices to use Theorem 3.1; using Theorem 3.2 gives

$$
\varepsilon=\exp \left(-(1 / \delta)^{C}\right)
$$

with an absolute constant C.
Now we will discuss the proof of Theorem 3.2. Denote

$$
I(A)=\left\{a_{1}\left(a_{2}-a_{3}\right)+a_{4}\left(a_{5}-a_{6}\right): a_{j} \in A\right\} .
$$

We proved the following estimates for $|I(A)|$.
Theorem 3.4. If $|A|>\sqrt{p}$ then $|I(A)|>p / 2$.
Theorem 3.5. If $0<|A| \leq \sqrt{p}$ then

$$
\begin{equation*}
|I(A)| \times|A-A| \gg|A|^{5 / 2} \tag{3.4}
\end{equation*}
$$

Take any element $a_{0} \in A \cap \mathbb{Z}_{p}^{*}$. For any $b \in A-A$ we have $a_{0} b \in I(A)$. Therefore, $|I(A)| \geq|A-A|$, and (3.4) implies
(3.5) $\quad|I(A)| \gg|A|^{5 / 4}$.

Now we comment how to get Theorem 3.2 from (3.5). first, observe that

$$
I(A) \subset A A-A A+A A-A A
$$

and (3.5) implies
(3.6) $\quad|A A-A A+A A-A A| \gg|A|^{5 / 4}$.

Combining Lemma 2.4 and Lemma 2.2 from the paper of Bourgain, Katz, Tao, we have the following result (Katz, Tao, Nathanson, Ruzsa).

Lemma 3.6. There exist an absolute constant $C>0$ such that if

$$
\max (|A+A|,|A A|) \leq K|A|,
$$

then there exists a set $A^{\prime} \subset A$ such that

$$
\left|A^{\prime}\right| \geq C^{-1} K^{-C}|A|
$$

and

$$
\left|A^{\prime} A^{\prime}-A^{\prime} A^{\prime}+A^{\prime} A^{\prime}-A^{\prime} A^{\prime}\right| \ll C K^{C}\left|A^{\prime}\right| .
$$

It is easy to see from Lemma 3.6 that if we take

$$
|A| \leq p^{1 / 2}, \quad K=\alpha|A|^{1 /(5 C)}
$$

then

$$
\left|A^{\prime} A^{\prime}-A^{\prime} A^{\prime}+A^{\prime} A^{\prime}-A^{\prime} A^{\prime}\right| \leq \beta\left|A^{\prime}\right|^{5 / 4}
$$

where β is small if α is. But the last inequality does not agree with (3.6). This shows that

$$
\max (|A+A|,|A A|) \gg|A|^{1+1 /(5 C)}
$$

if $|A| \leq p^{1 / 2}$.
For $\xi \in \mathbb{Z}_{p}$ we denote

$$
S_{\xi}(A):=\{a+b \xi: a, b \in A\}
$$

To prove estimates for $|I(A)|$ we need some Lemmas.
Lemma 3.7. Let $\xi \in \mathbb{Z}_{p}$. Then the condition
$\left|S_{\xi}(A)\right|<|A|^{2}$
is equivalent to existence of $a_{1}, a_{2}, a_{3}, a_{4}$ from A such that $a_{2} \not \equiv a_{4}$ and $\xi \equiv\left(a_{1}-a_{3}\right) /\left(a_{4}-a_{2}\right)$.

Proof. Since the number of sums $a_{1}+\xi a_{2}$ with $a_{1}, a_{2} \in A$ is $|A|^{2}>\left|S_{\xi}(A)\right|$, then (3.7) is equivalent to existence of $a_{1}, a_{2}, a_{3}, a_{4}$ such that $a_{2} \not \equiv a_{4}$ and $a_{1}+\xi a_{2} \equiv a_{3}+\xi a_{4}$ as required.

Lemma 3.8. Let $\xi \in \mathbb{Z}_{p}$ and (3.7) hold. Then

$$
|I(A)| \geq\left|S_{\xi}(A)\right|
$$

Proof. By Lemma 3.7, there exist $a_{1}, a_{2}, a_{3}, a_{4}$ such that $a_{1}-a_{3} \equiv \xi\left(a_{4}-a_{2}\right)$. Now for any $a^{\prime}, a^{\prime \prime} \in A$ we get

$$
\left(a^{\prime}+\xi a^{\prime \prime}\right)\left(a_{4}-a_{2}\right) \equiv a^{\prime}\left(a_{4}-a_{2}\right)+a^{\prime \prime}\left(a_{1}-a_{3}\right) \in I(A)
$$

showing that $\left(a_{4}-a_{2}\right) S_{\xi}(A) \subset I(A)$.
Lemma 3.9. For any $H \subset \mathbb{Z}_{p}$ there exists $\xi \in H$ such that

$$
\left|S_{\xi}(A)\right| \geq \frac{|A|^{2}|H|}{|A|^{2}+|H|}
$$

Proof. Set

$$
\nu_{\xi}(b)=\left|\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in A, b \equiv a_{1}+\xi a_{2}\right\}\right|
$$

so that, by Cauchy-Schwartz inequality,

$$
|A|^{4}=\left(\sum_{b} \nu_{\xi}(b)\right)^{2} \leq\left|S_{\xi}(A)\right| \sum_{b} \nu_{\xi}^{2}(b)
$$

Therefore,

$$
\begin{gathered}
|A|^{4} \leq\left|S_{\xi}(A)\right| \times \mid\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right): a_{1}+\xi a_{2} \equiv a_{3}\right. \\
\left.+\xi a_{4}\right\}\left|=\left|S_{\xi}(A)\right|\left(|A|^{2}+N\right), \quad N=\right|\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right):\right. \\
\left.a_{2} \not \equiv a_{4}, a_{1}+\xi a_{2} \equiv a_{3}+\xi a_{4}\right\} \mid .
\end{gathered}
$$

(We consider that all $a_{j} \in A$.) Summing up over all $\xi \in$ H and taking into account that for any $a_{1}, a_{2}, a_{3}, a_{4} \in A$ with $a_{2} \not \equiv a_{4}$ there exists at most one $\xi \in H$ satisfying $a_{1}+\xi a_{2} \equiv a_{3}+\xi a_{4}$, we obtain

$$
|A|^{4}|H| \leq \max _{\xi \in}\left|S_{\xi}(A)\right|\left(|A|^{2}|H|+|A|^{4}\right)
$$

as required.
Theorem 3.4. If $|A|>\sqrt{p}$ then $|I(A)|>p / 2$.
Theorem 3.4 is immediate from Lemmas 3.8 and 3.9: choose $H=\mathbb{Z}_{p}$ and notice that if $|A|^{2}>p$ then $\left|S_{\xi}(A)\right| \leq p<|A|^{2}$ for any ξ and

$$
\frac{|A|^{2}|H|}{|A|^{2}+|H|}>\frac{|A|^{2} p}{2|A|^{2}}=p / 2 .
$$

Estimate (3.4) from Theorem 3.5
(3.4) $\quad|I(A)| \times|A-A| \gg|A|^{5 / 2}$
was improved by A. Glibichuk.
Theorem 3.10. If $0<|A| \leq \sqrt{p}$ then
(3.8)

$$
|I(A)| \gg|A|^{3 / 2} .
$$

It is easy to see the gap between Theorem 3.4 and Theorem 3.5 (or 3.10): if $|A|>\sqrt{p}$ then we prove that $|I(A)|>p / 2$, but if $|A|$ is close to $\sqrt{p} / 2$ then we know only that $|I(A)| \gg p^{3 / 4}$. The proof of Theorem 3.4 can be interpreted as the using of the observation that for $|A|>\sqrt{p}$ we have $(A-A) /(A-A)=\mathbb{Z}_{p}$, but for smaller values of $|A|$ we do not have satisfactory lower estimates for $|(A-A) /(A-A)|$. It would be interesting to know if (3.8) can be replaced by

$$
\begin{equation*}
|I(A)| \gg|A|^{2} . \tag{3.9}
\end{equation*}
$$

It is not difficult to show that (3.9) holds for $A \subset \mathbb{C}$.

To prove Theorem 3.10, we can consider that

$$
A \subset \mathbb{Z}_{p}^{*}, \quad|A| \geq 2
$$

We take

$$
\begin{gathered}
u:=2|A|^{2} /(9|A A|) \\
R:=\left\{s \in \mathbb{Z}_{p}^{*}:|\{(a, b): a, b \in A, s \equiv a / b\}| \geq u\right\}
\end{gathered}
$$

We observe that $1 \in R$ since $u \leq 2|A|^{2} /(9|A|) \leq|A|$. Define G as the multiplicative subgroup of \mathbb{Z}_{p}^{*} generated by R. Also, let

$$
F:=\frac{A-A}{A-A}, \quad H=F G
$$

Recall that

$$
S_{\xi}(A):=\{a+b \xi: a, b \in A\}
$$

Lemma 3.11. There exists $\xi \in H$ such that

$$
\begin{gathered}
\min \left(|A| u,|A|^{2}|H| /\left(|A|^{2}+|H|\right)\right) \\
\leq\left|S_{\xi}(A)\right|<|A|^{2}
\end{gathered}
$$

(3.10)

Proof. We consider two cases.

1. Case 1: $R F \neq F$. Thus, there exist $r \in R$ and $\xi \in F$ such that $h \equiv r \xi \notin F$. Clearly, $h \in H$. By Lemma 3.7,
(3.11)

$$
\left|S_{h}(A)\right|=|A|^{2}, \quad\left|S_{\xi}(A)\right|<|A|^{2}
$$

Thus, the elements $a+b h, a, b \in A$ are pairwise distinct. Denote

$$
A_{r}=\{b \in A: b / r \in A\}
$$

We have $\left|A_{r}\right| \geq u$ because $r \in R$. By our supposition on h, all the sums $a+b \xi \equiv a+b(h / r) \equiv a+(b / r) h, a \in A$, $b \in A_{r}$, are distinct. Therefore, $S_{\xi}(A) \geq|A| u$. Taking into account (3.11) we get (3.10).
2. Case 2: $R F=F$. By definition of the group G, we conclude that $F=G F=H$. By Lemma 3.7, $\left|S_{\xi}(A)\right|<|A|^{2}$ for every $\xi \in H$, and (3.10) follows from Lemma 3.9.

Notice that

$$
|A|^{2}|H| /\left(|A|^{2}+|H|\right) \geq \min \left(|A|^{2} / 2,|H| / 2\right)
$$

Thus, by Lemmas 3.9 and 3.11,

$$
\begin{aligned}
&|I(A)| \geq\left|S_{\xi}(A)\right| \geq \min \left(|A| u,|A|^{2}|H| /\left(|A|^{2}+|H|\right)\right) \\
&(3.12) \quad \geq \min \left(2|A|^{3} /(9|A A|),|A|^{2} / 2,|H| / 2\right) .
\end{aligned}
$$

The inequality $|I(A)| \gg|A|^{3 / 2}$ obviously holds if $|I(A)| \geq|A|^{2} / 2$. Next, observe that

$$
A A-A A \subset I(A) .
$$

Indeed,

$$
a_{1} a_{2}-a_{3} a_{4} \equiv a_{1}\left(a_{2}-a_{3}\right)+a_{3}\left(a_{1}-a_{4}\right) \in I(A) .
$$

Hence,

$$
|I(A)| \geq|A A-A A| \geq|A A| .
$$

Therefore, in the case $|I(A)| \geq 2|A|^{3} /(9|A A|)$ we again have $|I(A)| \gg|A|^{3 / 2}$. It remains to settle the case $|I(A)| \geq|H| / 2$. So, it is enough to prove that
(3.13)
$|H| \gg|A|^{3 / 2}$.

Lemma 3.12. There is a coset G_{1} of G such that (3.14) $\quad\left|A \cap G_{1}\right| \geq|A| / 3$.

Proof. Assume the contrary. Let A_{1}, A_{2}, \ldots be the nonempty intersections of A with cosets of G. Take a minimal k so that

$$
\left|\bigcup_{i=1}^{k} A_{i}\right|>|A| / 3
$$

and denote

$$
A^{\prime}=\bigcup_{i=1}^{k} A_{i}, \quad A^{\prime \prime}=A \backslash A^{\prime}
$$

We have $\left|A^{\prime}\right|>|A| / 3$. On the other hand,

$$
\left|A^{\prime}\right| \leq\left|\bigcup_{i=1}^{k-1} A_{i}\right|+\left|A_{k}\right|<2|A| / 3
$$

Hence, $|A| / 3<\left|A^{\prime}\right|<2|A| / 3$ and
(3.15) $\quad\left|A^{\prime}\right| \times\left|A^{\prime \prime}\right|=\left|A^{\prime}\right|\left(|A|-\left|A^{\prime}\right|\right)>2|A|^{2} / 9$.

Denote for $s \in \mathbb{Z}_{p}^{*}$

$$
f(s):=\left\{(a, b): a \in A^{\prime}, b \in A^{\prime \prime}, a / b \equiv s\right\}
$$

Note that if $a \in A^{\prime}, b \in A^{\prime \prime}$, then $a / b \notin G$ and, therefore, $a / b \notin R$. Hence, for any s we have the inequality $f(s)<2|A|^{2} /(9|A \cdot A|)$. Thus,
(3.16)

$$
\begin{gathered}
\sum_{s \in F^{*}} f(s)^{2} \leq \frac{2|A|^{2}}{9|A A|} \sum_{s \in F^{*}} f(s) \\
=\frac{2|A|^{2}\left|A^{\prime}\right| \times\left|A^{\prime \prime}\right|}{9|A A|}
\end{gathered}
$$

Denote for $s \in \mathbb{Z}_{p}^{*}$

$$
g(s):=\left\{(a, b): a \in A^{\prime}, b \in A^{\prime \prime}, a b \equiv s\right\}
$$

By Cauchy-Schwartz inequality,

$$
\left(\sum_{s \in F} g(s)\right)^{2} \leq|A A| \sum_{s \in F} g(s)^{2}
$$

Therefore,

$$
\begin{gathered}
\sum_{s \in F^{*}} g(s)^{2} \geq\left(\sum_{s \in F} g(s)\right)^{2} /|A A| \\
=\frac{\left(\left|A^{\prime}\right| \times\left|A^{\prime \prime}\right|\right)^{2}}{|A A|} .
\end{gathered}
$$

(3.17)

Now observe that both the sums $\sum_{s \in F^{*}} f(s)^{2}$ and $\sum_{s \in F^{*}} g(s)^{2}$ are equal to the number of solutions to the congruence $a_{1}^{\prime} a_{1}^{\prime \prime} \equiv a_{2}^{\prime} a_{2}^{\prime \prime}, a_{1}^{\prime}, a_{2}^{\prime} \in A^{\prime}, a_{1}^{\prime \prime}, a_{2}^{\prime \prime} \in A^{\prime \prime}$. Thus, comparing (3.16)
(3.16)

$$
\sum_{s \in F^{*}} f(s)^{2} \leq \frac{2|A|^{2}\left|A^{\prime}\right| \times\left|A^{\prime \prime}\right|}{9|A A|}
$$

and (3.17) we get

$$
\left|A^{\prime}\right| \times\left|A^{\prime \prime}\right| \leq 2|A|^{2} / 9 .
$$

But the last inequality does not agree with (3.15), and the proof is complete.

We take a coset G_{1} of G in accordance with Lemma 3.12. Fix an arbitrary $g_{1} \in G_{1}$. Let

$$
B:=\left\{b \in G: g_{1} b \in A\right\}
$$

We have

$$
g_{1} B=A \cap G_{1}, \quad|B|=\left|A \cap G_{1}\right| \geq|A| / 3
$$

Now we use the supposition $|A| \leq \sqrt{p}$ and Corollary 2.7.
Corollary 2.7. Let $B \subset G$ and $0<|B| \leq p^{1 / 2}$. Then
(2.20)

$$
|G(B-B)| \gg|B|^{3 / 2}
$$

Therefore,
(3.18)

$$
|G(B-B)| \gg|A|^{3 / 2}
$$

Fixing distinct $a_{1}, a_{2} \in A$, we have

$$
\begin{aligned}
& |G(B-B)|=\left|G\left(A \cap G_{1}-A \cap G_{1}\right)\right| \leq|G(A-A)| \\
= & \left|G(A-A) /\left(a_{1}-a_{2}\right)\right| \leq|G(A-A) /(A-A)|=|H|
\end{aligned}
$$

So, using (3.18), we get
(3.13)
$|H| \gg|A|^{3 / 2}$,
and this completes the proof of Theorem 3.10.
Now let us turn to estimates for exponential sums.
Theorem 3.3. For any $\delta>0$ there exists $\varepsilon>0$ such that for any G with $|G|>p^{\delta}$ we have

$$
\max _{a \in \mathbb{Z}_{p}^{*}}|S(a, G)| \lll \delta|G| p^{-\varepsilon}
$$

As the proof is quite long and technical, I can give only a very short sketch now.

Recall, that by $T_{k}(G)$ we denote the number of solutions to the congruence

$$
x_{1}+\cdots+x_{k} \equiv y_{1}+\cdots+y_{k}, \quad x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in G
$$

Our aim is to show that the following inequality holds for some $k \leq k(\delta)$ and $C=C(\delta)$:
(3.19)

$$
T_{k}(G) \leq C|G|^{2 k} p^{-0.6}
$$

We have seen that for large p one can deduce (3.13) from (3.19) sums using the inequality

$$
\forall a \in \mathbb{Z}_{p}^{*}\left|\sum_{x \in G} e(a x / p)\right| \leq\left(p T_{k}(G)^{2}\right)^{1 / 2 k^{2}}|G|^{1-2 / k}
$$

Of course, the number 0.6 in (3.19) can be replaced by any number greater than $1 / 2$.

The main part of the proof is the following Lemma.
Lemma 3.13. There exists an absolute positive constant β satisfying the following property: for some $C=$ $C(\delta)$ and any $k \geq k(\delta)$ there exists $k^{\prime} \leq k^{3}$ such that

$$
T_{k^{\prime}}(G)|G|^{-2 k^{\prime}} \leq\left(T_{k}(G)|G|^{-2 k}\right)^{1+\beta}
$$

or

$$
T_{k^{\prime}}(G) \leq C|G|^{2 k^{\prime}} p^{-0.6}
$$

Starting with some $k_{0} \geq k(\delta)$, using the trivial inequality

$$
T_{k_{0}}(G) /|G|^{2 k_{0}} \leq|G|^{-1}
$$

and iterating Claim 1 we get (3.19) for $k \leq k(\delta)$ with some computable $k(\delta)$.

For the proof of Lemma 3.13, we take k^{\prime} as the largest power of 2 not exceeding k^{3}. Denote

$$
\rho=T_{k}(G)|G|^{-2 k}
$$

and assume that
(3.20)

$$
T_{k^{\prime}}(G)|G|^{-2 k^{\prime}}>\rho^{1+\beta}, \quad T_{k^{\prime}}(G)|G|^{-2 k^{\prime}}>c p^{-0.6}
$$

Our aim is to show that for some $\beta>0$ (3.20) cannot hold for large p, and this will prove Lemma 3.13.

Denote

$$
A=\left\{a \in \mathbb{Z}_{p}:\left|\sum_{x \in G} e(a x / p)\right| \geq|G| p^{-1 / k^{3}}\right\}
$$

Using (3.20), it is easy to show that

$$
|A|+1>p \rho^{1+\beta}, \quad|A|+1>p^{0.4}
$$

For an even positive integer k and $y \in \mathbb{Z}_{p}$ let $B_{k}(G, y)$ be the number of solutions to the congruence

$$
x_{1}-x_{2}+\cdots+x_{k-1}-x_{k} \equiv y, \quad x_{1}, \ldots, x_{k} \in G
$$

Now observe that

$$
\begin{gathered}
\left|\sum_{x \in G} e(a x / p)\right|^{k} \\
=\left(\sum_{x \in G} e(a x / p)\right)^{k / 2}\left(\sum_{x \in G} e(-a x / p)\right)^{k / 2} \\
=\sum_{x_{1}, \ldots, x_{k} \in G} e\left(a\left(x_{1}-x_{2}+\cdots+x_{k-1}-x_{k}\right) / p\right) \\
=\sum_{y} B_{k}(G, y) e(a y / p) .
\end{gathered}
$$

Hence, for any $a \in A$ we have
(3.21)

$$
\sum_{y} B_{k}(G, y) e(a y / p) \geq|G|^{k} p^{-1 / k^{2}}
$$

This is close to the trivial upper bound

$$
\sum_{y} B_{k}(G, y) e(a y / p) \leq \sum_{y} B_{k}(G, y)=|G|^{k}
$$

By ω we denote any function on p satisfying inequality $\omega \gg p^{-C / k^{2}}$; we allow ω and C to change line to line.

We can choose sets $Y_{1}, A_{1} \subset A$ so that for $Y^{\prime}=Y_{1}$, $A^{\prime}=A_{1}$
(3.22)

$$
\left|A^{\prime}\right| \geq \omega|A|
$$

(3.23)

$$
\left|\sum_{y \in Y^{\prime}} B_{k}(G, y) e(a y / p)\right| \geq U:=\omega|G|^{k} \quad\left(a \in A^{\prime}\right)
$$

$$
\begin{equation*}
\min _{y \in Y^{\prime}} B_{k}(G, y) \leq \max _{y \in Y^{\prime}} B_{k}(G, y) / 2 \tag{3.24}
\end{equation*}
$$

Let us say that Y^{\prime} is GOOD, if conditions (3.22)-(3.24) are satisfied for some A^{\prime}. So, Y_{1} is GOOD. Moreover, we shall say that Y^{\prime} is HEREDITARILY GOOD if for any $Y^{\prime \prime} \subset Y^{\prime}$ we have

$$
\begin{gathered}
\left|\left\{a \in A^{\prime}:\left|\sum_{y \in Y^{\prime \prime}} B_{k}(G, y) e(a y / p)\right| \geq \frac{\left|Y^{\prime \prime}\right|}{2\left|Y^{\prime}\right|} U\right\}\right| \\
\geq \frac{\left|Y^{\prime \prime}\right|}{\left|Y^{\prime}\right|}\left|A^{\prime}\right|
\end{gathered}
$$

Both sets $Y^{\prime}, Y^{\prime \prime}$ are supposed to be invariant under multiplication by G and -1 .

We do not claim that Y_{1} is HEREDITARILY GOOD. But it is not difficult to show that Y_{1} contains a HEREDITARILY GOOD subset $Y_{2}\left(\left|Y_{2}\right| \geq \omega\left|Y_{1}\right|\right)$. Denote

$$
A_{2}=\left\{a \in A_{1}:\left|\sum_{y \in Y_{1}} B_{k}(G, y) e(a y / p)\right| \geq \frac{\left|Y_{2}\right|}{2\left|Y_{1}\right|} U\right\}
$$

So, for all $a \in A_{2}$ we have
(3.25)

$$
\left|\sum_{y \in Y_{1}} B_{k}(G, y) e(a y / p)\right| \geq \frac{\left|Y_{2}\right|}{2\left|Y_{1}\right|} U
$$

Next step in the proof is to deduce from (3.25) that, if k is a power of 2 , then

$$
\begin{gathered}
\sum_{x_{1}, \ldots, x_{k} \in G} \sum_{y \in Y_{2}} B_{k}(G, y) e\left(a\left(x_{1}-x_{2}+\cdots-x_{k}\right) y / p\right) \\
\geq|G|^{k} V\left(\frac{\sum_{y \in Y_{2}} B_{k}(G, y) e(a x y / p)}{V}\right)^{k}
\end{gathered}
$$

where $V=\sum_{y \in Y_{2}} B_{k}(G, y)$.

The last inequality implies

$$
\sum_{x \in \mathbb{Z}_{p}} \sum_{y \in Y_{2}} B_{k}(G, x) B_{k}(G, y) e(a x y / p) \geq U^{\prime}|H|^{2 k}
$$

for all $a \in A_{2}$, where

$$
U^{\prime}=p^{-C / k} .
$$

Similarly to the choice of Y_{1} one can choose $X_{1}, A_{3} \subset A_{2}$ so that

$$
\begin{gathered}
\left|A_{3}\right| \geq \omega\left|A_{1}\right|, \\
(3.26) \quad\left|\sum_{x \in X_{1}} \sum_{y \in Y_{2}} B_{k}(G, x) B_{k}(G, y) e(a x y / p)\right| \\
\geq \omega U^{\prime}|H|^{2 k} \quad\left(a \in A_{3}\right), \\
\min _{x \in X_{1}} B_{k}(G, x) \leq \max _{x \in X_{1}} B_{k}(G, x) / 2 .
\end{gathered}
$$

Setting $z=x y$ we can rewrite the left-hand side of (3.26) as

$$
\left|\sum_{z \in \mathbb{Z}_{p}} P(z) e(a z / p)\right|
$$

where

$$
P(z)=\sum_{\substack{z=x y, x \in X_{1}, y \in Y_{2}}} B_{k}(G, x) B_{k}(G, y)
$$

Using (3.26) and the identity

$$
p \sum_{z \in \mathbb{Z}_{p}}(P(z))^{2}=\sum_{a \in \mathbb{Z}_{p}}\left|\sum_{z \in \mathbb{Z}_{p}} P(z) e(a z / p)\right|^{2}
$$

we can estimate $\sum_{z \in \mathbb{Z}_{p}}(P(z))^{2}$ from below; this gives a lower bound for the number of the solutions to the congruence

$$
x_{1} y_{1} \equiv x_{2} y_{2}, \quad x_{1}, x_{2} \in X_{1}, y_{1}, y_{2} \in Y_{2}
$$

This, in turn, implies the estimate for the number N of the solutions to the congruence

$$
\begin{equation*}
y_{1} y_{2} \equiv y_{3} y_{4}, \quad y_{j} \in Y_{2} \tag{3.27}
\end{equation*}
$$

We show that

$$
N \geq \rho^{2 \beta} p^{-C / k}\left|Y_{3}\right|^{3}
$$

Recall that

$$
\rho=T_{k}(G)|G|^{-2 k}
$$

and β is a small fixed positive number.
Now we can use the Balog-Szemeredi-Gowers theorem claiming that there is a subset $Y_{3} \subset Y_{2}$ such that

$$
\begin{gathered}
\left|Y_{3}\right| \geq\left(N\left|Y_{2}\right|^{-3}\right)^{C_{1}}\left|Y_{2}\right| \\
\left|Y_{3} Y_{3}\right| \leq\left(N\left|Y_{2}\right|^{-3}\right)^{-C_{1}}\left|Y_{3}\right|
\end{gathered}
$$

At this point we use that the set Y_{2} is HEREDITARILY GOOD: there is a large $A_{4} \subset A_{2}$ such that all the sums

$$
\left|\sum_{y \in Y_{3}} B_{k}(G, y) e(a y / p)\right|, \quad a \in A_{4}
$$

are large. This implies a lower estimate for the number of the solutions to the congruence

$$
y_{1}+y_{2} \equiv y_{3}+y_{4}, \quad y_{j} \in Y_{3}
$$

Using the Balog-Szemeredi-Gowers theorem again we get the existence of a large set $Y_{4} \subset Y_{3}$ such that $Y_{4}+Y_{4}$ is small. Also, observing that

$$
\left|Y_{4} Y_{4}\right| \leq\left|Y_{3} Y_{3}\right|
$$

we conclude that both the sets $Y_{4}+Y_{4}, Y_{4} Y_{4}$ are small. But for a small β this does not agree with the sumsproducts theorem asserting that

$$
(3.2) \quad \max (|A+A|,|A A|) \gg|A|^{1+c}
$$

provided that $|A| \leq p^{2 / 3}$ (it is not difficult to check that $\left|Y_{1}\right| \leq p^{2 / 3}$; hence we can use (3.2) for $A=Y_{4} \subset Y_{1}$). So, we see that additive properties of subgroups of \mathbb{Z}_{p}^{*} help us to prove sums- products estimates for arbitrary subsets of \mathbb{Z}_{p}; conversely, sums- products estimates imply advanced additive properties of subgroups and estimates for exponential sums over subgroups.

Recently J. Bourgain has proved estimates for exponential sums over sets from a much wider class than groups.

Theorem 3.14. For all $Q \in \mathbb{N}$, there is $\tau>0$ and $k \in \mathbb{N}$ with the following property. Let $H \subset \mathbb{Z}_{p}^{*}$ satisfy

$$
|H H|<|H|^{1+\tau} .
$$

Then

$$
\begin{gathered}
\frac{1}{p} \sum_{a \in \mathbb{Z}_{p}}\left|\sum_{x \in H} e(a x / p)\right|^{2 k} \\
<|H|^{2 k}\left(C_{Q}|H|^{-Q}+p^{-1+1 / Q}\right) .
\end{gathered}
$$

Sometimes Theorem 3.14 implies uniform estimated for $\sum_{x \in H} e(a x / p)$. Theorem 3.3 can be generalized to the following.

Theorem 3.15. For any $\delta>0$ there exists $\varepsilon>0$ such that for any $g \in \mathbb{Z}_{p}^{*}$ and any T with $T>p^{\delta}$ if the elements $g^{j}, 0 \leq j<T$, are distinct, then

$$
\max _{a \in \mathbb{Z}_{p}^{*}}\left|\sum_{j=0}^{T-1} e\left(a g^{j} / p\right)\right|<_{\delta} T p^{-\varepsilon} .
$$

