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Variational properties of polynomial root functions and spectral max functions

Abstract 1

Eigenvalue optimization problems arise in the control of continuous
and discrete time dynamical systems. The spectral abscissa (largest
real part of an eigenvalue) and spectral radius (largest eigenvalue
in modulus) are examples of functions of eigenvalues, or spectral
functions, connected to these problems. A related class of functions
are polynomial root functions. In 2001, Burke and Overton showed
that the abscissa mapping on polynomials is subdifferentially
regular on the monic polynomials of degree n. In 2012 we extended
these results to a class of max polynomial root functions which
includes both the polynomial abscissa and the polynomial radius.
We are currently working to extend these results to the matrix setting.

Motivation 2

Consider the linear continuous-time dynamical system
(DE) y′ = Ay.

where A∈Cn×n. What is the long-term behavior of a solution?

Let ye be an equilibrium solution to dy/dt = f (t, y).
• ye is Lyapunov stable if for any ε > 0, ∃ δε > 0 such that

|y(t)− ye| ≤ ε whenever |y(0)− ye| ≤ δε
• ye is asymptotically stable if it is LS and ∃γ > 0 such that

|y(t)− ye| → 0 whenever |y(t)− ye| < γ

A stable solution ye to (DE) is asymptotically stable if the
eigenvalues of A lie in the left-half plane.

•Define the spectral abscissa α : Cn×n→ R by
α(A) = max{Re(λ) | det(λI−A)=0}

• Then ye is asympotically stable if α(A)<0.
•Also, the rate of decay of a soln. depends on α(A).

Next consider the discrete-time analog: yk+1 =Ayk, A∈Cn×n.
•Asymptotic stability tied to max modulus of eigenvalues of A.
• The spectral radius ρ : Cn×n→ R is given by

ρ(A)=max{|λ| | det(λI−A)=0}.
•A stable soln is asymptotically stable if ρ(A)<1.

Example 3

(Damped oscillator) Consider the system v′′ + xv′ + v = 0.

Linearizing gives
[
v
v′

]′
=

[
0 1
−1 −x

] [
v
v′

]
,

The matrix (call it A(x)) has eigenvalues (−x±
√
x2 − 4)/2

Computing, α (A(x)) =

{
(−x +

√
x2 − 4)/2 |x|≥2

−x/2 |x|<2

What value of x minimizes α(A(x))?

It’s easy: arg min
x∈R

α (A(x) ) = 2

Spectral Functions 4

We say ψ :Cn×n→R=R ∪ {+∞} is a spectral function if it
• depends only on the eigenvalues of its argument
• is invariant under permutations of those eigenvalues

A spectral max function ϕ :Cn×n→R is a spectral fcn. of the form
ϕ(A) = max{f (λ) | det(λI−A) = 0}

where f : C→ R. The spectral abscissa and radius are spectral max
functions. (Note: f C→ R is treated as a function from R2 to R.)

Optimizing Spectral Functions 5

We saw an example of a simple abscissa minimization problem
where the matrix depended on a single parameter. More generally
we can consider min

x∈U
ψ(A(x) )

where U⊂Ck is some parameter set. How do we verify a candidate
soln is optimal? We need to know about the structure of ψ.

•Gradients can give necessary conditions, provided they exist.
• Parameterization means a composite fcn—use a chain rule?

Some variational analysis 6

Let h : E → R.
The regular subdifferential of h at x̃ is the set

∂̂h(x̃) = {z | h(x)− h(x̃) ≥ 〈z, x−x̃〉 + o(‖x−x̃‖), ∀x}
We say x̃ is sharp if ∃ δ, ε>0 such that h(x)−h(x̃)≥δ ‖x−x̃‖
for all x for which ‖x−x̃‖<ε.

Fact: (Burke, Overton, 2000): x̃ is a sharp local minimizer of h iff
0∈ int(∂̂h(x̃)).

Example reg. subgradients of the
damped oscillator abscissa:
Set h(·)=α(A(·)):
z∈{−1/2}= ∂̂h(−3/5)
z∈ ∂̂h(−2), z∈ ∂̂h(2)

The subderivative (generalizes the directional derivative)
dh(x̃)(ṽ)= lim inf

t↘0,v→ṽ
( h(x̃+tv)− h(x̃) )/t.

A key subderivative & regular subdifferential relationship:
∂̂h(x̃)={z | 〈z, v〉 ≤ dh(x̃)(v) ∀ v}

The general subdifferential (limits of regular subgradients) 7

∂h(x̃) =

{
z

∣∣∣∣ ∃{xν}⊆dom (h) and {zν}⊆E such that
zν∈ ∂̂h(xν) ∀ ν, xν→ x̃, h(xν)→h(x̃), and zν→z

}
The horizon subdifferential (captures non-Lipschitz-ness)

∂∞h(x̃) =

{
z

∣∣∣∣ ∃{xν}⊆dom (h), {tν}⊆ [0,∞), {zν}⊆E, s.t. ∀ ν
zν∈ ∂̂h(xν) xν→ x̃, h(xν)→h(x̃), tν ↓0 and tνzν→z

}
h is regular at x̃ if ∂h(x̃) 6=∅, ∂̂h(x̃)=∂h(x̃) and ∂̂h(x̃)∞=∂∞h(x̃)
(All convex functions are regular on their domains.)

Negative absolute value: y = −|x|. 8

• piecewise linear, non-diff at 0
• ∂̂(−| · |)(0) = ∅
• ∂(−| · |)(0) = {−1, 1}
• not subdifferentially regular

Damped oscillator abscissa (see panel 3) 9

• Smooth everywhere but -2 and 2.
•Non-Lipschitz at -2 and 2
•Non-convex
• ∂̂h(2) = [−1/2,∞) = ∂h(2)
• subdifferentially regular at 2

Variational properties of spectral functions 10

Familiar spectral functions: abscissa α and radius ρ.
• α and ρ continuous on Cn×n, not Lipschitz continuous
• α and ρ are not differentiable in general

Compute regular subgradients? If subdifferentially regular...

(Chain Rule, Rockafellar & Wets ‘98)
Let g : Rm → R be regular at H(x̃), H smooth, h=g ◦H . CQ: the only
vector z∈∂∞g(H(x̃)) with∇H(x̃)∗z=0 is z=0. If (CQ) is satisfied, then

∂h(x̃)=∇H(x̃)∗∂g(H(x̃)), ∂∞h(x̃)=∇H(x̃)∗∂∞g(H(x̃)).

α regular at X iff X’s active evals are nonderogatory (Burke, Overton 01)

Decomposition 11

• Pn: linear space of polynomials of degree 0, 1, . . . , n
•Mn⊂Pn: polynomials of degree n
•Define Φ : Cn×n→ Pn by Φ(A) = det(λI−A).

Define the max root function f : Pn→ R by
f(p) = max{f (λ) | p(λ) = 0}.

Then ϕ = f ◦ Φ.

Properties of polynomial root functions 12

If f is continuous on its domain,
• f continuous onMn ∩ dom (f), not generally Lipschitz
� a(λn − ε) = n

√
ε

• f not differentiable in general
• f is unbounded in a neighborhood of q for all q(λ)∈Pn \Mn

� let q(λ)∈Pn−1, then q(λ)(ελ−1)→ q(λ),
but root 1/ε is unbounded

Restrict our attention toMn.

Polynomial max root history
Let f : C→ R be proper, convex, lsc.

f(q)=max{f (q) | q(λ) = 0}
• If f =Re(·), the polynomial abscissa a. Well studied for general
p=
∏

(λ−λj)nj∈Mn
1 (Burke & Overton ‘01)

• For general f , f is studied for polynomials (λ−λ0)n, regularity
not shown. (Burke, Lewis, Overton ‘05)
•Done: fill the gap, and clarify process, go beyond max root fcn.
• To do: push through to the matrix setting.

Polynomial radius subdifferential 13

r(p) = max{|λ| | p(λ) = 0}
2001: for λ0 6= 0,

∂r((λ− λ0)n)=

{
z

∣∣∣∣z =
∑n

s=1 µs(λ− λ0)n−s, µ1=−λ0/(n |λ0|)
Re(λ20 µ2) ≤ |λ0| /n

}
2012: For p =

∏m
j=1(λ− λj)nj , λ1, . . . , λm distinct,

∂r(p)=

 z

∣∣∣∣∣∣∣
z =

∑m
j=1

∏
k 6=j(λ− λk)nk

∑nj
s=1 µjs(λ− λj)nj−s

∃{γj}j∈I(p) ⊂ [0, 1] with
∑
γj =1 such that

µj1=−γjλj/(nj |λj|) and Re(λ2j µj2)≤γj |λj| /nj ∀ j ∈ I(p)



Applications 14

Recall damped oscillator problem in panel 3. The characteristic
polynomial of A(x) is: p(λ, x) = λ(λ+x)+1 = λ2+xλ+1.
and abscissa graph is shown in panel 3.

Consider the parameterization H : R→ P2, where
H(x) = (λ−λ0)2+h1(x)(λ−λ0)+h2(x), λ0∈C, h1, h2 : R→ R.

Require p(λ, x) = λ2+xλ+1 = (λ−λ0)2+h1(x)(λ−λ0)+h2(x) so
h1(x) = 2λ0+x, h2(x) = λ2

0+xλ0+1, ∇H(x) = [0, 1, λ0]T

Set h = a ◦H , so h(x) = a(p(λ, x)). By chain rule (panel 10),
∂̂h(x̃) = ∇H(x̃)T ∂̂a(p(λ, x̃)).

Global min of h is 2, so p(λ, 2) = λ2+2λ+1 = (λ+1)2 and
∂̂h(2) = ∇H(2)T∂a( (λ+1)2 ).

From 2001, ∂a( (λ+1)2 ) = {z |z = −(λ+1)/2 + µ2, Re (µ2) ≤ 0}.

Set λ0 =−1: ∂̂h(2) =
〈

[0, 1, −1]T , ∂a( (λ+1)2 )
〉

= {Re(−1/2−µ2)|Re(µ2) ≤ 0} = [−1/2,∞)

Therefore 0∈ int (∂̂h(2)). Minimizer 2 is sharp.

Applying the polynomial radius to the family 15

{p(λ, x)}x∈R = {λ2+xλ+1}x∈R,
we have

r(p(λ, x)) =

{
(|x| +

√
x2 − 4)/2 |x| ≥ 2

1 |x| < 2

Let h = r ◦H , so h(x) = r(p(λ, x)). A global minimum is at 2.

∂̂h(2) =
〈

[0, 1,−1]T , ∂r( (λ+1)2 )
〉

= {Re(1/2−µ2) |Re(µ2) ≤ 1/2}
= [0,∞)

0 /∈ int(∂̂h(2)), so minimizer is not sharp.

Matrix Setting 16

In 2001 Burke & Overton derived many properties of a broad class
of spectral functions as well as the subdifferential regularity of the
spectral abscissa at a matrix with nonderogatory active eigenvalues.
In 2013 Grundel & Overton derived the formula for the
subdifferential of the simplest example of a derogatory, defective
matrix: a 3× 3 matrix w/ one eigenvalue and two Jordan blocks.
We have been working to extend the abscissa results to a broader
class of spectral functions. We have shown the subdifferential
regularity in the case of nonderogatory active eigenvalues for a very
narrow class of functions which includes the abscissa but not the
radius. Extending the methods in the 2001 paper has proven
difficult. As demonstrated in G & O’s 2013 paper, even the 3× 3
case is extremely challenging and does not easily lend itself to
generalization. We are currently exploring other avenues to derive
variational properties of spectral functions.
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