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PART 1: EULER GRAND-FATHER OF THE HEAT EQUATION

IN 1755/57, EULER INTRODUCED, FOR FLUIDS, THE FIRST FIELD
THEORY IN PHYSICS AND THE FIRST NONLINEAR PDE EVER

∂tq + div(qv) = 0, ∂t(qv) + div(qv ⊗ v) = −gradp

WHERE (q,p, v) ∈ R1+1+3 (keeping Euler’s notations)
ARE THE DENSITY, PRESSURE AND VELOCITY FIELDS

AND THE PRESSURE p IS A GIVEN FUNCTION OF q ONLY.
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A QUADRATIC CHANGE OF TIME IN THE EULER MODEL

τ(t) = t2/2, (q̃, p̃, ṽ)(t , x) = (q(τ(t), x),p(τ(t), x), τ ′(t)v(τ(t), x))

(so that ṽ(t , x)dt = v(τ, x)dτ )

∂t q̃ + div(q̃ṽ) = 0, ∂t(q̃ṽ) + div(q̃ṽ ⊗ ṽ) = −gradp̃ : →

(∂τq + div(qv))τ ′ = 0, τ”qv + (τ ′)2[∂τ (qv) + div(qv ⊗ v)] = −gradp

For small times, (τ ′)2 = t2 = 2τ << 1, while τ” = 1,
we get an ASYMPTOTIC EQUATION after withdrawing the red terms.

Yann Brenier (CNRS) 2015 PIMS MARSDEN MEMORIAL LECTURE EPFL, 10 juin 2015 7 / 23



A QUADRATIC CHANGE OF TIME IN THE EULER MODEL
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(so that ṽ(t , x)dt = v(τ, x)dτ )
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THE RESULTING "ASYMPTOTIC" EQUATION

∂τq + div(qv) = 0, qv = −gradp,

IS NOTHING BUT THE HEAT EQUATION, in the case of an
"isothermal" fluid (i.e. as p is proportional to q),

∂τq = κ4 q
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PART 2: THE BORN-INFELD THEORY

In a Lorentzian space with metric gijdx idx j and d + 1 dimensions, the

Born-Infeld theory involves "potential vectors" A = Aidx i that are
critical points of the action (which is jointly "covariant" in A and g):∫

(
√
−detg −

√
−det(g + dA))

We limit ourself to the usual 3+1 dimensional Minkowski space
(as Max Born and Leopold Infeld did in 1934).
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Max BORN (1882-1970) 1954 Nobel Prize in Physics
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????

...Max Born’s grand-daughter!
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THE BORN-INFELD THEORY IN TRADITIONAL NOTATIONS

After tedious but simple calculations, Born and Infeld got

∂tB + curl(
B × (D × B) + D√

1 + D2 + B2 + (D × B)2
) = 0, divB = 0

∂tD + curl(
D × (D × B)− B√

1 + D2 + B2 + (D × B)2
) = 0, divD = 0

We recover (through the terms in black) the vacuum Maxwell equations
whenever the electromagnetic field B,D, is of weak amplitude.
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Four extra conservation laws come out from Emmy Noether’s theorem

∂tq + div(qv) = 0, ∂t(qv) + div(qv ⊗ v − B ⊗ B − D ⊗ D
q

) = grad(q−1)

where q =
√

1 + D2 + B2 + (D × B)2 , v =
D × B

q

Observe the (electro-magneto-)hydrodynamic style of these conservation laws
(q and v standing for the density and velocity fields of some "fluid").

Nothing similar would occur for the Maxwell equations!
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THE AUGMENTED BORN-INFELD (ABI) SYSTEM

Following Y.B. Arma 2004, it is consistent (and much simpler)
to ignore the algebraic constraints

v =
D × B

q
, q = (1 + D2 + B2 + (D × B)2)1/2

and consider instead (B,D,q, v) just as solutions of the 10x10 system

∂tB + curl(B × v + q−1D) = 0, ∂tD + curl(D × v − q−1B) = 0

∂tq + div(qv) = 0, ∂t(qv) + div(qv ⊗ v − B ⊗ B − D ⊗ D
q

) = grad(q−1)
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SURPRISING PROPERTIES OF THE AUGMENTED BI SYSTEM

The augmented BI systems describe the interaction of an electromagnetic field (B,D)
with some "matter" (q, v) and enjoys the Galilean invariance of classical mechanics:

x → x + tC, (q,D,B, v)→ (q,D,B, v − C) (surprising but not contradictory!).

∂tB + curl(B × v + q−1D) = 0, ∂tD + curl(D × v − q−1B) = 0

∂tq + div(qv) = 0, ∂t(qv) + div(qv ⊗ v − B ⊗ B − D ⊗ D
q

) = grad(q−1)

It also admits a convex energy E = E(q,B,D,P = qv) = q−1(1 + D2 + B2 + P2).
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PART 3: A MHD-TYPE DIFFUSION EQUATION

Performing a quadratic change of time in the augmented BI system,

t → τ = t2/2, (q,B,D, v)(t , x)→ (q(τ, x),B(τ, x), τ ′D(τ, x), τ ′v(τ, x))

(as we did to get the heat equation out of the Euler model), we obtain

∂τq + div(qv) = 0, qv = div(ηB ⊗ B)− gradp

∂τB + curl(B × v) + curl(µ curl(νB)) = 0

where (q,p, v ,B) ∈ R1+1+3+3 are the density, pressure, velocity and
magnetic fields and µ = ν = η = q−1 = −p.
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THE "INCOMPRESSIBLE" VERSION

v = div(B ⊗ B)− gradp, divv = 0, ∂τB + curl(B × v) = −curl(µ curlB)

As µ = 0, the topology of B is preserved by ∂τB + curl(B × v) = 0
while its energy is dissipated according to d

dt

∫
B2dx + 2

∫
v2dx = 0.

(This is typical of systems with "double bracket structure" à la Brockett.)

Then, we recover one of the models of "magnetic relaxation" proposed
by Moffatt to get, as τ →∞ and v → 0, some stationary solutions B∞
to div(B∞ ⊗ B∞) = gradp∞, divB∞ = 0 of prescribed knot topology.
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ANALYSIS OF THE INCOMPRESSIBLE DIFFUSION EQUATION

In the "topology preserving" case µ = 0, even the existence of local
smooth solutions is not known, but global "dissipative" solutions exist
in 2D, which are unique whenever they are smooth (YB, CMP 2014).

If µ > 0, global existence, uniqueness and regularity hold true in 2D
(McCormick-Robinson-Rodrigo arXiv 2013) for the "Stokes" variant

−4 v = (instead of v =) div(B ⊗ B)− gradp

together with : divv = 0, ∂τB + curl(B × v) = −curl(µ curlB).

In any case, the analysis of the large time behavior seems widely open.
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together with : divv = 0, ∂τB + curl(B × v) = −curl(µ curlB).

In any case, the analysis of the large time behavior seems widely open.
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FINAL COMMENTS

The Born-Infeld model of Electromagnetism is very geometric and has
known a strong revival in high energy physics (string theory) in the 90s.

Once set up in the framework of special relativity and properly
augmented by Noether’s extra conservation laws, it can be expressed
as a Galilean system very much in the style of Euler’s hydrodynamics.
Furthermore, some diffusion equations, apparently very remote from
"first principles", can be (formally) derived from the (augmented) BI
equations in just one step.
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