

"PIMS" MARSDEN MEMORIAL LECTURE 10 Juin 2015, Centre Bernoulli, EPF-Lausanne

FROM EULER TO BORN AND INFELD, FLUIDS AND ELECTROMAGNETISM Yann Brenier, CNRS, Centre Laurent Schwartz, Ecole Polytechnique, Palaiseau

WARNING!

WARNING!

THIS TALK IS OUT OF COMPETITION :-))

WARNING!

THIS TALK IS OUT OF COMPETITION :-))

BUT WILL BE TWICE AS LONG AS THE OTHER ONES :-((

PART 1: EULER GRAND-FATHER OF THE HEAT EQUATION

PART 1: EULER GRAND-FATHER OF THE HEAT EQUATION

IN 1755/57, EULER INTRODUCED, FOR FLUIDS, THE FIRST FIELD THEORY IN PHYSICS AND THE FIRST NONLINEAR PDE EVER

$$
\partial_{t} q+\operatorname{div}(q v)=0, \quad \partial_{t}(q v)+\operatorname{div}(q v \otimes v)=-\operatorname{grad} p
$$

PART 1: EULER GRAND-FATHER OF THE HEAT EQUATION

IN 1755/57, EULER INTRODUCED, FOR FLUIDS, THE FIRST FIELD THEORY IN PHYSICS AND THE FIRST NONLINEAR PDE EVER

$$
\partial_{t} q+\operatorname{div}(q v)=0, \quad \partial_{t}(q v)+\operatorname{div}(q v \otimes v)=-\operatorname{grad} p
$$

WHERE $(q, p, v) \in \mathbb{R}^{1+1+3}$ (keeping Euler's notations) ARE THE DENSITY, PRESSURE AND VELOCITY FIELDS AND THE PRESSURE p IS A GIVEN FUNCTION OF q ONLY.

XXI. Nous n'avons donc qu'à égaler ces forces accélératrices avec les accellerations actuelles que nous venons de trouver, \& nous obtiendrons les trois équations fuivaǹtes :

$$
\begin{aligned}
& \mathrm{P}-\frac{\mathrm{x}}{q}\left(\frac{d p}{d x}\right)=\left(\frac{d u}{d t}\right)+u\left(\frac{d u}{d x}\right)+v\left(\frac{d u}{d y}\right)+w\left(\frac{d u}{d z}\right) \\
& \mathrm{Q}-\frac{1}{q}\left(\frac{d p}{d y}\right)=\left(\frac{d v}{d t}\right)+u\left(\frac{d v}{d x}\right)+v\left(\frac{d v}{d y}\right)+w\left(\frac{d v}{d z}\right) \\
& \mathrm{R}-\frac{\mathrm{I}}{q}\left(\frac{d p}{d z}\right)=\left(\frac{d v}{d t}\right)+u\left(\frac{d w}{d x}\right)+v\left(\frac{d w}{d y}\right)+w\left(\frac{d v}{d z}\right)
\end{aligned}
$$

Si nous ajoutons à ces trois équations premièrement celle, que nous a fournie la confidération de la continuité du fluide:

Si le fluide n'étoit pas compreffible, la denfité q feroit la même en Z, \& en \mathbf{Z}^{\prime}, \& pour ce cas on auroit cetre équation :

$$
\left(\frac{d u}{d x}\right)+\left(\frac{d v}{d y}\right)+\left(\frac{d w}{d z}\right)=0 .
$$

qui eft auffi celle fur laquelle j'ai établi mon Mémoire latin allégue ei-deffus.

A QUADRATIC CHANGE OF TIME IN THE EULER MODEL

$$
\tau(t)=t^{2} / 2, \quad(\tilde{q}, \tilde{p}, \tilde{v})(t, x)=\left(q(\tau(t), x), p(\tau(t), x), \tau^{\prime}(t) v(\tau(t), x)\right)
$$

$$
\text { (so that } \tilde{v}(t, x) d t=v(\tau, x) d \tau)
$$

A QUADRATIC CHANGE OF TIME IN THE EULER MODEL

$$
\tau(t)=t^{2} / 2, \quad(\tilde{q}, \tilde{p}, \tilde{v})(t, x)=\left(q(\tau(t), x), p(\tau(t), x), \tau^{\prime}(t) v(\tau(t), x)\right)
$$

$$
\text { (so that } \tilde{v}(t, x) d t=v(\tau, x) d \tau)
$$

$$
\partial_{t} \tilde{q}+\operatorname{div}(\tilde{q} \tilde{v})=0, \quad \partial_{t}(\tilde{q} \tilde{v})+\operatorname{div}(\tilde{q} \tilde{v} \otimes \tilde{v})=-\operatorname{grad} \tilde{p}: \quad \rightarrow
$$

A QUADRATIC CHANGE OF TIME IN THE EULER MODEL

$$
\tau(t)=t^{2} / 2, \quad(\tilde{q}, \tilde{p}, \tilde{v})(t, x)=\left(q(\tau(t), x), p(\tau(t), x), \tau^{\prime}(t) v(\tau(t), x)\right)
$$

$$
\text { (so that } \tilde{v}(t, x) d t=v(\tau, x) d \tau)
$$

$$
\partial_{t} \tilde{q}+\operatorname{div}(\tilde{q} \tilde{v})=0, \quad \partial_{t}(\tilde{q} \tilde{v})+\operatorname{div}(\tilde{q} \tilde{v} \otimes \tilde{v})=-\operatorname{grad} \tilde{p}: \quad \rightarrow
$$

$$
\left(\partial_{\tau} \boldsymbol{q}+\operatorname{div}(q v)\right) \tau^{\prime}=0, \quad \tau^{\prime \prime} q v+\left(\tau^{\prime}\right)^{2}\left[\partial_{\tau}(q v)+\operatorname{div}(q v \otimes v)\right]=-\operatorname{grad} p
$$

A QUADRATIC CHANGE OF TIME IN THE EULER MODEL

$$
\tau(t)=t^{2} / 2, \quad(\tilde{q}, \tilde{p}, \tilde{v})(t, x)=\left(q(\tau(t), x), p(\tau(t), x), \tau^{\prime}(t) v(\tau(t), x)\right)
$$

$$
\text { (so that } \tilde{v}(t, x) d t=v(\tau, x) d \tau)
$$

$$
\partial_{t} \tilde{q}+\operatorname{div}(\tilde{q} \tilde{v})=0, \quad \partial_{t}(\tilde{q} \tilde{v})+\operatorname{div}(\tilde{q} \tilde{v} \otimes \tilde{v})=-\operatorname{grad} \tilde{p}: \quad \rightarrow
$$

$$
\left(\partial_{\tau} \boldsymbol{q}+\operatorname{div}(q v)\right) \tau^{\prime}=0, \quad \tau^{\prime \prime} \boldsymbol{q} v+\left(\tau^{\prime}\right)^{2}\left[\partial_{\tau}(q v)+\operatorname{div}(q v \otimes v)\right]=-\operatorname{grad} p
$$

For small times, $\left(\tau^{\prime}\right)^{2}=t^{2}=2 \tau \ll 1$, while $\tau^{\prime \prime}=1$, we get an ASYMPTOTIC EQUATION after withdrawing the red terms.

THE RESULTING "ASYMPTOTIC" EQUATION

$$
\partial_{\tau} q+\operatorname{div}(q v)=0, \quad q v=-\operatorname{grad} p
$$

IS NOTHING BUT THE HEAT EQUATION, in the case of an "isothermal" fluid (i.e. as p is proportional to q),

$$
\partial_{\tau} \boldsymbol{q}=\kappa \triangle \boldsymbol{q}
$$

PART 2: THE BORN-INFELD THEORY

PART 2: THE BORN-INFELD THEORY

In a Lorentzian space with metric $g_{i j} d x^{i} d x^{j}$ and $d+1$ dimensions,

PART 2: THE BORN-INFELD THEORY

In a Lorentzian space with metric $g_{i j} d x^{i} d x^{j}$ and $d+1$ dimensions, the Born-Infeld theory involves "potential vectors" $\mathcal{A}=\mathcal{A}_{i} d x^{i}$

PART 2: THE BORN-INFELD THEORY

In a Lorentzian space with metric $g_{i j} d x^{i} d x^{j}$ and $d+1$ dimensions, the Born-Infeld theory involves "potential vectors" $\mathcal{A}=\mathcal{A}_{i} d x^{i}$ that are critical points of the action (which is jointly "covariant" in \mathcal{A} and g):

$$
\int(\sqrt{-\operatorname{det} g}-\sqrt{-\operatorname{det}(g+d \mathcal{A})})
$$

We limit ourself to the usual $3+1$ dimensional Minkowski space

PART 2: THE BORN-INFELD THEORY

In a Lorentzian space with metric $g_{i j} d x^{i} d x^{j}$ and $d+1$ dimensions, the Born-Infeld theory involves "potential vectors" $\mathcal{A}=\mathcal{A}_{i} d x^{i}$ that are critical points of the action (which is jointly "covariant" in \mathcal{A} and g):

$$
\int(\sqrt{-\operatorname{det} g}-\sqrt{-\operatorname{det}(g+d \mathcal{A})})
$$

We limit ourself to the usual $3+1$ dimensional Minkowski space (as Max Born and Leopold Infeld did in 1934).

Max BORN (1882-1970) 1954 Nobel Prize in Physics

????

????...Max Born's grand-daughter!

THE BORN-INFELD THEORY IN TRADITIONAL NOTATIONS

After tedious but simple calculations, Born and Infeld got

$$
\begin{aligned}
& \partial_{t} B+\operatorname{curl}\left(\frac{B \times(D \times B)+D}{\sqrt{1+D^{2}+B^{2}+(D \times B)^{2}}}\right)=0, \quad \operatorname{div} B=0 \\
& \partial_{t} D+\operatorname{curl}\left(\frac{D \times(D \times B)-B}{\sqrt{1+D^{2}+B^{2}+(D \times B)^{2}}}\right)=0, \quad \operatorname{div} D=0
\end{aligned}
$$

THE BORN-INFELD THEORY IN TRADITIONAL NOTATIONS

After tedious but simple calculations, Born and Infeld got

$$
\begin{aligned}
& \partial_{t} B+\operatorname{curl}\left(\frac{B \times(D \times B)+D}{\sqrt{1+D^{2}+B^{2}+(D \times B)^{2}}}\right)=0, \quad \operatorname{div} B=0 \\
& \partial_{t} D+\operatorname{curl}\left(\frac{D \times(D \times B)-B}{\sqrt{1+D^{2}+B^{2}+(D \times B)^{2}}}\right)=0, \quad \operatorname{div} D=0
\end{aligned}
$$

We recover (through the terms in black) the vacuum Maxwell equations whenever the electromagnetic field B, D, is of weak amplitude.

Four extra conservation laws come out from Emmy Noether's theorem

$$
\partial_{t} q+\operatorname{div}(q v)=0, \quad \partial_{t}(q v)+\operatorname{div}\left(q v \otimes v-\frac{B \otimes B-D \otimes D}{q}\right)=\operatorname{grad}\left(q^{-1}\right)
$$

Four extra conservation laws come out from Emmy Noether's theorem

$$
\partial_{t} q+\operatorname{div}(q v)=0, \quad \partial_{t}(q v)+\operatorname{div}\left(q v \otimes v-\frac{B \otimes B-D \otimes D}{q}\right)=\operatorname{grad}\left(q^{-1}\right)
$$

$$
\text { where } q=\sqrt{1+D^{2}+B^{2}+(D \times B)^{2}}, \quad v=\frac{D \times B}{q}
$$

Four extra conservation laws come out from Emmy Noether's theorem

$$
\partial_{t} q+\operatorname{div}(q v)=0, \quad \partial_{t}(q v)+\operatorname{div}\left(q v \otimes v-\frac{B \otimes B-D \otimes D}{q}\right)=\operatorname{grad}\left(q^{-1}\right)
$$

$$
\text { where } q=\sqrt{1+D^{2}+B^{2}+(D \times B)^{2}}, \quad v=\frac{D \times B}{q}
$$

Observe the (electro-magneto-)hydrodynamic style of these conservation laws (q and v standing for the density and velocity fields of some "fluid").

Four extra conservation laws come out from Emmy Noether's theorem

$$
\partial_{t} q+\operatorname{div}(q v)=0, \quad \partial_{t}(q v)+\operatorname{div}\left(q v \otimes v-\frac{B \otimes B-D \otimes D}{q}\right)=\operatorname{grad}\left(q^{-1}\right)
$$

$$
\text { where } q=\sqrt{1+D^{2}+B^{2}+(D \times B)^{2}}, \quad v=\frac{D \times B}{q}
$$

Observe the (electro-magneto-)hydrodynamic style of these conservation laws (q and v standing for the density and velocity fields of some "fluid"). Nothing similar would occur for the Maxwell equations!

THE AUGMENTED BORN-INFELD (ABI) SYSTEM

Following Y.B. Arma 2004, it is consistent (and much simpler) to ignore the algebraic constraints

$$
v=\frac{D \times B}{q}, \quad q=\left(1+D^{2}+B^{2}+(D \times B)^{2}\right)^{1 / 2}
$$

and consider instead (B, D, q, v) just as solutions of the 10×10 system

THE AUGMENTED BORN-INFELD (ABI) SYSTEM

Following Y.B. Arma 2004, it is consistent (and much simpler) to ignore the algebraic constraints

$$
v=\frac{D \times B}{q}, \quad q=\left(1+D^{2}+B^{2}+(D \times B)^{2}\right)^{1 / 2}
$$

and consider instead (B, D, q, v) just as solutions of the 10×10 system

$$
\partial_{t} B+\operatorname{curl}\left(B \times v+q^{-1} D\right)=0, \quad \partial_{t} D+\operatorname{curl}\left(D \times v-q^{-1} B\right)=0
$$

$$
\partial_{t} q+\operatorname{div}(q v)=0, \partial_{t}(q v)+\operatorname{div}\left(q v \otimes v-\frac{B \otimes B-D \otimes D}{q}\right)=\operatorname{grad}\left(q^{-1}\right)
$$

SURPRISING PROPERTIES OF THE AUGMENTED BI SYSTEM

SURPRISING PROPERTIES OF THE AUGMENTED BI SYSTEM

The augmented BI systems describe the interaction of an electromagnetic field (B, D) with some "matter" (q, v) and enjoys the Galilean invariance of classical mechanics:

$$
x \rightarrow x+t C, \quad(q, D, B, v) \rightarrow(q, D, B, v-C) \text { (surprising but not contradictory!). }
$$

SURPRISING PROPERTIES OF THE AUGMENTED BI SYSTEM

The augmented BI systems describe the interaction of an electromagnetic field (B, D) with some "matter" (q, v) and enjoys the Galilean invariance of classical mechanics:

$$
x \rightarrow x+t C, \quad(q, D, B, v) \rightarrow(q, D, B, v-C) \text { (surprising but not contradictory!). }
$$

$$
\partial_{t} B+\operatorname{curl}\left(B \times v+q^{-1} D\right)=0, \quad \partial_{t} D+\operatorname{curl}\left(D \times v-q^{-1} B\right)=0
$$

$$
\partial_{t} q+\operatorname{div}(q v)=0, \partial_{t}(q v)+\operatorname{div}\left(q v \otimes v-\frac{B \otimes B-D \otimes D}{q}\right)=\operatorname{grad}\left(q^{-1}\right)
$$

SURPRISING PROPERTIES OF THE AUGMENTED BI SYSTEM

The augmented BI systems describe the interaction of an electromagnetic field (B, D) with some "matter" (q, v) and enjoys the Galilean invariance of classical mechanics:

$$
x \rightarrow x+t C, \quad(q, D, B, v) \rightarrow(q, D, B, v-C) \text { (surprising but not contradictory!). }
$$

$$
\partial_{t} B+\operatorname{curl}\left(B \times v+q^{-1} D\right)=0, \quad \partial_{t} D+\operatorname{curl}\left(D \times v-q^{-1} B\right)=0
$$

$$
\partial_{t} q+\operatorname{div}(q v)=0, \partial_{t}(q v)+\operatorname{div}\left(q v \otimes v-\frac{B \otimes B-D \otimes D}{q}\right)=\operatorname{grad}\left(q^{-1}\right)
$$

It also admits a convex energy $\mathcal{E}=\mathcal{E}(q, B, D, P=q v)=q^{-1}\left(1+D^{2}+B^{2}+P^{2}\right)$.

PART 3: A MHD-TYPE DIFFUSION EQUATION

Performing a quadratic change of time in the augmented BI system,
$t \rightarrow \tau=t^{2} / 2, \quad(q, B, D, v)(t, x) \rightarrow\left(q(\tau, x), B(\tau, x), \tau^{\prime} D(\tau, x), \tau^{\prime} v(\tau, x)\right)$

PART 3: A MHD-TYPE DIFFUSION EQUATION

Performing a quadratic change of time in the augmented BI system,
$t \rightarrow \tau=t^{2} / 2, \quad(q, B, D, v)(t, x) \rightarrow\left(q(\tau, x), B(\tau, x), \tau^{\prime} D(\tau, x), \tau^{\prime} v(\tau, x)\right)$
(as we did to get the heat equation out of the Euler model), we obtain

$$
\partial_{\tau} q+\operatorname{div}(q v)=0, \quad q v=\operatorname{div}(\eta B \otimes B)-\operatorname{grad} p
$$

$$
\partial_{\tau} B+\operatorname{curl}(B \times v)+\operatorname{curl}(\mu \operatorname{curl}(\nu B))=0
$$

where $(q, p, v, B) \in \mathbb{R}^{1+1+3+3}$ are the density, pressure, velocity and magnetic fields and $\mu=\nu=\eta=q^{-1}=-p$.

THE "INCOMPRESSIBLE" VERSION

$$
v=\operatorname{div}(B \otimes B)-\operatorname{grad} p, \operatorname{div} v=0, \quad \partial_{\tau} B+\operatorname{curl}(B \times v)=-\operatorname{curl}(\mu \operatorname{curl} B)
$$

THE "INCOMPRESSIBLE" VERSION

$$
v=\operatorname{div}(B \otimes B)-\operatorname{grad} p, \quad \operatorname{div} v=0, \quad \partial_{\tau} B+\operatorname{curl}(B \times v)=-\operatorname{curl}(\mu \operatorname{curl} B)
$$

As $\mu=0$, the topology of B is preserved by $\partial_{\tau} B+\operatorname{curl}(B \times v)=0$ while its energy is dissipated according to $\frac{d}{d t} \int B^{2} d x+2 \int v^{2} d x=0$.

THE "INCOMPRESSIBLE" VERSION

$$
v=\operatorname{div}(B \otimes B)-\operatorname{grad} p, \quad \operatorname{div} v=0, \quad \partial_{\tau} B+\operatorname{curl}(B \times v)=-\operatorname{curl}(\mu \operatorname{curl} B)
$$

As $\mu=0$, the topology of B is preserved by $\partial_{\tau} B+\operatorname{curl}(B \times v)=0$ while its energy is dissipated according to $\frac{d}{d t} \int B^{2} d x+2 \int v^{2} d x=0$.
(This is typical of systems with "double bracket structure" à la Brockett.)

THE "INCOMPRESSIBLE" VERSION

$$
v=\operatorname{div}(B \otimes B)-\operatorname{grad} p, \quad \operatorname{div} v=0, \quad \partial_{\tau} B+\operatorname{curl}(B \times v)=-\operatorname{curl}(\mu \operatorname{curl} B)
$$

As $\mu=0$, the topology of B is preserved by $\partial_{\tau} B+\operatorname{curl}(B \times v)=0$ while its energy is dissipated according to $\frac{d}{d t} \int B^{2} d x+2 \int v^{2} d x=0$.
(This is typical of systems with "double bracket structure" à la Brockett.)
Then, we recover one of the models of "magnetic relaxation" proposed by Moffatt to get, as $\tau \rightarrow \infty$ and $v \rightarrow 0$, some stationary solutions B_{∞} to $\operatorname{div}\left(B_{\infty} \otimes B_{\infty}\right)=\operatorname{grad} p_{\infty}, \operatorname{div} B_{\infty}=0$ of prescribed knot topology.

ANALYSIS OF THE INCOMPRESSIBLE DIFFUSION EQUATION

In the "topology preserving" case $\mu=0$, even the existence of local smooth solutions is not known, but global "dissipative" solutions exist in 2D, which are unique whenever they are smooth (YB, CMP 2014).

ANALYSIS OF THE INCOMPRESSIBLE DIFFUSION EQUATION

In the "topology preserving" case $\mu=0$, even the existence of local smooth solutions is not known, but global "dissipative" solutions exist in 2D, which are unique whenever they are smooth (YB, CMP 2014). If $\mu>0$, global existence, uniqueness and regularity hold true in 2D (McCormick-Robinson-Rodrigo arXiv 2013) for the "Stokes" variant

ANALYSIS OF THE INCOMPRESSIBLE DIFFUSION EQUATION

In the "topology preserving" case $\mu=0$, even the existence of local smooth solutions is not known, but global "dissipative" solutions exist in 2D, which are unique whenever they are smooth (YB, CMP 2014). If $\mu>0$, global existence, uniqueness and regularity hold true in 2D (McCormick-Robinson-Rodrigo arXiv 2013) for the "Stokes" variant

$$
-\Delta v=(\text { instead of } \mathrm{v}=) \operatorname{div}(B \otimes B)-\operatorname{grad} p
$$

ANALYSIS OF THE INCOMPRESSIBLE DIFFUSION EQUATION

In the "topology preserving" case $\mu=0$, even the existence of local smooth solutions is not known, but global "dissipative" solutions exist in 2D, which are unique whenever they are smooth (YB, CMP 2014). If $\mu>0$, global existence, uniqueness and regularity hold true in 2D (McCormick-Robinson-Rodrigo arXiv 2013) for the "Stokes" variant

$$
-\triangle v=(\text { instead of } \mathrm{v}=) \operatorname{div}(B \otimes B)-\operatorname{grad} p
$$

together with : $\operatorname{div} v=0, \quad \partial_{\tau} B+\operatorname{curl}(B \times v)=-\operatorname{curl}(\mu \operatorname{curl} B)$.

ANALYSIS OF THE INCOMPRESSIBLE DIFFUSION EQUATION

In the "topology preserving" case $\mu=0$, even the existence of local smooth solutions is not known, but global "dissipative" solutions exist in 2D, which are unique whenever they are smooth (YB, CMP 2014). If $\mu>0$, global existence, uniqueness and regularity hold true in 2D (McCormick-Robinson-Rodrigo arXiv 2013) for the "Stokes" variant

$$
-\Delta v=(\text { instead of } \mathrm{v}=) \operatorname{div}(B \otimes B)-\operatorname{grad} p
$$

$$
\text { together with : } \operatorname{div} v=0, \quad \partial_{\tau} B+\operatorname{curl}(B \times v)=-\operatorname{curl}(\mu \operatorname{curl} B)
$$

In any case, the analysis of the large time behavior seems widely open.

FINAL COMMENTS

The Born-Infeld model of Electromagnetism is very geometric and has known a strong revival in high energy physics (string theory) in the 90s.

FINAL COMMENTS

The Born-Infeld model of Electromagnetism is very geometric and has known a strong revival in high energy physics (string theory) in the 90s. Once set up in the framework of special relativity and properly augmented by Noether's extra conservation laws, it can be expressed as a Galilean system very much in the style of Euler's hydrodynamics.

FINAL COMMENTS

The Born-Infeld model of Electromagnetism is very geometric and has known a strong revival in high energy physics (string theory) in the 90s. Once set up in the framework of special relativity and properly augmented by Noether's extra conservation laws, it can be expressed as a Galilean system very much in the style of Euler's hydrodynamics. Furthermore, some diffusion equations, apparently very remote from "first principles", can be (formally) derived from the (augmented) BI equations in just one step.

FEW REFERENCES

(1) L. Euler, opera omnia, seria secunda 12, p. 274, V. Arnold, Ann. Fourier 1966, D. Ebin, J. Marsden, Ann. Maths 1970.
(2) M. Born, L. Infeld, Proc. Roy. Soc. London A 1934, J. Polchinski, String Theory, CUP 1998.
(3) H.Moffatt, ITP, Sta-Barbara 1991, V. Arnold, B. Khesin, 1998.
(4) R. Brockett, Lin. Alg. Appl. 1991,
A. Bloch, P. Krishnaprasad, J. Marsden, T. Ratiu CMP 1996,
D. Holm, V. Putkaradzec, C. Tronci, Phys D 2008, F. Gay-Balmaz, D. Holm, arXiv:1310.4543v1.
(5) Y.B.: ARMA 2004, CMP 2014, Oberwolfach report dec. 2014, D. McCormick, J. Robinson, J. Rodrigo, arXiv:1303.6352v1.

FEW REFERENCES

(1) L. Euler, opera omnia, seria secunda 12, p. 274, V. Arnold, Ann. Fourier 1966, D. Ebin, J. Marsden, Ann. Maths 1970.
(2) M. Born, L. Infeld, Proc. Roy. Soc. London A 1934, J. Polchinski, String Theory, CUP 1998.
(3) H.Moffatt, ITP, Sta-Barbara 1991, V. Arnold, B. Khesin, 1998.
(4) R. Brockett, Lin. Alg. Appl. 1991,
A. Bloch, P. Krishnaprasad, J. Marsden, T. Ratiu CMP 1996,
D. Holm, V. Putkaradzec, C. Tronci, Phys D 2008, F. Gay-Balmaz, D. Holm, arXiv:1310.4543v1.
(5) Y.B.: ARMA 2004, CMP 2014, Oberwolfach report dec. 2014, D. McCormick, J. Robinson, J. Rodrigo, arXiv:1303.6352v1.

Jerry MARSDEN, Oberwolfach 2008

