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How I got to work with Michael

I Yurii Nesterov, Vincent Blondel and I invited him to LLN

I Michael and I worked on indefinite matrix pertubations

min ‖∆‖2 : det(

[
S R
R∗ T

]
−
[

0 ∆
∆∗ 0

]
) = 0

I This requires a solid background in two worlds :
optimization and matrix theory
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Introduction

I Symmetric indefinite matrix factorizations of A are useful for
saddle point problems (optimization, variational problems, ...)

I Several such factorizations already exist (Parlett, Bunch,
Kaufman, Aasen, Gould, ...)

I The anti-triangular symmetric indefinite factorization of A

A = QMQT

uses Q orthogonal and yields M anti-triangular such that
solving Mx = b costs O(n2) at most

I It is easy to update/downdate when appending one row and
column or adding a rank–one matrix (=> O(n3) algorithm)
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Anti–triangular matrix decomposition [SIMAX ’13]

A ∈ Rn×n, A = AT , In(A) = (n−, n0, n+), n1 = min(n−, n+), and
n2 = max(n−, n+)− n1. Then

M = QTAQ =


0 0 0 0
0 0 0 Y T

0 0 X ZT

0 Y Z W


}n0

}n1

}n2

}n1

,
Y =

[ ]
,

Q ∈ Rn×northogonal,

is in proper block anti–triangular form with :
Z ∈ Rn1×n2 , W ∈ Rn1×n1 symmetric,
Y ∈ Rn1×n1 nonsingular lower anti–triangular,
X ∈ Rn2×n2 symmetric definite if n2 > 0, , i.e., X = εLLT ,

L nonsingular lower triangular, ε =

{
1, if n+ > n−
−1, if n+ < n−



Anti–triangular matrix decomposition

I If A ∈ Rn×n, A = AT , is nonsingular, In(A) = (n−, 0, n+),
n1 = min(n−, n+), and n2 = max(n−, n+)− n1,
then exists Q ∈ Rn×n, QTQ = I , such that

M = QTAQ =

 0 0 Y T

0 X ZT

Y Z W

 }n1

}n2

}n1

is in proper block anti–triangular form.

I Moreover, if M is in proper block anti–triangular form, then

In(A) = (n1, 0, n1) +

{
(0, 0, n2), if X spd,
(n2, 0, 0), if X snd.
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Anti–triangular “system solves” are cheap

I Ax = b,  0 0 Y T

0 X ZT

Y Z W


︸ ︷︷ ︸

A

 x1

x2

x3


︸ ︷︷ ︸

x

=

 b1

b2

b3


︸ ︷︷ ︸

b

}n1

}n2

}n1

X = εLLT .

I

Y Tx3 = b1

εLLTx2 = b2 − ZTx3

Y x1 = b3 − Zx2 −W x3
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Show Batman movie here



Illustrations of backward stability

A are four 100× 100 matrix
(rand, randn and 2 Matrix Market matrices)

MV LUP QR
‖QMQT−A‖2

‖A‖2

‖LU−PA‖2

‖A‖2

‖QR−A‖2

‖A‖2

2.49e-15 7.27e-16 1.12e-15

1.69e-16 7.55e-17 5.91e-16

1.65e-15 1.43e-16 2.41e-15

2.54e-15 2.90e-16 1.63e-15



Indefinite Least Squares (ILS)

I Given A ∈ R(p+q)×n, b ∈ Rp+q, and

Σpq =

[
Ip
−Iq

]
,

compute the solution of the indefinite least squares problem:

min
x

(b− Ax)TΣpq(b− Ax).

I This is well defined iff ATΣpqA � 0
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Indefinite Least Squares with equality constraints (ILSE)

I Given A ∈ R(p+q)×n, b ∈ Rp+q,

Σpq =

[
Ip
−Iq

]
,

and B ∈ Rs×n, d ∈ Rs , s ≤ n, the ILSE problem amounts to :

min
x

(b− Ax)TΣpq(b− Ax) subject to Bx = d.

I This is well defined iff (i) rankB = s and (ii) ATΣpqA � 0 on
kerB
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ILSE: augmented system

I The solution of ILSE satisfies the augmented system 0 0 B
0 Σpq A
BT AT 0


︸ ︷︷ ︸

M

 λ
s
x


︸ ︷︷ ︸

y

=

 d
b
0


︸ ︷︷ ︸

g

,

where s = Σpq(b− Ax) = Σpqr and λ is the vector of the
Lagrange multipliers.

I The idea is to transform the system into an equivalent one
with coefficient matrix in proper block anti–triangular form
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Algorithm

Let us choose Q̂1 orthogonal such that[
B
A

]
Q̂1 =

[
0 Y
A1 A2

]
=

[
0
A1 A2

]
,

Then with Q1 :=

[
Ip+q+s

Q̂1

]
, we have

M1 = QT
1 MQ1 =


0 0 0
0 Σpq A1 A2

0 AT
1 0 0

AT
2 0 0


}s
}p + q
}n − s
}s

.



Since M1 is anti–triangular in the first s rows and columns we
process further the central part of

M1 =


0 0 0 Y
0 Σpq A1 A2

0 AT
1 0 0

Y T AT
2 0 0


}s
}p + q
}n − s
}s

.

We thus need to reduce further

M̂1 =

[
Σpq A1

AT
1 0

]
}p + q
}n − s

.

to proper block anti-triangular form



Partition A1 as

A1 =

[
A11

A12

]
}p
}q .

and suppose (for simplicity) that q ≥ n − s. Then we construct an
orthogonal matrix

Q̃2 :=

[
Q2

Q3

]
}p
}q

such that

Q̃T
2 A1 =


0
L2

R3

0

 =


0

0

 .



Then with Q̂2 := diag{Q̃2, In−s} we have

M̂2 = Q̃T
2 M̂1Q̃2 =


Ip−n+s 0

In−s L2

−In−s R3

−Iq−n+s 0
0 LT2 RT

3 0 0



=


Ip−n+s 0

In−s

−In−s
−Iq−n+s 0

0 0 0

 .



The inertia of M̂i can be predicted (In(M̂i ) = (p, 0, q + n− s)) and
the further reduction to proper anti-tiangular form is easy to obtain
using a sequence of Givens transformations.

M̂3 = Q̂T
3 M̂2Q̂3 =

 0 0 Ŷ T

0 X̂ ẐT

Ŷ Ẑ Ŵ


where X̂ is symmetric negative definite, i.e.,

−X̂ = L̂L̂T



Numerical results

We construct the matrices B with matlab as

B = gallery(’randsvd’,s, κ)× randn(s, n),

with the condition number κ chosen as 10k , k = 2, 4, 6, 8 and
n = 50, s = 20, p = 60, q = 40.
Let xi and ri = b− Axi , be the solution of the augmented linear
system and the residual computed by using “\” of matlab (for
i = 1) and by using the proposed method (for i = 2).

κ ‖x1−x2‖2

‖x2‖2
‖Σpqs− r1‖2 ‖Σpqs− r2‖2 ‖Bx1 − d‖2 ‖Bx2 − d‖2

1e2 6.285e-12 1.392e-09 5.331e-12 6.125e-11 7.016e-14
1e4 6.309e-08 4.941e-06 1.774e-10 1.702e-07 1.651e-12
1e6 1.718e-04 6.080e-03 6.474e-09 3.871e-04 4.176e-11
1e8 8.555e-01 3.233e+1 7.356e-07 1.671e+0 1.554e-09



Discrete–time Optimal Control program

minx ,q
∑m

i=1 Ψi (xi , qi )

s.t. x lowi ≤ xi ≤ x
up
i

qlowi ≤ qi ≤ q
up
i i ∈ {1, . . . ,m}

0 ≤ Ri (xi , qi )
0 = Gi (xi , qi ) + Pi+1(xi+1, qi+1)

xi ∈ Rnx are the states and qi ∈ Rnq the control parameters.

The discrete–time process evolves over m points i ∈ {1, . . . ,m} in
time and is described by the state propagation law given in terms of
Gi : Rnx × Rnq → Rnx , Pi : Rnx × Rnq → Rnx

The state x and control q are subject to possibly nonlinear
constraints containing initial values, boundary conditions, or
discretized general path constraints (Kirches, Bock et al, 2011).



Quadratic Optimal Control program

Using a linear–quadratic model of the Lagrangian and a
linearization of the constraints, we obtain

minw
∑m

i=1

(
1
2w

T
i Hiwi + gT

i w
)

s.t. li ≤ wi ≤ ui i ∈ {1, . . . ,m}
ri ≤ Riwi

hi = Giwi + Pi+1wi+1

(1)

Hi ∈ Rn×n Hessians
gi ∈ Rn gradients
wi = (xi , qi )

Ri ,Gi and Pi are the linearization matrices of R,G and P.



KKT problem

... Summarizing, at each step of the iterative process, a saddle
point problem needs to be solved H MT RT

M 0 0
R 0 0

 w
λ
z

 =

 g
h
c

 (2)

with

H =

H1

. . .

Hm

 ,M =


G1

P1
. . .
. . . Gm−1

Pm−1 Gm

 ,R =

R1

. . .

Rm

 .
M and C have full row rank due to the choice of a linear
independent active set.



KKT matrix
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KKT matrix permuted

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

nz = 51540



KKT matrix permuted and preprocessed (outer parts)
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KKT matrix preprocessed (central part)
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KKT matrix further reduction (central part)
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Conclusions

I Anti-triangular decompositions use orthogonal transformations
only and are backward stable

I Solves and updates are O(n2) in the dense case

I Sparsity can sometimes be exploited and then yield O(nα)
complexity in the sparse case

I The decomposition is not unique but ”uniquely” depends on
the choice of the neutral subspace

I The solutions presented in the literature require Schur
complementation and are potentially unstable

I Scaling the individual matrices in the ILSE problem improves
the conditioning estimates for the ILSE problem
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Why Michael gets so much work done ...

OK, back to real the world,

I’m going to work on my theorems !



Happy birthday, Michael !
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