On solving indefinite least squares problems via anti-triangular factorizations

Nicola Mastronardi, IAC-CNR, Bari, Italy Paul Van Dooren, UCL, Louvain-la-Neuve, Belgium

> Vancouver Overton-fest, August 2013

How I got to work with Michael

> Yurii Nesterov, Vincent Blondel and I invited him to LLN

How I got to work with Michael

- Yurii Nesterov, Vincent Blondel and I invited him to LLN
- Michael and I worked on indefinite matrix pertubations

$$\min \|\Delta\|_2 : \det \left(\begin{bmatrix} S & R \\ R^* & T \end{bmatrix} - \left[\begin{array}{cc} 0 & \Delta \\ \Delta^* & 0 \end{bmatrix} \right) = 0$$

How I got to work with Michael

- Yurii Nesterov, Vincent Blondel and I invited him to LLN
- Michael and I worked on indefinite matrix pertubations

$$\min \|\Delta\|_2 : \det \left(\begin{bmatrix} S & R \\ R^* & T \end{bmatrix} - \left[\begin{array}{cc} 0 & \Delta \\ \Delta^* & 0 \end{bmatrix} \right) = 0$$

This requires a solid background in two worlds : optimization and matrix theory

Table of contents

- A new anti-triangular matrix decomposition
- Indefinite least squares with equality constraints
- Constrained optimal control
- Complexity and stability considerations

 Symmetric indefinite matrix factorizations of A are useful for saddle point problems (optimization, variational problems, ...)

- Symmetric indefinite matrix factorizations of A are useful for saddle point problems (optimization, variational problems, ...)
- Several such factorizations already exist (Parlett, Bunch, Kaufman, Aasen, Gould, ...)

- Symmetric indefinite matrix factorizations of A are useful for saddle point problems (optimization, variational problems, ...)
- Several such factorizations already exist (Parlett, Bunch, Kaufman, Aasen, Gould, ...)
- The anti-triangular symmetric indefinite factorization of A

$$A = QMQ^T$$

uses Q orthogonal and yields M anti-triangular such that solving Mx = b costs $O(n^2)$ at most

- Symmetric indefinite matrix factorizations of A are useful for saddle point problems (optimization, variational problems, ...)
- Several such factorizations already exist (Parlett, Bunch, Kaufman, Aasen, Gould, ...)
- The anti-triangular symmetric indefinite factorization of A

$$A = QMQ^T$$

uses Q orthogonal and yields M anti-triangular such that solving Mx = b costs $O(n^2)$ at most

It is easy to update/downdate when appending one row and column or adding a rank-one matrix (=> O(n³) algorithm) Anti-triangular matrix decomposition [SIMAX '13]

$$A \in \mathbb{R}^{n \times n}, A = A^T$$
, $In(A) = (n_-, n_0, n_+), n_1 = min(n_-, n_+)$, and $n_2 = max(n_-, n_+) - n_1$. Then

$$M = Q^{T} A Q = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & Y^{T} \\ \mathbf{0} & \mathbf{0} & X & Z^{T} \\ \mathbf{0} & Y & Z & W \end{bmatrix} \begin{cases} n_{0} \\ n_{1} \\ n_{2} \\ n_{1} \end{cases}, \quad \begin{array}{l} Y = \begin{bmatrix} \ensuremath{\bigtriangleup} \\ 1 \\ 1 \\ n_{1} \\ n_{1} \end{array}, \quad \begin{array}{l} Q \in \mathbb{R}^{n \times n} \text{orthogonal}, \end{array}$$

is in proper block anti-triangular form with : $Z \in \mathbb{R}^{n_1 \times n_2}, W \in \mathbb{R}^{n_1 \times n_1}$ symmetric, $Y \in \mathbb{R}^{n_1 \times n_1}$ nonsingular lower anti-triangular, $X \in \mathbb{R}^{n_2 \times n_2}$ symmetric definite if $n_2 > 0$, , i.e., $X = \varepsilon L L^T$, L nonsingular lower triangular, $\varepsilon = \begin{cases} 1, & \text{if } n_+ > n_- \\ -1, & \text{if } n_+ < n_- \end{cases}$

Anti-triangular matrix decomposition

▶ If
$$A \in \mathbb{R}^{n \times n}$$
, $A = A^T$, is nonsingular, $In(A) = (n_-, 0, n_+)$,
 $n_1 = \min(n_-, n_+)$, and $n_2 = \max(n_-, n_+) - n_1$,
then exists $Q \in \mathbb{R}^{n \times n}$, $Q^T Q = I$, such that

$$M = Q^{\mathsf{T}} A Q = \begin{bmatrix} \mathbf{0} & \mathbf{0} & Y^{\mathsf{T}} \\ \mathbf{0} & X & Z^{\mathsf{T}} \\ Y & Z & W \end{bmatrix} \begin{cases} n_1 \\ n_2 \\ n_1 \end{cases}$$

is in proper block anti-triangular form.

Anti-triangular matrix decomposition

▶ If
$$A \in \mathbb{R}^{n \times n}$$
, $A = A^T$, is nonsingular, $In(A) = (n_-, 0, n_+)$,
 $n_1 = \min(n_-, n_+)$, and $n_2 = \max(n_-, n_+) - n_1$,
then exists $Q \in \mathbb{R}^{n \times n}$, $Q^T Q = I$, such that

$$M = Q^{\mathsf{T}} A Q = \begin{bmatrix} \mathbf{0} & \mathbf{0} & Y^{\mathsf{T}} \\ \mathbf{0} & X & Z^{\mathsf{T}} \\ Y & Z & W \end{bmatrix} \begin{cases} n_1 \\ n_2 \\ n_1 \end{cases}$$

is in proper block anti-triangular form.

▶ Moreover, if *M* is in proper block anti-triangular form, then

$$\operatorname{In}(A) = (n_1, 0, n_1) + \begin{cases} (0, 0, n_2), & \text{if } X \text{ spd}, \\ (n_2, 0, 0), & \text{if } X \text{ snd}. \end{cases}$$

Anti-triangular "system solves" are cheap

$$Ax = b,$$

$$\underbrace{ \begin{bmatrix} \mathbf{0} & \mathbf{0} & Y^T \\ \mathbf{0} & X & Z^T \\ Y & Z & W \end{bmatrix} }_{A} \underbrace{ \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}}_{\mathbf{X}} = \underbrace{ \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} }_{\mathbf{b}} \frac{n_1}{n_1}$$

 $X = \varepsilon L L^T$.

Anti-triangular "system solves" are cheap

$$Ax = b,$$

$$\underbrace{\begin{bmatrix} \mathbf{0} & \mathbf{0} & Y^{T} \\ \mathbf{0} & X & Z^{T} \\ Y & Z & W \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \mathbf{b}_{3} \end{bmatrix}}_{\mathbf{b}} \frac{n_{1}}{n_{1}}$$

$$X = \varepsilon L L^{T}.$$

$$Y^{T} \mathbf{x}_{3} = \mathbf{b}_{1}$$

$$\varepsilon L L^{T} \mathbf{x}_{2} = \mathbf{b}_{2} - Z^{T} \mathbf{x}_{3}$$

$$Y\mathbf{x}_1 = \mathbf{b}_3 - Z\mathbf{x}_2 - W\mathbf{x}_3$$

Show Batman movie here

Illustrations of backward stability

A are four 100×100 matrix (rand, randn and 2 Matrix Market matrices)

MV	LUP	QR	
$\ QMQ^T - A\ _2$	$\ LU-PA\ _2$	$\ QR-A\ _2$	
$ A _2$	$\ A\ _{2}$	$ A _{2}$	
2.49e-15	7.27e-16	1.12e-15	
1.69e-16	7.55e-17	5.91e-16	
1.65e-15	1.43e-16	2.41e-15	
2.54e-15	2.90e-16	1.63e-15	

Indefinite Least Squares (ILS)

• Given
$$A \in \mathbb{R}^{(p+q) \times n}$$
, $\mathbf{b} \in \mathbb{R}^{p+q}$, and

$$\Sigma_{pq} = \left[\begin{array}{c} I_p \\ & -I_q \end{array} \right],$$

compute the solution of the indefinite least squares problem:

$$\min_{\mathbf{x}}(\mathbf{b}-A\mathbf{x})^{T}\Sigma_{pq}(\mathbf{b}-A\mathbf{x}).$$

Indefinite Least Squares (ILS)

• Given
$$A \in \mathbb{R}^{(p+q) \times n}$$
, $\mathbf{b} \in \mathbb{R}^{p+q}$, and

$$\Sigma_{pq} = \left[\begin{array}{c} I_p \\ & -I_q \end{array} \right],$$

compute the solution of the indefinite least squares problem:

$$\min_{\mathbf{x}}(\mathbf{b} - A\mathbf{x})^T \Sigma_{pq}(\mathbf{b} - A\mathbf{x}).$$

• This is well defined iff $A^T \Sigma_{pq} A \succ 0$

Indefinite Least Squares with equality constraints (ILSE)

• Given
$$A \in \mathbb{R}^{(p+q) \times n}$$
, $\mathbf{b} \in \mathbb{R}^{p+q}$,

$$\Sigma_{pq} = \left[\begin{array}{c} I_p \\ & -I_q \end{array} \right],$$

and $B \in \mathbb{R}^{s \times n}$, $\mathbf{d} \in \mathbb{R}^{s}$, $s \leq n$, the ILSE problem amounts to :

$$\min_{\mathbf{x}} (\mathbf{b} - A\mathbf{x})^T \Sigma_{pq} (\mathbf{b} - A\mathbf{x}) \text{ subject to } B\mathbf{x} = \mathbf{d}.$$

Indefinite Least Squares with equality constraints (ILSE)

• Given
$$A \in \mathbb{R}^{(p+q) \times n}$$
, $\mathbf{b} \in \mathbb{R}^{p+q}$,

$$\Sigma_{pq} = \left[\begin{array}{c} I_p \\ & -I_q \end{array} \right],$$

and $B \in \mathbb{R}^{s \times n}$, $\mathbf{d} \in \mathbb{R}^{s}$, $s \leq n$, the ILSE problem amounts to :

$$\min_{\mathbf{x}} (\mathbf{b} - A\mathbf{x})^T \Sigma_{pq} (\mathbf{b} - A\mathbf{x}) \text{ subject to } B\mathbf{x} = \mathbf{d}.$$

This is well defined iff (i) rankB = s and (ii) A^TΣ_{pq}A ≻ 0 on kerB

ILSE: augmented system

The solution of ILSE satisfies the augmented system

$$\underbrace{\begin{bmatrix} \mathbf{0} & \mathbf{0} & B \\ \mathbf{0} & \boldsymbol{\Sigma}_{pq} & A \\ B^T & A^T & \mathbf{0} \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} \boldsymbol{\lambda} \\ \mathbf{s} \\ \mathbf{x} \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} \mathbf{d} \\ \mathbf{b} \\ \mathbf{0} \end{bmatrix}}_{\mathbf{g}},$$

where $\mathbf{s} = \sum_{pq} (\mathbf{b} - A\mathbf{x}) = \sum_{pq} \mathbf{r}$ and λ is the vector of the Lagrange multipliers.

ILSE: augmented system

The solution of ILSE satisfies the augmented system

$$\underbrace{\begin{bmatrix} \mathbf{0} & \mathbf{0} & B \\ \mathbf{0} & \boldsymbol{\Sigma}_{pq} & A \\ B^T & A^T & \mathbf{0} \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} \boldsymbol{\lambda} \\ \mathbf{s} \\ \mathbf{x} \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} \mathbf{d} \\ \mathbf{b} \\ \mathbf{0} \end{bmatrix}}_{\mathbf{g}},$$

where $\mathbf{s} = \sum_{pq} (\mathbf{b} - A\mathbf{x}) = \sum_{pq} \mathbf{r}$ and λ is the vector of the Lagrange multipliers.

The idea is to transform the system into an equivalent one with coefficient matrix in proper block anti-triangular form

Algorithm

Let us choose \hat{Q}_1 orthogonal such that

$$\begin{bmatrix} B\\A \end{bmatrix} \hat{Q}_1 = \begin{bmatrix} 0 & Y\\A_1 & A_2 \end{bmatrix} = \begin{bmatrix} 0 & \angle\\A_1 & A_2 \end{bmatrix},$$

Then with $Q_1 := \begin{bmatrix} I_{p+q+s} & \\ Q_1 \end{bmatrix}$, we have
 $M_1 = Q_1^T M Q_1 = \begin{bmatrix} 0 & 0 & 0 & \angle\\ 0 & \sum_{pq} & A_1 & A_2 \\ 0 & A_1^T & 0 & 0 \\ \angle & A_2^T & 0 & 0 \end{bmatrix} \}$

٠

Since M_1 is anti-triangular in the first s rows and columns we process further the central part of

$$M_{1} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & Y \\ \mathbf{0} & \Sigma_{pq} & A_{1} & A_{2} \\ \mathbf{0} & A_{1}^{T} & \mathbf{0} & \mathbf{0} \\ Y^{T} & A_{2}^{T} & \mathbf{0} & \mathbf{0} \end{bmatrix} \Big\} s$$

.

.

We thus need to reduce further

$$\hat{M}_1 = \begin{bmatrix} \Sigma_{pq} & A_1 \\ A_1^T & \mathbf{0} \end{bmatrix} \} p + q$$
$$\{n - s$$

to proper block anti-triangular form

Partition A_1 as

$$A_1 = \left[egin{array}{c} A_{11} \ A_{12} \end{array}
ight] \left\{ p \
ight\} q \;\;.$$

and suppose (for simplicity) that $q \ge n-s$. Then we construct an orthogonal matrix

$$\tilde{Q}_{2} := \begin{bmatrix} Q_{2} & & \\ & Q_{3} \end{bmatrix} \begin{cases} p \\ q \end{cases}$$
$$\tilde{Q}_{2}^{T} A_{1} = \begin{bmatrix} \mathbf{0} \\ L_{2} \\ R_{3} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \boldsymbol{\Box} \\ \boldsymbol{\Box} \\ \mathbf{0} \end{bmatrix}$$

such that

Then with $\hat{Q}_2 := \mathrm{diag}\{ ilde{Q}_2, \mathit{I}_{n-s}\}$ we have

$$\hat{M}_{2} = \tilde{Q}_{2}^{T} \hat{M}_{1} \tilde{Q}_{2} = \begin{bmatrix} l_{p-n+s} & & & \mathbf{0} \\ & l_{n-s} & & & L_{2} \\ & & -l_{n-s} & & R_{3} \\ \mathbf{0} & L_{2}^{T} & R_{3}^{T} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$
$$= \begin{bmatrix} l_{p-n+s} & & & \mathbf{0} \\ & l_{n-s} & & & & \mathbf{0} \\ & & l_{n-s} & & & & \mathbf{0} \\ & & & -l_{q-n+s} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\bigtriangleup} & \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

The inertia of \hat{M}_i can be predicted $(\text{In}(\hat{M}_i) = (p, 0, q + n - s))$ and the further reduction to proper anti-tiangular form is easy to obtain using a sequence of Givens transformations.

$$\hat{M}_3 = \hat{Q}_3^T \hat{M}_2 \hat{Q}_3 = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \hat{Y}^T \\ \mathbf{0} & \hat{X} & \hat{Z}^T \\ \hat{Y} & \hat{Z} & \hat{W} \end{bmatrix}$$

where \hat{X} is symmetric negative definite, i.e.,

$$-\hat{X} = \hat{L}\hat{L}^T$$

Numerical results

We construct the matrices B with matlab as

$$B = \texttt{gallery}(\texttt{'randsvd'}, s, \kappa) imes \texttt{randn}(s, n),$$

with the condition number κ chosen as 10^k , k = 2, 4, 6, 8 and n = 50, s = 20, p = 60, q = 40. Let \mathbf{x}_i and $\mathbf{r}_i = \mathbf{b} - A\mathbf{x}_i$, be the solution of the augmented linear system and the residual computed by using "\" of matlab (for i = 1) and by using the proposed method (for i = 2).

κ	$\frac{\ \mathbf{X}_1 - \mathbf{X}_2\ _2}{\ \mathbf{X}_2\ _2}$	$\ \boldsymbol{\Sigma}_{pq}\mathbf{s}-\mathbf{r}_1\ _2$	$\ \boldsymbol{\Sigma}_{pq}\mathbf{s}-\mathbf{r}_2\ _2$	$\ B \mathbf{x}_1 - \mathbf{d}\ _2$	$\ B\mathbf{x}_2 - \mathbf{d}\ _2$
1e2	6.285e-12	1.392e-09	5.331e-12	6.125e-11	7.016e-14
1e4	6.309e-08	4.941e-06	1.774e-10	1.702e-07	1.651e-12
1e6	1.718e-04	6.080e-03	6.474e-09	3.871e-04	4.176e-11
1e8	8.555e-01	3.233e+1	7.356e-07	1.671e+0	1.554e-09

Discrete-time Optimal Control program

$$\begin{array}{ll} \min_{x,q} & \sum_{i=1}^{m} \Psi_i(x_i,q_i) \\ \text{s.t.} & x_i^{\text{low}} \le x_i \le x_i^{\text{up}} \\ & q_i^{\text{low}} \le q_i \le q_i^{\text{up}} \\ & 0 \le R_i(x_i,q_i) \\ & 0 = G_i(x_i,q_i) + P_{i+1}(x_{i+1},q_{i+1}) \end{array} i \in \{1,\ldots,m\}$$

 $x_i \in \mathbb{R}^{n_x}$ are the states and $q_i \in \mathbb{R}^{n_q}$ the control parameters.

The discrete-time process evolves over *m* points $i \in \{1, ..., m\}$ in time and is described by the state propagation law given in terms of $G_i : \mathbb{R}^{n_x} \times \mathbb{R}^{n_q} \to \mathbb{R}^{n_x}$, $P_i : \mathbb{R}^{n_x} \times \mathbb{R}^{n_q} \to \mathbb{R}^{n_x}$

The state x and control q are subject to possibly nonlinear constraints containing initial values, boundary conditions, or discretized general path constraints (Kirches, Bock et al, 2011).

Quadratic Optimal Control program

Using a linear-quadratic model of the Lagrangian and a linearization of the constraints, we obtain

$$\min_{w} \quad \sum_{i=1}^{m} \left(\frac{1}{2} w_{i}^{T} H_{i} w_{i} + g_{i}^{T} w \right)$$
s.t.
$$I_{i} \leq w_{i} \leq u_{i} \qquad i \in \{1, \dots, m\}$$

$$r_{i} \leq R_{i} w_{i}$$

$$h_{i} = G_{i} w_{i} + P_{i+1} w_{i+1}$$

$$(1)$$

 $H_i \in \mathbb{R}^{n \times n}$ Hessians $g_i \in \mathbb{R}^n$ gradients $w_i = (x_i, q_i)$

 R_i , G_i and P_i are the linearization matrices of R, G and P.

KKT problem

... Summarizing, at each step of the iterative process, a saddle point problem needs to be solved

$$\begin{bmatrix} H & M^T & R^T \\ M & \mathbf{0} & \mathbf{0} \\ R & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} w \\ \lambda \\ z \end{bmatrix} = \begin{bmatrix} g \\ h \\ c \end{bmatrix}$$
(2)

with

$$H = \begin{bmatrix} H_1 & & \\ & \ddots & \\ & & H_m \end{bmatrix}, M = \begin{bmatrix} G_1 & & & \\ P_1 & \ddots & & \\ & \ddots & G_{m-1} & \\ & & P_{m-1} & G_m \end{bmatrix}, R = \begin{bmatrix} R_1 & & \\ & \ddots & \\ & & R_m \end{bmatrix}$$

M and C have full row rank due to the choice of a linear independent active set.

KKT matrix

KKT matrix permuted

KKT matrix permuted and preprocessed (outer parts)

KKT matrix preprocessed (central part)

KKT matrix further reduction (central part)

 Anti-triangular decompositions use orthogonal transformations only and are backward stable

- Anti-triangular decompositions use orthogonal transformations only and are backward stable
- Solves and updates are $O(n^2)$ in the dense case

- Anti-triangular decompositions use orthogonal transformations only and are backward stable
- Solves and updates are $O(n^2)$ in the dense case
- Sparsity can sometimes be exploited and then yield O(nα) complexity in the sparse case

- Anti-triangular decompositions use orthogonal transformations only and are backward stable
- Solves and updates are $O(n^2)$ in the dense case
- ► Sparsity can sometimes be exploited and then yield O(nα) complexity in the sparse case
- The decomposition is not unique but "uniquely" depends on the choice of the neutral subspace

- Anti-triangular decompositions use orthogonal transformations only and are backward stable
- Solves and updates are $O(n^2)$ in the dense case
- ► Sparsity can sometimes be exploited and then yield O(nα) complexity in the sparse case
- The decomposition is not unique but "uniquely" depends on the choice of the neutral subspace
- The solutions presented in the literature require Schur complementation and are potentially unstable

- Anti-triangular decompositions use orthogonal transformations only and are backward stable
- Solves and updates are $O(n^2)$ in the dense case
- Sparsity can sometimes be exploited and then yield O(nα) complexity in the sparse case
- The decomposition is not unique but "uniquely" depends on the choice of the neutral subspace
- The solutions presented in the literature require Schur complementation and are potentially unstable
- Scaling the individual matrices in the ILSE problem improves the conditioning estimates for the ILSE problem

References

- Bojanczyk A., Higham N.J., Patel H.: Solving the Indefinite Least Squares Problem by Hyperbolic QR Factorization. SIAM J. Matrix Anal. Appl. 24(4), 914–931 (2003)
- Chandrasekaran S., Gu M., Sayed A. H.: A stable and efficient algorithm for the indefinite linear least squares problem. SIAM J. Matrix Anal. Appl. 20, 354-362 (1998)
- Gould N.I.M.: On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem. Math. Program. 32 90-99 (1985).
- Liu Q., Pan B.Z., Wang Q.: The hyperbolic elimination method for solving the equality constrained indefinite least squares problem. Intern. J. of Computer Mathematics, 87(13), 2953-2966 (2010)
- Kirches C., H.G. Bock H.G., Schloder J.P., Sager S.: A factorization with update procedures for a KKT matrix arising in direct optimal control. Mathematical Programming Computation, 3(4), pp. 319-348, (2011).
- Ramage A., Gartland, Jr E.C.: A preconditioned nullspace method for liquid crystal director modelling, SIAM Journal on Scientific Computing Vol 35,B226–B247 (2013).
- Wang Y., Boyd S.: Fast Model Predictive Control Using Online Optimization IEEE Transactions on Control Systems Technology, 18(2):267-278, (2010).
- Zavala V.M., Laird, C.D. and Biegler, L.T.: A Fast Moving Horizon Estimation Algorithm Based on Nonlinear Programming Sensitivity. Journal of Process Control, 18 (9), pp. 876-884, (2008).
- Mastronardi N., Van Dooren P.: Recursive approximation of the dominant eigenspace of an indefinite matrix. J. Comput. Appl. Math., 236, 4090-4104 (2012).
- Mastronardi N., Van Dooren P.: An algorithm for computing the anti-triangular factorization of symmetric matrices. SIAM J. Matrix Anal. Appl., 34, 173-196 (2013).
- Mastronardi N., Van Dooren P.: An algorithm for solving the indefinite least squares problem with equality constraints. BIT, submitted (2013).

Why Michael gets so much work done ...

Why Michael gets so much work done ...

Why Michael gets so much work done ...

OK, back to real the world, I'm going to work on my theorems !

Happy birthday, Michael !