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Variational properties of polynomial root functions and spectral max functions

Abstract . Spectra| Functions A Damped oscillator abscissa (see panel 3) 9 App|ications 14
Eigenvalue optimization problems arise in the control of continuous We say ¢: C"*"" - R=R U {+oo} is a spectral function if it e Smooth everywhere but -2 and 2. Recall damped oscillator problem in panel 3. The characteristic
and discrete time dynamical systems. The spectral abscissa (largest e depends only on the eigenvalues of its argument e Non-Lipschitz at -2 and 2 I: polynomial of A(x)is: p(A, x) = A(A+x)+1 = A2 A+1.
real part of an eigenvalue) and spectral radius (largest eigenvalue e 1s Invariant under permutations of those eigenvalues e Non-convex ) and abscissa graph is shown 1n panel 3.
: : ' _ e Oh(2) =|—1/2,00) = Oh(2 N
. m(?dulus) are examples of functions of eigenvalues, or spec.:tral A spectral max function p:C"*"™ — R is a spectral fcn. of the form ( ) | / ) 2) Consider the parameterization H : R — P2, where
functions, connected to these problems. A related class of functions (A) = max{f (\) | det(\]— A) = 0} e subdifferentially regular at 2 4 H(z) = (A=X)2+hy(z)(A=Xg)+ho(z), A€C, hi,hy: R — R
are polynomial root functions. In 2001, Burke and Overton showed where f : C _:0@ TITe spectral abscissa and ra di_us are spectral max ! : WITRAE, A= TL T |
that the abscissa mapping on polynomials is subdifferentially functioné o f@;@ t tIZ oncton fom B 10 5 P Variational properties of spectral functions 10 Require p(\, z) = A2 +zA+1 = (A=Xg)?+h1(z)(A—=Xg)+hao(z) so
regular on the monic polynomials of degree n. In 2012 we extended . o Familiar spectral functions: abscissa o and radius p. hi(z) =2 o+, ho(z) = )\%+ zAo+1, VH(z)= 0,1, )\O]T
these results to a class of max polynomial root functions which o ] e o and p continuous on C"”*" not Lipschitz continuous Seth —=ao H.so hlz) = alo(\ ). Bv chain rule (panel 10
includes both the polynomial abscissa and the polynomial radius. Optlmlzmg Spectrgl FunCt.Ions. o . e o and p are not differentiable in general | 351(255) = (5<H,( )>) 8a}(, (A, @)). ’ )
We are currently working to extend these results to the matrix setting. We saw an example of a simple abscissa minimization problem Compute regular subgradients? If subdifferentially regular...
where the matrix depended on a single parameter. More generally Global min of 4 1s 2, so p(A,2) = A 420\+1 = ()\+1)2 and
we can consider min ( A(z)) (Chain Rule, Rockatellar & Wets ‘98) Oh(2) = VH(2)T da( (A+1)?).
Motivation ) rel Let g : R™ — R be regular at H(Z), H smooth, h=go H.  CQ: the only
Consider the linear continuous-time dynamical system where U C C* is some parameter set. How do we verity a candidate vector z€ 0°g(H (7)) with VH (Z)*2=0is z=0. If (CQ) is satisfied, then From 2001, da( <)\+1) ) =1zlz = —(A+1)/2+ pg, Re(pg) < 0}
(DE) ' = Ay. soln 1s optimal? We need to know about the structure of . Oh(z)=V H(z)*0g(H(z)), 0% h(z)=VH(z)0 g(H(z)). Set \g=—1: = <[0 1, _1 ,Oa( ( )\+1) )>
where A € Cznxn, What is the long-term behavior of a solution? e Gradients can give necessary cond.itions, provided tbey exist. o regular at X iff X’s active evals are nonderogatory ke, overonor ={Re(—1/2—pu9)| Re(pus) < 0} = |—1/2, 00)
—_ e Parameterization means a composite fcn—use a chain rule? Therefore 0 € int (Oh(2)). Minimizer 2 is sharp.
1; g
; Decomposition 1
: : 3 - Some variational analysis 6 o P linear space of polynomials of degree 0,1,...,n Applying the polynomial radius to the family 15
Let y. be an equilibrium solution to dy/dt = f(t,y). Leth: E — R. o M CP": polynomials of degree n {p(\, 2)}per = {)\2+$)\+1}%R,
® . is Lyapunov stable if for any ¢ > 0, 3 d- > 0 such that The regular subdifferential of h at 7 is the set e Define ¢ : C"*" — P by P(A) = det(AT—A). Cnx we have
y(t) — ye| < € whenever |y(0) — ye| < e OhT) = {z| h(z) — K@) > (z,2—7) + o(||x—F|), Yz} Define the max root function f : P — R by ¢l o H(p(\, ) = (Jx| + Var—4)/2 |z] > 2
® 1. is asymptotically stable if it is LS and 3 > 0 such that We say 7 is sharp it 3 8, >0 such that h(z)—h(Z) >0 |z — 7| f(p) = max{f (\)|p(\) = 0}. i - T X 2] <2
y(t) — ye| — 0 whenever |y(t) — ye| <~ for all 2 for which ||z —7%|| <e. Then p=1o?. Leth =ro H,so h(x) =r(p(\ x)). A global minimum is at 2.
‘; S;isgehfgshgﬁ 1in t1(1)1 ?l?fl)eifi-isa}l]?ﬁ:ﬁicaﬂy stable 1f the Fact: (Burke, Overton, 2000): x is a sharp local minimizer of / iff Properties of polynomial root functions 1 Oh(2) = <[O, L, =11, or( (A+1)7 )>
£ b ' 0 Emt(@h( T)). - If f 1s continuous on its domain, = {Re(1/2—po) |[Re(uz) < 1/2}
e Define the spectral abscissa o : C"*" — R by Example reg. subgradients of the 15 e f continuous on M" N dom (f), not generally Lipschitz A = |0, 00) N
a(A) = max{Re(\) | det(A[—A)=0} damped oscillator abscissa: 7\ ) o a(A\"—¢g)= /e 0 ¢ int(Oh(2)), so minimizer is not sharp.
e Then y. is asympotically stable if a(A) <0. Set h(-)=a(A(-)): — L/ N — e f not differentiable in general
e Also, the rate of decay of a soln. depends on «/(A). ce{~1/2}=Oh(—3/5) N e f is unbounded in a neighborhood of ¢ for all g(A) e P" \ M" _ _
| - o rCOn(3), zedhE \ 5 let g(A) € P, then g(A)(EA—1) — g(N). Matrix Setting «
Next consider the discrete-time analog: "1+ = Ay”, AeC"*". o . o o but root 1/¢ is unbounded In 2001 Burke & Overton derived many properties of a broad class
e Asymptotic stability tied to max modulus of eigenvalues of A. The subder tvaitve (gfneralolze.s the dlAr/ectlonal deilvatlve) Restrict our attention to M. of spectral functions as well as the subdifferential regularity of the
e The spectral radius p : C'""*"™ — R is given by dh(z)(v) :tl\l%l 5%@,( h(z+tv) — h(z))/t. . . spectral abscissa at a matrix with nonderogatory active eigenvalues.
p(A)=max{|\| | det(A[—A)=0}. A kev subderivative & reeu 1271r ubdifferential elationshin: Polynomual max root history In 2013 Grundel & Overton derived the formula for the
e A stable soln is asymptotically stable if p(A) < 1. y 8h(§) B é (20 < dh(F)(0) VY ) p- Letf :C— Rbe PYfO<P§3fa COHV??(“)T ) = 0} subdifferential of the simplest example of a derogatory, defective
— ) — ()= 11ax q)|q —

matrix: a 3 X 3 matrix w/ one eigenvalue and two Jordan blocks.

. e . o If f =Re(.), the polynomial abscissa a. Well studied for general We have been working to extend the abscissa results to a broader
Example 3 The general subdifferential (limits of regular subgradients) 7 p=IT(A—X;)"% € M} (Burke & Overton ‘01) 1 ) [ funct We h h he subdiff »
(Damped oscillator) Consider the system v”" + zv" 4+ v = 0. - 3{zy} Cdom (h) and {2, } C E such that : : : WY : class ol spectral functions. We have shown the subditlerentia
o1 0 1 0 Oh(z) = | = . éh( 2\ v, 2y — T, b2y )—h(T), and 2, — 2 » For general /, 1 1s stud1§d for p olyn(‘)mlals (A=Ap)", regularity regularity in the case of nonderogatory active eigenvalues for a very
Linearizing gives [ /] = [ 1 ] [ /] ; Y Y o T ’ Y not shown. (Burke, Lewis, Qverton 05) narrow class of functions which includes the abscissa but not the
? e The horizon subdifferential (captures non-Lipschitz-ness) * Done: fill the gap, and clarify process, go beyond max root fen. radius. Extending the methods 1n the 2001 paper has proven
The matrix (call it A(x)) has eigenvalues (—z & V22 — 4) /2 OFh(T) = { > H{xVA} & dom <h)>;{tV relo, ooz, {2} CE, st. Vv } ¢ To do: push through to the matrix setting. difficult. As demonstrated in G & O’s 2013 paper, even the 3 x 3
VT D)2 222 2y €Oh(zy) 2y = T, h(xy)=h(T), 1y L 0 and 2, — 2 Polynomial radius subdifferential case is extremely challenging and does not easily lend itself to
. —X xr= — X = ~ 13 . . . .
Computing, o (A(x)) = {af/2 2] <2 his regular at ¥ if Oh(Z)#£0, Oh(Z)=0h(Z) and 8h( e e e(p) = maxl|A| [p(A) = 01 gen.erghzatlon. We. are currently explo.rlng other avenues to derive
(All convex functions are regular on their domains.) 2001: for )\0 7é O, Varlathnal pr0pert1€s Of SpeCtral funCthnS.
What value of 2 minimizes o(A(x))? (A — )\O)n):{ o 1P e A = A" =2/ (A }
. Negative absolute value: y = —|x|. Re(AG p2) < [Aof /n
It's easy: argmin o ( A(z)) = 2 gative abso y = el 8 m _ - References | |
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