Properties of the Higher-Order GSVD

Charles Van Loan

Cornell University Department of Computer Science

Workshop on Numerical Linear Algebra \& Optimization

Vancouver
August 8-10, 2013

To: Previous Speakers
From: C. Van Loan
Date: August 10, 2013
Subject: Thanks for the tiny orthogonal complement.

How can I possibly add to the space?

$$
\mathcal{S}_{\text {Overton }}=\operatorname{span}\left\{v_{1}, \ldots, v_{26}\right\}
$$

To: Previous Speakers
From: C. Van Loan
Date: August 10, 2013
Subject: Thanks for the tiny orthogonal complement.

How can I possibly add to the space?

$$
\mathcal{S}_{\text {Overton }}=\operatorname{span}\left\{v_{1}, \ldots, v_{26}\right\}
$$

$v_{i}=$ Eigenvalues can be anti-social

To: Previous Speakers
From: C. Van Loan
Date: August 10, 2013
Subject: Thanks for the tiny orthogonal complement.

How can I possibly add to the space?

$$
\mathcal{S}_{\text {Overton }}=\operatorname{span}\left\{v_{1}, \ldots, v_{26}\right\}
$$

$v_{i}=$ Eigenvalues frequently have other behavior problems

To: Previous Speakers
From: C. Van Loan
Date: August 10, 2013
Subject: Thanks for the tiny orthogonal complement.

How can I possibly add to the space?

$$
\mathcal{S}_{\text {Overton }}=\operatorname{span}\left\{v_{1}, \ldots, v_{26}\right\}
$$

$v_{i}=$ Eigenvalues like to shop at Whole Foods

To: Previous Speakers
From: C. Van Loan
Date: August 10, 2013
Subject: Thanks for the tiny orthogonal complement.

How can I possibly add to the space?

$$
\mathcal{S}_{\text {Overton }}=\operatorname{span}\left\{v_{1}, \ldots, v_{26}\right\}
$$

$v_{i}=$ Eigenvalues have been known to coalesce

To: Previous Speakers
From: C. Van Loan
Date: August 10, 2013
Subject: Thanks for the tiny orthogonal complement.

How can I possibly add to the space?

$$
\mathcal{S}_{\text {Overton }}=\operatorname{span}\left\{v_{1}, \ldots, v_{26}\right\}
$$

$v_{i}=$ Eigenvalues sometimes travel in gangs

To: Previous Speakers
From: C. Van Loan
Date: August 10, 2013
Subject: Thanks for the tiny orthogonal complement.

How can I possibly add to the space?

$$
\mathcal{S}_{\text {Overton }}=\operatorname{span}\left\{v_{1}, \ldots, v_{26}\right\}
$$

$v_{i}=$ Eigenvalues require motivation to move

Properties of the Higher-Order GSVD

Charles Van Loan

Cornell University Department of Computer Science

Workshop on Numerical Linear Algebra \& Optimization

Vancouver
August 8-10, 2013

The Setting

What We Are Given...

Data matrices A_{1}, \ldots, A_{N} each with full column rank equal to n

What We Want...

Expose common features in $\left\{A_{1}, \ldots, A_{N}\right\}$ by computing a simultaneous diagonalization of the form

$$
A_{k}=U_{k} \Sigma_{k} V^{T} \quad k=1: N
$$

where the Σ_{k} are diagonal, the U_{k} have unit 2-norm columns, and \mathbf{V} is nonsingular and carefully chosen.

It has something to do with this...

$$
S_{N}=\frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N}\left(\left(A_{i}^{T} A_{i}\right)\left(A_{j}^{T} A_{j}\right)^{-1}+\left(A_{j}^{T} A_{j}\right)\left(A_{i}^{T} A_{i}\right)^{-1}\right)
$$

And it has something to do with this...

$$
\phi(x)=\frac{2}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{2}\left(\frac{\left\|A_{i} x\right\|^{2}}{\left\|A_{j} x\right\|^{2}}+\frac{\left\|A_{j} x\right\|^{2}}{\left\|A_{i} x\right\|^{2}}\right)
$$

S_{N} is Diagonalizable

In General..

$$
S_{N}=\frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N}\left(\left(A_{i}^{T} A_{i}\right)\left(A_{j}^{T} A_{j}\right)^{-1}+\left(A_{j}^{T} A_{j}\right)\left(A_{i}^{T} A_{i}\right)^{-1}\right)
$$

$S_{3}=\frac{\left(A_{1}^{T} A_{1}+A_{2}^{T} A_{2}+A_{3}^{T} A_{3}\right)\left(\left(A_{1}^{T} A_{1}\right)^{-1}+\left(A_{2}^{T} A_{2}\right)^{-1}+\left(A_{3}^{T} A_{3}\right)^{-1}\right)-3 l}{6}$
Product of two symmetric positive definite matrices

Input: $A_{k} \in \mathbb{R}^{m_{k} \times n} \quad k=1: N$

The Computation...

1. $V^{-1} S_{N} V=\operatorname{diag}\left(\lambda_{i}\right)$
2. For $k=1: N$ compute

$$
A_{k} V^{-T}=U_{k} \Sigma_{k}
$$

where the U_{k} have unit 2-norm columns and the Σ_{k} are diagonal.
Output: $A_{k}=U_{k} \Sigma_{k} V^{T}=\sum_{i=1}^{n} \sigma_{i}^{(k)} u_{i}^{(k)} v_{i}^{T}$

The eigenvalues of S satisfy $\lambda \geq 1$ and the invariant subspace associated with $\lambda=1$ is important.

Suppose $S v_{1}=v_{1}$ and $S v_{2}=v_{2}$. In the HO-GSVD expansion

$$
A_{k}=\sigma_{1} u_{1}^{(k)} v_{1}^{T}+\sigma_{2} u_{2}^{(k)} v_{2}^{T}+\sum_{j=3}^{n} \sigma_{j}^{(k)} u_{j}^{(k)} v_{j}^{T}
$$

it can be shown that
(1) the red vectors are orthogonal to the blue vectors.
(2) the red vectors are left singular vectors for A_{k}.

The subspace $\operatorname{span}\left\{v_{1}, v_{2}\right\}$ is the the common HO-GSVD subspace.

We were able to discover biological similarity among three organisms in how they regulate their cell-cycle programs via

$$
A_{k}=\underbrace{\sigma_{1} u_{1}^{(k)} v_{1}^{T}+\sigma_{2} u_{2}^{(k)} v_{2}^{T}}_{\text {The critical part }}+\sum_{j=3}^{n} \sigma_{j}^{(k)} u_{j}^{(k)} v_{j}^{T} \quad k=1: 3
$$

See:
S. Priya Ponnapalli, Michael A. Saunders, Orly Alter, and CVL

A Higher Order Generalized Singular Value Decomposition for Comparison of Global mRNA Expression from Multiple Organisims, PLoS One, 6:12, 2011.

A.K.A. The Generalized Singular Value Decomposition

If $A \in \mathbb{R}^{m_{1} \times n}$ and $A_{2} \in \mathbb{R}^{m_{2} \times n}$, there exist orthogonal U_{1} and U_{2} and nonsingular V so that

$$
\begin{aligned}
& A_{1}=U_{1} \Sigma_{1} V^{T} \\
& A_{2}=U_{2} \Sigma_{2} V^{T}
\end{aligned}
$$

where Σ_{1} and Σ_{2} are diagonal.

The Columns of $X=V^{-T}$ are the Generalized Singular Vectors
Since

$$
A_{1}=U_{1} \Sigma_{1} V^{T}=\operatorname{diag}\left(\sigma_{k}^{(1)}\right) \quad A_{2}=U_{2} \Sigma_{2} V^{T}=\operatorname{diag}\left(\sigma_{k}^{(2)}\right)
$$

it follows that

$$
A_{1}^{T} A_{1}-\mu^{2} A_{2}^{T} A_{2}=V\left(\Sigma_{1}^{T} \Sigma_{1}-\mu^{2} \Sigma_{2}^{T} \Sigma_{2}\right) V^{T}
$$

Thus, if $V^{-T}=X=\left[x_{1}|\cdots| x_{n}\right]$, then

$$
A_{1}^{T} A_{1} x_{k}=\mu_{k}^{2} A_{2}^{T} A_{2} x_{k}
$$

where $\mu_{k}=\sigma_{k}^{(1)} / \sigma_{k}^{(2)}$ is a generalized singular value of $\left\{A_{1}, A_{2}\right\}$.

V the "Diagonalizer"

Look What V Does to S_{2}

Since

$$
\begin{aligned}
& V^{-1}\left(A_{1}^{T} A_{1}\right)\left(A_{2}^{T} A_{2}\right)^{-1} V=\left(\Sigma_{1}^{T} \Sigma_{1}\right)\left(\Sigma_{2}^{T} \Sigma_{2}\right)^{-1} \\
& V^{-1}\left(A_{2}^{T} A_{2}\right)\left(A_{1}^{T} A_{1}\right)^{-1} V=\left(\Sigma_{2}^{T} \Sigma_{2}\right)\left(\Sigma_{1}^{T} \Sigma_{1}\right)^{-1}
\end{aligned}
$$

we have

$$
\begin{aligned}
V^{-1} S_{2} V & =\frac{1}{2} V^{-1}\left(\left(A_{1}^{T} A_{1}\right)\left(A_{2}^{T} A_{2}\right)^{-1}+\left(A_{2}^{T} A_{2}\right)\left(A_{1}^{T} A_{1}\right)^{-1}\right) V \\
& =\frac{1}{2}\left(\left(\Sigma_{1}^{T} \Sigma_{1}\right)\left(\Sigma_{2}^{T} \Sigma_{2}\right)^{-1}+\left(\Sigma_{2}^{T} \Sigma_{2}\right)\left(\Sigma_{1}^{T} \Sigma_{1}\right)^{-1}\right)
\end{aligned}
$$

The matrix S_{2} is "symmetric" in A_{1} and A_{2}.

$\lambda(S)$ and $\sigma\left(A_{1}, A_{2}\right)$

Here is the Connection

If $\mu_{k}=\sigma_{k}^{(1)} / \sigma_{k}^{(2)}$ is a generalized singular value of $\left\{A_{1}, A_{2}\right\}$, then

$$
\lambda_{k}=\frac{1}{2}\left(\mu_{k}^{2}+\frac{1}{\mu_{k}^{2}}\right)
$$

is an eigenvalue of

$$
V^{-1} S_{2} V=\frac{1}{2}\left(\left(\Sigma_{1}^{T} \Sigma_{1}\right)\left(\Sigma_{2}^{T} \Sigma_{2}\right)^{-1}+\left(\Sigma_{2}^{T} \Sigma_{2}\right)\left(\Sigma_{1}^{T} \Sigma_{1}\right)^{-1}\right)
$$

The function $f(z)=(z+1 / z) / 2$ can never be smaller than one and that is why the eigenvalues of S_{2} can never be smaller than one.

Computing the 2-Matrix GSVD

Three Simple Steps

1. Compute the QR factorization:

$$
\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]=\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right] R
$$

2. Compute the CS decomposition:

$$
Q_{1}=U_{1} \cdot \operatorname{diag}\left(c_{i}\right) \cdot Z^{T} \quad Q_{2}=U_{2} \cdot \operatorname{diag}\left(s_{i}\right) \cdot Z^{T} \quad \text { SVD's }
$$

3. Set $V^{T}=Z^{T} R$

$$
\begin{aligned}
A_{1}= & Q_{1} R=U_{1} \cdot \operatorname{diag}\left(c_{i}\right) \cdot\left(Z^{T} R\right)=U_{1} \cdot \operatorname{diag}\left(c_{i}\right) \cdot V^{T} \\
A_{2}= & Q_{2} R=U_{2} \cdot \operatorname{diag}\left(s_{i}\right) \cdot\left(Z^{T} R\right)=U_{2} \cdot \operatorname{diag}\left(s_{i}\right) \cdot V^{T} \\
& \text { Is there a higher-order CS decomposition? }
\end{aligned}
$$

We only Need Part of the "Complete" HO-GSVD

1. Diagonalize: $V^{-1} S_{N} V=\operatorname{diag}\left(\lambda_{i}\right)$ where

$$
S_{N}=\frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N}\left(\left(A_{i}^{T} A_{i}\right)\left(A_{j}^{T} A_{j}\right)^{-1}+\left(A_{j}^{T} A_{j}\right)\left(A_{i}^{T} A_{i}\right)^{-1}\right)
$$

2. For $k=1: N$ compute $A_{k} V^{-T}=U_{k} \Sigma_{k}$ where the U_{k} have unit 2-norm columns $u_{i}^{(k)}$ and $\Sigma_{k}=\operatorname{diag}\left(\sigma_{i}^{(k)}\right)$.

Just the v_{i} associated with the unit eigenvalues and the corresponding $u_{i}^{(k)}$ and $\sigma_{i}^{(k)}$. No inverses please!

Simplification of S_{N} via QR

A Thin QR Factorization...

$$
\left[\begin{array}{c}
A_{1} \\
\vdots \\
A_{N}
\end{array}\right]=\left[\begin{array}{c}
Q_{1} \\
\vdots \\
Q_{N}
\end{array}\right] R
$$

Since $A_{k}=Q_{k} R$ and $Q_{1}^{T} Q_{1}+\cdots+Q_{N}^{T} Q_{N}=I$ we can show...

$$
R^{-T} S_{N} R^{T}=\frac{1}{N-1}\left(T_{N}-I\right)
$$

where

$$
T_{N}=\frac{\left(Q_{1}^{T} Q_{1}\right)^{-1}+\cdots+\left(Q_{N}^{T} Q_{N}\right)^{-1}}{N}
$$

Reminder:

$$
S=\frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N}\left(\left(A_{i}^{T} A_{i}\right)\left(A_{j}^{T} A_{j}\right)^{-1}+\left(A_{j}^{T} A_{j}\right)\left(A_{i}^{T} A_{i}\right)^{-1}\right)
$$

Here is Why...

$$
\begin{gathered}
\sum_{i=1}^{2} \sum_{j=i+1}^{3}\left(\left(Q_{i}^{T} Q_{i}\right)\left(Q_{j}^{T} Q_{j}\right)^{-1}+\left(Q_{j}^{T} Q_{j}\right)\left(Q_{i}^{T} Q_{i}\right)^{-1}\right) \\
= \\
\left(Q_{1}^{T} Q_{1}+Q_{2}^{T} Q_{2}+Q_{3}^{T} Q_{3}\right)\left(\left(Q_{1}^{T} Q_{1}\right)^{-1}+\left(Q_{2}^{T} Q_{2}\right)^{-1}+\left(Q_{3}^{T} Q_{3}\right)^{-1}\right)-3 / \\
= \\
\left(\left(Q_{1}^{T} Q_{1}\right)^{-1}+\left(Q_{2}^{T} Q_{2}\right)^{-1}+\left(Q_{3}^{\top} Q_{3}\right)^{-1}\right)-3 l
\end{gathered}
$$

If

$$
Q=\left[\begin{array}{c}
Q_{1} \\
\vdots \\
Q_{N}
\end{array}\right]
$$

has orthonormal columns and each Q_{k} has full column rank, then its HO-CSD is given by

$$
Q_{k}=U_{k} \Sigma_{k} Z^{T} \quad k=1: N
$$

where Z is the (orthogonal) eigenvector matrix for

$$
T_{N}=\frac{\left(Q_{1}^{T} Q_{1}\right)^{-1}+\cdots+\left(Q_{N}^{T} Q_{N}\right)^{-1}}{N}
$$

and $Q_{k} Z=U_{k} \Sigma_{k}=($ Matrix with unit 2-norm columns)(Diagonal).

We won't need to compute all of this...

The Connection Between S_{N} and T_{N}

$$
R^{-T} S_{N} R^{T}=\frac{1}{N-1}\left(T_{N}-I\right)
$$

where

$$
T_{N}=\frac{\left(Q_{1}^{T} Q_{1}\right)^{-1}+\cdots+\left(Q_{N}^{T} Q_{N}\right)^{-1}}{N}
$$

Since we are interested in the eigenvalues of S_{N} that equal 1 , we are interested in the eigenvalues of T_{N} that equal N.

Key Result

Can show that if $T_{N} z=N \cdot z$ then

$$
Q_{k}^{T} Q_{k} z=\frac{1}{N} z
$$

for $k=1: N$.

This says that z is a right singular vector for Q_{1}, \ldots, Q_{N}.

Further Properties

Let $Z^{T} T_{N} Z=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a Schur decomposition with

$$
N=\lambda_{1}=\cdots=\lambda_{p}<\lambda_{p+1} \leq \cdots \leq \lambda_{n}
$$

and partition
$Z=\left[Z^{(c)} \mid Z^{(u)}\right] \quad U_{k}=\left[U_{k}^{(c)} \mid U_{k}^{(u)}\right] \quad \Sigma_{k}=\left[\begin{array}{cc}I_{p} / \sqrt{N} & 0 \\ 0 & \Sigma_{k}^{(u)}\end{array}\right]$
Then for $k=1: N$

$$
Q_{k}=U_{k} \Sigma_{k} Z^{T}=\frac{1}{\sqrt{N}} U_{k}^{(c)} Z^{(c) T}+U_{k}^{(u)} \Sigma_{k}^{(u)} Z^{(u) T}
$$

and the columns of $U_{k}^{(c)}$ are orthonormal and

$$
\operatorname{ran}\left(U_{k}^{(c)}\right) \perp \operatorname{ran}\left(U_{k}^{(u)}\right)
$$

Back to the HO-GSVD

- Thin QR: $A_{k}=Q_{k} R$.
- HO-CSD:

$$
Q_{k}=U_{k} \Sigma_{k} Z^{T}=\frac{1}{\sqrt{N}} U_{k}^{(c)} Z^{(c) T}+U_{k}^{(u)} \Sigma_{k}^{(u)} Z^{(u) T}
$$

and the columns of $U_{k}^{(c)}$ are orthonormal and

$$
\operatorname{ran}\left(U_{k}^{(c)}\right) \perp \operatorname{ran}\left(U_{k}^{(u)}\right)
$$

- Setting $V^{(c) T}=Z^{(c) T} R$ and $V^{(u) T}=Z^{(c) T} R$ gives HO-GSVD:

$$
A_{k}=U_{k} \Sigma_{k} Z^{T} R=\underbrace{\frac{1}{\sqrt{N}} U_{k}^{(c)} V^{(c) T}}_{\text {common part }}+\underbrace{U_{k}^{(u)} \Sigma_{k}^{(u)} V^{(u) T}}_{\text {uncommon part }}
$$

Computing the Common HO-GSVD Subspace

Recall that if

$$
\frac{\left(Q_{1}^{T} Q_{1}\right)^{-1}+\cdots+\left(Q_{N}^{T} Q_{N}\right)^{-1}}{N} z=N z
$$

then

$$
Q_{k}^{T} Q_{k} z=\frac{1}{N} z
$$

for $k=1: N$.

This means that the common HO-GSVD subspace for Q_{1}, \ldots, Q_{N} is the intersection of all $H_{i j}$ where $H_{i j}$ is the common HO-GSVD subspace associated with $\left\{Q_{i}, Q_{j}\right\}$.

Not the Only Show In Town

PARFAC2

Choose a parameter r that satisfies $r \leq n$ and a nonsingular $H \in \mathbb{R}^{r \times r}$ and then set out to minimize

$$
\phi\left(U_{1}, \ldots, U_{N}, \Sigma_{1}, \ldots, \Sigma_{N}, V\right)=\sum_{k=1}^{N}\left\|A_{k}-U_{k} H \Sigma_{k} V^{T}\right\|_{F}^{2}
$$

where
(1) $V \in \mathbb{R}^{n \times r}$ has full column rank
(2) each $U_{k} \in \mathbb{R}^{m_{k} \times r}$ has orthonormal columns
(3) each $\Sigma_{k} \in \mathbb{R}^{r \times r}$ is diagonal

> Is there a connection?

The All-Possible-Quotients Quadratic Form

Definition

$$
\phi(x)=\frac{2}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{1}{2}\left(\frac{\left\|A_{i} x\right\|^{2}}{\left\|A_{j} x\right\|^{2}}+\frac{\left\|A_{j} x\right\|^{2}}{\left\|A_{i} x\right\|^{2}}\right) \geq 1
$$

Gradient

$$
\nabla \phi(x)=c \cdot \sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(\frac{\left\|A_{i} x\right\|^{2}}{\left\|A_{j} x\right\|^{2}}-\frac{\left\|A_{j} x\right\|^{2}}{\left\|A_{i} x\right\|^{2}}\right)\left(\frac{A_{i}^{T} A_{i} x}{\left\|A_{i} x\right\|^{2}}-\frac{A_{j}^{T} A_{j} x}{\left\|A_{j} x\right\|^{2}}\right)
$$

The stationary vectors x for which $\phi(x)=1$ relate to the common HO-GSVD subspace. This may point the way to interesting techniques for large and sparse A_{1}, \ldots, A_{N}.

What if S_{N} has an minimum eigenvalue that is slightly bigger than 1 ?

Then we have an approximate HO-GSVD common subspace. And the associated u-vectors are approximate left singular vectors. HOW APPROXIMATE?

If everything is approximate, what are the ramifications when it comes to identifying common features in A_{1}, \ldots, A_{N} ?

At the top level, the transformation matrices in the HO-GSVD are not orthogonal.

However, we only used a "subset" of the HO-GSVD and that subset has orthogonal features.

Those features made it possible to formulate a stable procedure that could identify common factors in the data matrix collection $\left\{A_{1}, \ldots, A_{N}\right\}$.

Now back to the BIG

Picture...

To: Previous Speakers
From: C. Van Loan
Date: August 10, 2013
Subject: Thanks a lot for the tiny orthogononal complement!

How can I possibly add to the space?

$$
\mathcal{S}_{\text {Overton }}=\operatorname{span}\left\{v_{1}, \ldots, v_{26}, ?\right\}
$$

To: Previous Speakers
From: C. Van Loan
Date: August 10, 2013
Subject: Thanks a lot for the tiny orthogononal complement!

How can I possibly add to the space?

$$
\mathcal{S}_{\text {Overton }}=\operatorname{span}\left\{v_{1}, \ldots, v_{26}, v_{27}\right\}
$$

$$
\uparrow
$$

$$
v_{27}=\text { GVL4 Typo Space }
$$

$$
\left.\left.\left.\left.\begin{array}{rl}
C & =\left[\begin{array}{ccccccc}
\lambda & \times & \times & \times & \times & \times & \times \\
0 & \lambda & \times & \times & \times & \times & \times \\
0 & 0 & \lambda & \times & \times & \times & \times \\
0 & 0 & 0 & \lambda & \times & \times & \times \\
0 & 0 & 0 & 0 & \lambda & \times & \times \\
0 & 0 & 0 & 0 & 0 & \lambda & \times \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right] \\
V^{T} C V & \left.=\left[\begin{array}{lllllll}
\lambda & 0 & 0 & 0 & \times & \times & \times \\
0 & \lambda & 0 & 0 & \times & \times & \times \\
0 & 0 & \lambda & 0 & \times & \times & \times \\
0 & 0 & 0 & \lambda & \times & \times & \times \\
0 & 0 & 0 & 0 & \lambda & \times & a \\
0 & 0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right]\right\} \text { 2 blocks of order } 1 \text { or larger }
\end{array}\right\}\right\} \text { block of order } 3 \text { or larger }\right\} \text { 4 blocks of order } 2 \text { or larger }\right\}
$$

How Michael says "You Screwed Up"

"Could there have been a shift in notation at some point? Or I am simply blind/idiotic?"

How Michael says "Look on the Bright Side"

"I suppose ... it can be material for your August talk!"

$$
\left.\left.\left.\left.\begin{array}{rl}
C & =\left[\begin{array}{ccccccc}
\lambda & \times & \times & \times & \times & \times & \times \\
0 & \lambda & \times & \times & \times & \times & \times \\
0 & 0 & \lambda & \times & \times & \times & \times \\
0 & 0 & 0 & \lambda & \times & \times & \times \\
0 & 0 & 0 & 0 & \lambda & \times & \times \\
0 & 0 & 0 & 0 & 0 & \lambda & \times \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right] \\
V^{T} C V & \left.=\left[\begin{array}{lllllll}
\lambda & 0 & 0 & 0 & \times & \times & \times \\
0 & \lambda & 0 & 0 & \times & \times & \times \\
0 & 0 & \lambda & 0 & \times & \times & \times \\
0 & 0 & 0 & \lambda & \times & \times & \times \\
0 & 0 & 0 & 0 & \lambda & \times & a \\
0 & 0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right]\right\} \text { 2 blocks of order } 1 \text { or larger }
\end{array}\right\}\right\} \text { block of order } 3 \text { or larger }\right\} \text { 4 blocks of order } 2 \text { or larger }\right\}
$$

GVL4: Pages 401-402 (Corrected)

$$
\left.\left.\left.\left.\begin{array}{rl}
C & =\left[\begin{array}{ccccccc}
\lambda & \times & \times & \times & \times & \times & \times \\
0 & \lambda & \times & \times & \times & \times & \times \\
0 & 0 & \lambda & \times & \times & \times & \times \\
0 & 0 & 0 & \lambda & \times & \times & \times \\
0 & 0 & 0 & 0 & \lambda & \times & \times \\
0 & 0 & 0 & 0 & 0 & \lambda & \times \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right] \\
V^{T} C V & \left.=\left[\begin{array}{lllllll}
\lambda & 0 & 0 & 0 & \times & \times & \times \\
0 & \lambda & 0 & 0 & \times & \times & \times \\
0 & 0 & \lambda & 0 & \times & \times & \times \\
0 & 0 & 0 & \lambda & \times & \times & \times \\
0 & 0 & 0 & 0 & \lambda & 0 & a \\
0 & 0 & 0 & 0 & 0 & \lambda & b \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right]\right\} \text { 2 blocks of order } 2 \text { or larger }
\end{array}\right\}\right\} \text { block of order } 3 \text { or larger }\right\} \text { 2 blocks } 1 \text { or larger }\right\}
$$

"You found a typo that has been out there for decades."
"Perhaps that is why the Tacoma bridge collapsed!"

"Perhaps this is also why the Mt Vernon I-5 bridge collapsed, which is the one between Seattle airport and our new place in Bellingham."

How Michael "Wouldn't Let Go"!

"Too bad GVL4 wasn't fixed in time!"

How Michael said "What is In It For Me?!"

I guess your ill-conceived 5-dollar per typo program has expired!

"OK, it is now a one-cheap-brew-per-typo"

Yes, Michael Really Is Honest and Cerebral
"Sounds good!"

