Taking Advantage of Degeneracy in Cone Optimization: with Applications to Sensor Network Localization

Henry Wolkowicz

Dept. Combinatorics and Optimization, Univ. Waterloo

Motivation: Loss of Slater CQ/Facial reduction

- optimization algorithms rely on the KKT system; and require that some constraint qualification (CQ) holds (Slater's CQ/strict feasibility for convex conic optimization)
- However, surprisingly many conic opt, SDP relaxations, instances arising from applications (QAP, GP, strengthened MC, SNL, POP, Molecular Conformation) do not satisfy Slater's CQ/are degenerate
- lack of Slater's CQ results in: unbounded dual solutions; theoretical and numerical difficulties, in particular for primal-dual interior-point methods.
- solution:
- theoretical facial reduction (Borwein, W.'81)
- preprocess for regularized smaller problem (Cheung, Schurr, W.'11)
- take advantage of degeneracy (for SNL)
(Krislock, W.'10;)

Background/Abstract convex program

$$
\text { (ACP) } \inf _{x} f(x) \text { s.t. } g(x) \preceq K 0, x \in \Omega
$$

where:

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex; $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is K-convex
- $K \subset \mathbb{R}^{m}$ closed convex cone; $\Omega \subseteq \mathbb{R}^{n}$ convex set
- $a \preceq_{K} b \Longleftrightarrow b-a \in K$
- $g(\alpha x+(1-\alpha y)) \preceq_{K} \alpha g(x)+(1-\alpha) g(y)$, $\forall x, y \in \mathbb{R}^{n}, \forall \alpha \in[0,1]$

Slater's CQ: $\exists \hat{x} \in \Omega$ s.t. $g(\hat{x}) \in-\operatorname{int} K \quad\left(g(x) \prec_{K} 0\right)$

- guarantees strong duality
- essential for efficiency/stability in primal-dual interior-point methods
((near) loss of strict feasibility correlates with number of iterations and loss of accuracy)

Case of Linear Programming, LP

Primal-Dual Pair: $\quad A, m \times n / \mathcal{P}=\{1, \ldots, n\}$ constr. matrix/set

$\begin{array}{lllll} & \max & b^{\top} y & \text { (LP-P) } & \text { min } \\ \text { s.t. } & A^{\top} x \\ & A^{\top} y \leq c\end{array} \quad$ LP-D) \quad s.t. $A x=b, x \geq 0$.

Slater's CQ for (LP-P) / Theorem of alternative

$\exists \hat{y}$ s.t. $c-A^{\top} \hat{y}>0, \quad\left(\left(c-A^{\top} \hat{y}\right)_{i}>0, \forall i \in \mathcal{P}=: \mathcal{P}<\right)$
iff
$A d=0, c^{\top} d=0, d \geq 0 \Longrightarrow d=0$

implicit equality constraints: $\quad i \in \mathcal{P}=$

Finding solution $0 \neq d^{*}$ to $(*)$ with max number of non-zeros determines (\mathcal{F}^{y} feasible set)

$$
d_{i}^{*}>0 \quad \Longrightarrow\left(c-A^{\top} y\right)_{i}=0, \forall y \in \mathcal{F}^{y} \quad\left(i \in \mathcal{P}^{=}\right)
$$

Facial Reduction: $A^{\top} y \leq_{f} c$; minimal face $f \unlhd \mathbb{R}_{+}^{n}$

Mangasarian-Fromovitz CQ
 holds

(after deleting redundant equality constraints!)

$$
\left.\left(\begin{array}{cc}
\frac{i \in \mathcal{P}^{<}}{} & \underline{i \in \mathcal{P}^{=}} \\
\exists \hat{y}: & \left(A^{<}\right)^{\top} \hat{y}<c^{<}
\end{array}\right) \quad\left(A^{=}\right)^{\top} \hat{y}=c^{=}\right) ~\left(A^{=}\right)^{\top} \text { is onto }
$$

MFCQ holds if dual optimal set is compact
Numerical difficulties if MFCQ fails; in particular for interior point methods! Modelling issue?

Facial Reduction/Preprocessing

Linear Programming Example, $x \in \mathbb{R}^{2}$

$$
\begin{array}{ll}
\max & (26) y \\
\text { s.t. } & {\left[\begin{array}{cc}
-1 & -1 \\
1 & 1 \\
1 & -1 \\
-2 & 2
\end{array}\right] y \leq\left(\begin{array}{c}
1 \\
2 \\
1 \\
-2
\end{array}\right)}
\end{array}
$$

$\binom{1}{0}$ feasible; weighted last two rows $\left[\begin{array}{ccc}1 & -1 & 1 \\ -2 & 2 & -2\end{array}\right]$ sum to
zero. $\quad \mathcal{P}^{<}=\{1,2\}, \mathcal{P}=\{3,4\}$
Facial reduction to 1 dim; substit. for y

$$
\binom{y_{1}}{y_{2}}=\binom{1}{0}+t\binom{1}{1}, \quad-1 \leq t \leq \frac{1}{2}, \quad t^{*}=\frac{1}{2}, \quad v a l^{*}=6
$$

Case of ordinary convex programming, CP

$$
\text { (CP) } \sup _{y} b^{\top} y \text { s.t. } g(y) \leq 0,
$$

where

- $b \in \mathbb{R}^{m} ; g(y)=\left(g_{i}(y)\right) \in \mathbb{R}^{n}, g_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ convex, $\forall i \in \mathbb{P}$
- Slater's CQ: $\exists \hat{y}$ s.t. $g_{i}(\hat{y})<0, \forall i \quad$ (implies MFCQ)
- Slater's CQ fails implies implicit equality constraints exist, i.e.:
$\mathcal{P}^{=}:=\left\{i \in \mathcal{P}: g(y) \leq 0 \Longrightarrow g_{i}(y)=0\right\} \neq \emptyset$
Let $\mathcal{P}^{<}:=\mathcal{P} \backslash \mathcal{P}^{=}$and

$$
g^{<}:=\left(g_{i}\right)_{i \in \mathcal{P}<}, g^{=}:=\left(g_{i}\right)_{i \in \mathcal{P}=}
$$

Rewrite implicit equalities to equalities/ Regularize CP

(CP) is equivalent to $g(y) \leq_{f} 0, \quad f$ is minimal face

	sup	$b^{\top} y$	
$\left(\mathrm{CP}_{\text {reg }}\right)$	s.t.	$g^{<}(y) \leq 0$	
		$y \in \mathcal{F}=$	or $\left(g^{=}(y)=0\right)$

where $\mathcal{F}^{=}:=\left\{y: g^{=}(y)=0\right\}$. Then
$\mathcal{F}^{=}=\left\{y: g^{=}(y) \leq 0\right\}, \quad$ so is a convex set!

Slater's CQ holds for $\left(\mathrm{CP}_{r e g}\right) \quad \exists \hat{y} \in \mathcal{F}^{=}: g^{<}(\hat{y})<0$
modelling issue again?

Faithfully convex case

Faithfully convex function f (Rockafellar'70)

f affine on a line segment only if affine on complete line containing the segment (e.g. analytic convex functions)

$\mathcal{F}^{=}=\left\{y: g^{=}(y)=0\right\}$ is an affine set

Then:
$\mathcal{F}^{=}=\{y: V y=V \hat{y}\} \quad$ for some \hat{y} and full-row-rank matrix V.
Then MFCQ holds for

$$
\begin{array}{ccc}
& \text { sup } b^{\top} y \\
\left(\mathrm{CP}_{\mathrm{reg}}\right) & \text { s.t. } g^{<}(y) & \leq 0 \\
& & V y=V \hat{y}
\end{array}
$$

Semidefinite Programming, SDP

$K=S_{+}^{n}=K^{*}$ nonpolyhedral cone!

$$
\begin{array}{ll}
\text { (SDP-P) } & v_{P}=\sup _{y \in \mathbb{R}^{m}} b^{\top} y \text { s.t. } g(y):=\mathcal{A}^{*} y-c \preceq \mathcal{S}_{+}^{n} 0 \\
\text { (SDP-D) } & v_{D}=\inf _{x \in \mathcal{S}^{n}}\langle c, x\rangle \text { s.t. } \mathcal{A} x=b, x \succeq \mathcal{S}_{+}^{n} 0
\end{array}
$$

where:

- PSD cone $\mathcal{S}_{+}^{n} \subset \mathcal{S}^{n}$ symm. matrices
- $c \in \mathcal{S}^{n}, b \in \mathbb{R}^{m}$
- $\mathcal{A}: \mathcal{S}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map, with adjoint \mathcal{A}^{*}

$$
\begin{aligned}
& \mathcal{A} x=\left(\operatorname{trace} A_{i} x\right) \in \mathbb{R}^{m} \\
& \mathcal{A}^{*} y=\sum_{i=1}^{m} A_{i} y_{i} \in \mathcal{S}^{n}
\end{aligned}
$$

Slater's CQ/Theorem of Alternative

(Assume feasibility: $\exists \tilde{y}$ s.t. $c-\mathcal{A}^{*} \tilde{y} \succeq 0$.)

$$
\exists \hat{y} \text { s.t. } s=c-\mathcal{A}^{*} \hat{y} \succ 0 \quad \text { (Slater) }
$$

iff

$$
\begin{equation*}
\mathcal{A} d=0,\langle c, d\rangle=0, d \succeq 0 \Longrightarrow d=0 \tag{*}
\end{equation*}
$$

Face

A convex cone F is a face of K, denoted $F \unlhd K$, if $x, y \in K$ and $x+y \in F \Longrightarrow x, y \in F$
($F \triangleleft K$ proper face)

Minimal Faces

$f_{P}:=$ face $\mathcal{F}_{P}^{S} \unlhd K, \quad \mathcal{F}_{P}^{S}$ is primal feasible set
$f_{D}:=$ face $\mathcal{F}_{D}^{X} \unlhd K^{*}, \quad \mathcal{F}_{D}^{X}$ is dual feasible set
where:
K^{*} denotes the dual (nonnegative polar) cone; face S denotes the smallest face containing S.

Regularization Using Minimal Face

Borwein-W.'81, $f_{P}=$ face \mathcal{F}_{P}^{S}
(SDP-P) is equivalent to the regularized

$$
\left(\mathrm{SDP}_{r e g}-\mathrm{P}\right) \quad V_{R P}:=\sup _{y}\left\{\langle b, y\rangle: \mathcal{A}^{*} y \preceq f_{P} c\right\}
$$

(slacks: $s=c-\mathcal{A}^{*} y \in f_{p}$)

Lagrangian Dual DRP Satisfies Strong Duality:

$$
\begin{gathered}
\left(\mathrm{SDP}_{\text {reg }} \text {-D) } \quad v_{D R P}:\right. \\
=\inf _{x}\left\{\langle c, x\rangle: \mathcal{A} x=b, x \succeq_{f_{P}^{*}} 0\right\} \\
\\
=v_{P}=v_{R P}
\end{gathered}
$$

and $v_{D R P}$ is attained.

SDP Regularization process

Alternative to Slater CQ

$$
\mathcal{A} d=0,\langle c, d\rangle=0,0 \neq d \succeq \mathcal{S}_{+}^{n} 0
$$

Determine a proper face $f \triangleleft \mathcal{S}_{+}^{n}$

Let d solve (*) with $d=P d_{+} P^{\top}, d_{+} \succ 0$, and $[P Q] \in \mathbb{R}^{n \times n}$ orthogonal. Then

$$
\begin{aligned}
c-\mathcal{A}^{*} y \succeq_{\mathcal{S}_{+}^{n}} 0 & \Longrightarrow\left\langle c-\mathcal{A}^{*} y, d^{*}\right\rangle=0 \\
& \Longrightarrow \mathcal{F}_{P}^{s} \subseteq \mathcal{S}_{+}^{n} \cap\left\{d^{*}\right\}^{\perp}=Q \mathcal{S}_{+}^{\bar{n}} Q^{\top} \triangleleft \mathcal{S}_{+}^{n}
\end{aligned}
$$

(implicit rank reduction, $\bar{n}<n$)

Regularizing SDP

- at most $n-1$ iterations to satisfy Slater's CQ.
- to check Theorem of Alternative

$$
\begin{equation*}
\mathcal{A} d=0,\langle c, d\rangle=0,0 \neq d \succeq_{\mathcal{S}_{+}^{n}} 0 \tag{*}
\end{equation*}
$$

use stable auxiliary problem

$$
\begin{aligned}
(A P) \quad \min _{\delta, d} \delta \text { s.t. } & \left\|\left[\begin{array}{c}
\mathcal{A} d \\
\langle c, d\rangle
\end{array}\right]\right\|_{2} \leq \delta, \\
& \operatorname{trace}(d)=\sqrt{n}, \\
& d \succeq 0 .
\end{aligned}
$$

- Both (AP) and its dual satisfy Slater's CQ.

Auxiliary Problem

$$
\begin{aligned}
(A P) \quad \min _{\delta, d} \delta \text { s.t. } & \left\|\left[\begin{array}{c}
\mathcal{A} d \\
\langle c, d\rangle
\end{array}\right]\right\|_{2} \leq \delta, \\
& \operatorname{trace}(d)=\sqrt{n}, d \succeq 0
\end{aligned}
$$

Both (AP) and its dual satisfy Slater's CQ ... but ...

Cheung-Schurr-W'11, a $k=1$ step CQ

Strict complementarity holds for (AP) iff
$k=1$ steps are needed to regularize (SDP-P).

Regularizing SDP

Minimal face containing $\mathcal{F}_{P}^{S}:=\left\{s: s=c-\mathcal{A}^{*} y \succeq 0\right\}$

$$
f_{P}=Q \mathcal{S}_{+}^{\bar{n}} Q^{\top}
$$

for some $n \times n$ orthogonal matrix $U=[P Q]$

(SPD-P) is equivalent to

$$
\sup _{y} b^{\top} y \text { s.t. } g^{\prec}(y) \preceq 0, g^{=}(y)=0,
$$

where

$$
\begin{aligned}
& g^{\prec}(y):=Q^{\top}\left(\mathcal{A}^{*} y-c\right) Q \\
& g^{=}(y):=\left[\begin{array}{c}
P^{\top}\left(\mathcal{A}^{*} y-c\right) P \\
P^{\top}\left(\mathcal{A}^{*} y-c\right) Q+Q^{\top}\left(\mathcal{A}^{*} y-c\right) P
\end{array}\right]
\end{aligned}
$$

(gen.) Slater CQ holds for the reduced program:
$\exists \hat{y}$ s.t. $g^{\prec}(y) \prec 0$ and $g^{=}(y)=0$.

Conclusion Part I

- Minimal representations of the data regularize (P); use min. face f_{P} (and/or implicit rank reduction)
- goal: a backwards stable preprocessing algorithm to handle (feasible) conic problems for which Slater's CQ (almost) fails

Part II: SNL (K-W'10)

Highly (implicit) degenerate/low-rank problem

- high (implicit) degeneracy translates to low rank solutions
- fast, high accuracy solutions

SNL - a Fundamental Problem of Distance Geometry;

easy to describe - dates back to Grasssmann 1886

- r : embedding dimension
- n ad hoc wireless sensors $p_{1}, \ldots, p_{n} \in \mathbb{R}^{r}$ to locate in \mathbb{R}^{r};
- m of the sensors p_{n-m+1}, \ldots, p_{n} are anchors (positions known, using e.g. GPS)
- pairwise distances $D_{i j}=\left\|p_{i}-p_{j}\right\|^{2}, i j \in E$, are known within radio range $R>0$
-

$$
P^{\top}=\left[\begin{array}{lll}
p_{1} & \ldots & p_{n}
\end{array}\right]=\left[\begin{array}{ll}
X^{\top} & A^{\top}
\end{array}\right] \in \mathbb{R}^{r \times n}
$$

Sensor Localization Problem/Partial EDM

Underlying Graph Realization/Partial EDM NP-Hard

Graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, \omega)$

- node set $\mathcal{V}=\{1, \ldots, n\}$
- edge set $(i, j) \in \mathcal{E} ; \omega_{i j}=\left\|p_{i}-p_{j}\right\|^{2}$ known approximately
- The anchors form a clique (complete subgraph)
- Realization of \mathcal{G} in \mathbb{R}^{r} : a mapping of nodes $v_{i} \mapsto p_{i} \in \mathbb{R}^{r}$ with squared distances given by ω.

Corresponding Partial Euclidean Distance Matrix, EDM

$$
D_{i j}=\left\{\begin{array}{cl}
d_{i j}^{2} & \text { if }(i, j) \in \mathcal{E} \\
0 & \text { otherwise (unknown distance) }
\end{array}\right.
$$

$d_{i j}^{2}=\omega_{i j}$ are known squared Euclidean distances between sensors p_{i}, p_{j}; anchors correspond to a clique.

Connections to Semidefinite Programming (SDP)

$$
\begin{aligned}
& \left.D=\mathcal{K}(B) \in \mathcal{E}^{n}, B=\mathcal{K}^{\dagger}(D) \in \mathcal{S}^{n} \cap \mathcal{S}_{C} \text { (centered } B e=0\right) \\
& P^{\top}=\left[p_{1} \quad p_{2} \ldots p_{n}\right] \in \mathcal{M}^{r \times n} ; \\
& B:=P P^{\top} \in \mathcal{S}_{+}^{n} \text { (Gram matrix of inner products); }
\end{aligned}
$$

$$
\text { rank } B=r \text {; let } D \in \mathcal{E}^{n} \text { corresponding EDM ; } e=\left(\begin{array}{lll}
1 & \ldots & 1
\end{array}\right)^{\top}
$$

$$
\begin{aligned}
\left(\text { to } D \in \mathcal{E}^{n}\right) \quad D & =\left(\left\|p_{i}-p_{j}\right\|_{2}^{2}\right)_{i, j=1}^{n} \\
& =\left(p_{i}^{\top} p_{i}+p_{j}^{\top} p_{j}-2 p_{i}^{\top} p_{j}\right)_{i, j=1}^{n} \\
& =\operatorname{diag}(B) e^{\top}+e \operatorname{diag}(B)^{\top}-2 B \\
& \left.=: \mathcal{K}(B) \quad \text { (from } B \in \mathcal{S}_{+}^{n}\right) .
\end{aligned}
$$

Popular Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax/discard rank B)

- $\min _{B \succeq 0}\|H \circ(\mathcal{K}(B)-D)\|$; rank $B=r$; typical weights: $H_{i j}=1 / \sqrt{D_{i j}}$, if $i j \in E, H_{i j}=0$ otherwise.
- with rank constraint: a non-convex, NP-hard program
- SDP relaxation is convex, BUT: expensive/low accuracy/implicitly highly degenerate (cliques restrict ranks of feasible Bs)

Instead: (Shall) Take Advantage of Degeneracy!

clique $\alpha,|\alpha|=k$ (corresp. $D[\alpha]$) with embed. dim. $=t \leq r<k$ $\Longrightarrow \operatorname{rank}^{\dagger}(D[\alpha])=t \leq r \Longrightarrow \operatorname{rank} B[\alpha] \leq \operatorname{rank} \mathcal{K}^{\dagger}(D[\alpha])+1$ $\Longrightarrow \operatorname{rank} B=\operatorname{rank} \mathcal{K}^{\dagger}(D) \leq n-(k-t-1) \Longrightarrow$
Slater's CQ (strict feasibility) fails

Let:

- $\bar{D}:=D[1: k] \in \mathcal{E}^{k}, k<n$, embdim $(\bar{D})=t \leq r$ be given;
- $B:=\mathcal{K}^{\dagger}(\bar{D})=\bar{U}_{B} S \bar{U}_{B}^{\top}, \bar{U}_{B} \in \mathcal{M}^{k \times t}, \bar{U}_{B}^{\top} \bar{U}_{B}=I_{t}, S \in \mathcal{S}_{++}^{t}$ be full rank orthogonal decomposition of Gram matrix;
- $U_{B}:=\left[\begin{array}{cc}\bar{U}_{B} & \frac{1}{\sqrt{k}} e\end{array}\right] \in \mathcal{M}^{k \times(t+1)}, U:=\left[\begin{array}{cc}U_{B} & 0 \\ 0 & I_{n-k}\end{array}\right]$, and
$\left[\begin{array}{ll}V & \frac{U^{\top} e}{\left\|U^{\top} e\right\|}\end{array}\right] \in \mathcal{M}^{n-k+t+1}$ be orthogonal.
Then the minimal face:
- $\begin{aligned} \text { face }^{\mathcal{K}^{\dagger}\left(\mathcal{E}^{n}(1: k, \bar{D})\right)}= & \left(U \mathcal{S}_{+}^{n-k+t+1} U^{\top}\right) \cap \mathcal{S}_{C} \\ & =(U V) \mathcal{S}_{+}^{n-k+t}(U V)^{\top}\end{aligned}$

The minimal face for single clique reduction

- $\begin{aligned} \text { face } \mathcal{K}^{\dagger}\left(\mathcal{E}^{n}(1: k, \bar{D})\right) & =\left(U \mathcal{S}_{+}^{n-k+t+1} U^{\top}\right) \cap \mathcal{S}_{C} \\ & =(U V) \mathcal{S}_{+}^{n-k+t}(U V)^{\top}\end{aligned}$

Note that the minimal face is defined by the subspace $\mathcal{L}=\mathcal{R}(U V)$. We add $\frac{1}{\sqrt{k}}$ e to represent $\mathcal{N}(\mathcal{K})$; then we use V to eliminate e to recover a centered face.

Two (Intersecting) Clique Reduction/Subsp. Repres.

Let:

- $\quad \alpha_{1}, \alpha_{2} \subseteq 1: n ; \quad k:=\left|\alpha_{1} \cup \alpha_{2}\right|$
- for $i=1,2: \bar{D}_{i}:=D\left[\alpha_{i}\right] \in \mathcal{E}^{k_{i}}$, embedding dimension t_{i};
- $B_{i}:=\mathcal{K}^{\dagger}\left(\bar{D}_{i}\right)=\bar{U}_{i} S_{i} \bar{U}_{i}^{\top}, \bar{U}_{i} \in \mathcal{M}^{k_{i} \times t_{i}}, \bar{U}_{i}^{\top} \bar{U}_{i}=I_{i}, S_{i} \in \mathcal{S}_{++}^{t_{i}}$;
- $U_{i}:=\left[\begin{array}{ll}\bar{U}_{i} & \frac{1}{\sqrt{k_{i}}} e\end{array}\right] \in \mathcal{M}^{k_{i} \times\left(t_{i}+1\right)} ;$ and $\bar{U} \in \mathcal{M}^{k \times(t+1)}$
satisfies $\mathcal{R}(\bar{U})=\mathcal{R}\left(\left[\begin{array}{cc}U_{1} & 0 \\ 0 & k_{k_{3}}\end{array}\right]\right) \cap \mathcal{R}\left(\left[\begin{array}{cc}l_{k_{1}} & 0 \\ 0 & U_{2}\end{array}\right]\right)$, with $U^{\top} \bar{U}=t_{t+1}$
- $U:=\left[\begin{array}{cc}U & 0 \\ 0 & I_{n-k}\end{array}\right] \in \mathcal{M}^{n \times(n-k+t+1)}$ and $\left[\begin{array}{ll}v & \left.\frac{U^{\top} e}{\left\|U^{\top} e\right\|}\right]\end{array}\right] \in \mathcal{M}^{n-k+t+1}$ be orthogonal.
Then $\begin{aligned} \underline{\cap_{i=1}^{2} \text { face } \mathcal{K}^{\dagger}\left(\mathcal{E}^{n}\left(\alpha_{i}, \bar{D}_{i}\right)\right)} & =\left(U \mathcal{S}_{+}^{n-k+t+1} U^{\top}\right) \cap \mathcal{S}_{C} \\ & =(U V) \mathcal{S}_{+}^{n-k+t}(U V)^{\top}\end{aligned}$

Expense/Work of (Two) Clique/Facial Reductions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:

$$
U_{1}=\left[\begin{array}{cc}
U_{1}^{\prime} & 0 \\
U_{1}^{\prime \prime} & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad U_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & U_{2}^{\prime \prime} \\
0 & U_{2}^{\prime}
\end{array}\right]
$$

Then:

$$
U:=\left[\begin{array}{c}
U_{1}^{\prime} \\
U_{1}^{\prime \prime} \\
U_{2}^{\prime}\left(U_{2}^{\prime \prime}\right)^{\dagger} U_{1}^{\prime \prime}
\end{array}\right] \quad \text { or } \quad U:=\left[\begin{array}{c}
U_{1}^{\prime}\left(U_{1}^{\prime \prime}\right)^{\dagger} U_{2}^{\prime \prime} \\
U_{2}^{\prime \prime} \\
U_{2}^{\prime}
\end{array}\right]
$$

$\left(Q_{1}=:\left(U_{1}^{\prime \prime}\right)^{\dagger} U_{2}^{\prime \prime}, Q_{2}=\left(U_{2}^{\prime \prime}\right)^{\dagger} U_{1}^{\prime \prime}\right.$ orthogonal/rotation)
(Efficiently) satisfies

$$
\mathcal{R}(U)=\mathcal{R}\left(U_{1}\right) \cap \mathcal{R}\left(U_{2}\right)
$$

Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

- Given $P=\left[\begin{array}{l}P_{1} \\ P_{2}\end{array}\right] \in \mathbb{R}^{n \times r}$ such that $D=\mathcal{K}\left(P P^{\top}\right)$
- Solve the orthogonal Procrustes problem:

$$
\begin{array}{cc}
\min & \left\|A-P_{2} Q\right\| \\
\text { s.t. } & Q^{\top} Q=1
\end{array}
$$

$P_{2}^{\top} A=U \Sigma V^{\top}$ SVD decomposition; set $Q=U V^{\top}$;
(Golub/Van Loan'79, Algorithm 12.4.1)

- Set $X:=P_{1} Q$

Summary: Facial Reduction for Cliques

- Using the basic theorem: each clique corresponds to a Gram matrix/corresponding subspace/corresponding face of SDP cone (implicit rank reduction)
- In the case where two cliques intersect, the union of the cliques correspond to the (efficiently computable) intersection of the corresponding faces/subspaces
- Finally, the positions are determined using a Procrustes problem

Results - Data for Random Noisless Problems

- 2.16 GHz Intel Core 2 Duo, 2 GB of RAM
- Dimension $r=2$
- Square region: $[0,1] \times[0,1]$
- $m=9$ anchors
- Using only Rigid Clique Union and Rigid Node Absorption
- Error measure: Root Mean Square Deviation

$$
\operatorname{RMSD}=\left(\frac{1}{n} \sum_{i=1}^{n}\left\|p_{i}-p_{i}^{\mathrm{true}}\right\|^{2}\right)^{1 / 2}
$$

n \# of Sensors Located

n \# sensors $\backslash R$	0.07	0.06	0.05	0.04
2000	2000	2000	1956	1374
6000	6000	6000	6000	6000
10000	10000	10000	10000	10000

CPU Seconds

\# sensors $\backslash R$	0.07	0.06	0.05	0.04
2000	1	1	1	3
6000	5	5	4	4
10000	10	10	9	8

RMSD (over located sensors)

n \# sensors $\backslash R$	0.07	0.06	0.05	0.04
2000	$4 e-16$	$5 e-16$	$6 e-16$	$3 e-16$
6000	$4 e-16$	$4 e-16$	$3 e-16$	$3 e-16$
10000	$3 e-16$	$5 e-16$	$4 e-16$	$4 e-16$

Results - N Huge SDPs Solved

Large-Scale Problems

\# sensors	\# anchors	radio range	RMSD	Time
20000	9	.025	$5 e-16$	25 s
40000	9	.02	$8 e-16$	1 m 23 s
60000	9	.015	$5 e-16$	3 m 13 s
100000	9	.01	$6 e-16$	9 m 8 s

Size of SDPs Solved: $N=\binom{n}{2}$ (\# vrbls)

$\mathcal{E}_{n}($ density of $\mathcal{G})=\pi R^{2} ; M=\mathcal{E}_{n}(|E|)=\pi R^{2} N$ (\# constraints)
Size of SDP Problems:

$$
\begin{aligned}
& M=\left[\begin{array}{lllll}
3,078,915 & 12,315,351 & 27,709,309 & 76,969,790
\end{array}\right] \\
& N=10^{9}\left[\begin{array}{llll}
0.2000 & 0.8000 & 1.8000 & 5.0000
\end{array}\right]
\end{aligned}
$$

Thanks for your attention!

Taking Advantage of Degeneracy in Cone Optimization: with Applications to Sensor Network Localization

Henry Wolkowicz

Dept. Combinatorics and Optimization, Univ. Waterloo

