sults

Conclusions

Solving linear systems by orthogonal tridiagonalization (GMINRES and/or GLSQR)

Michael Saunders Systems Optimization Laboratory (SOL) Institute for Computational Mathematics and Engineering (ICME) Stanford University

Workshop on Numerical Linear Algebra and Optimization on the occasion of Michael Overton's 60th birthday

> PIMS University of British Columbia Vancouver, BC

GMINRES or GLSQR?

MXO60 Aug 8-10, 2013

Motivation

The Golub-Kahan orthogonal bidiagonalization of $A \in \mathbb{R}^{m \times n}$ gives us freedom to choose 1 starting vector $b \in \mathbb{R}^m$ and solve sparse systems $Ax \approx b$ (as in LSQR)

But orthogonal tridiagonalization gives us freedom to choose 2 starting vectors $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$ and solve two sparse systems systems $Ax \approx b$ and $A^Ty \approx c$ (as in USYMQR \equiv GMINRES)

Motivation

The Golub-Kahan orthogonal bidiagonalization of $A \in \mathbb{R}^{m \times n}$ gives us freedom to choose 1 starting vector $b \in \mathbb{R}^m$ and solve sparse systems $Ax \approx b$ (as in LSQR)

But orthogonal tridiagonalization gives us freedom to choose 2 starting vectors $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$ and solve two sparse systems systems $Ax \approx b$ and $A^Ty \approx c$ (as in USYMQR \equiv GMINRES)

Reichel and Ye (2008) chose c to speed up the computation of x

Golub, Stoll and Wathen (2008) wanted $c^T x = b^T y$

Abstract

A general matrix A can be reduced to tridiagonal form by orthogonal transformations on the left and right: $U^T A V = T$. We can arrange that the first columns of U and V are proportional to given vectors b and c. An iterative form of this process was given by Saunders, Simon, and Yip (SINUM 1988) and used to solve square systems Ax = b and $A^Ty = c$ simultaneously. (One of the resulting solvers becomes MINRES when A is symmetric and b = c.)

The approach was rediscovered by Reichel and Ye (NLAA 2008) with emphasis on rectangular A and least-squares problems $Ax \approx b$. The resulting solver was regarded as a generalization of LSQR (although it doesn't become LSQR in any special case). Careful choice of c was shown to improve convergence.

In his last year of life, Gene Golub became interested in "GLSQR" for estimating $c^Tx = b^Ty$ without computing x or y. Golub, Stoll, and Wathen (ETNA 2008) revealed that the orthogonal tridiagonalization is equivalent to a certain block Lanczos process. This reminds us of Golub, Luk, and Overton (TOMS 1981): a block Lanczos approach to computing singular vectors.

GMINRES or GLSQR?

- 2 Orthogonal matrix reductions
- ③ MINRES-type solvers
- Orthogonal tridiagonalization of general A
- 5 Numerical results

Meeting for Michael (MXO)

First thought: Block Lanczos process (for eigenvectors)

Orthogonal matrix reductions

Direct: V = product of Householder transformations $n \times n$ **Iterative:** $V_k = (v_1 \quad v_2 \quad \dots \quad v_k)$ $n \times k$

Mostly short-term recurrences

Tridiagonalization of symmetric A

Direct:

Tridiagonalization of symmetric A

Direct:

Iterative: Lanczos process

$$\begin{pmatrix} b & AV_k \end{pmatrix} = V_{k+1} \begin{pmatrix} \beta e_1 & T_{k+1,k} \end{pmatrix}$$

Bidiagonalization of rectangular A

Direct:

GMINRES or GLSQR?

Bidiagonalization of rectangular A

Direct:

$$U^{T}(b \ A) \begin{pmatrix} 1 \\ V \end{pmatrix} = \begin{pmatrix} x \ x \\ x \ x \\ x \\ x \\ x \\ x \\ x \end{pmatrix}$$

Iterative: Golub-Kahan process

$$\begin{pmatrix} b & AV_k \end{pmatrix} = U_{k+1} \begin{pmatrix} \beta e_1 & B_{k+1,k} \end{pmatrix}$$

Tridiagonalization of rectangular A

Direct:

Tridiagonalization of rectangular A

Direct:

Iterative: S-Simon-Yip (1988), Reichel-Ye (2008)

$$\begin{pmatrix} b & AV_k \end{pmatrix} = U_{k+1} \begin{pmatrix} \beta e_1 & T_{k+1,k} \end{pmatrix} \\ \begin{pmatrix} c & A^T U_k \end{pmatrix} = V_{k+1} \begin{pmatrix} \gamma e_1 & T_{k,k+1}^T \end{pmatrix}$$

GMINRES or GLSQR?

MINRES-type solvers

based on

Lanczos, Arnoldi, Golub-Kahan, orth-tridiag

GMINRES or GLSQR?

MINRES-type solvers for $Ax \approx b$

A	Process			Solver
symmetric	Lanczos	Paige-S	1975	MINRES
		Choi-Paige-S	2011	MINRES-QLP
rectangular	Golub-Kahan	Paige-S	1982	LSQR
		Fong-S	2011	LSMR
unsymmetric	Arnoldi	Saad-Schultz	1986	GMRES
unsymmetric	orth-tridiag	S-Simon-Yip	1988	USYMQR
rectangular	orth-tridiag	Reichel-Ye	2008	GLSQR

MINRES-type solvers for $Ax \approx b$

A	Process			Solver
symmetric	Lanczos	Paige-S	1975	MINRES
		Choi-Paige-S	2011	MINRES-QLP
rectangular	Golub-Kahan	Paige-S	1982	LSQR
		Fong-S	2011	LSMR
square	Arnoldi	Saad-Schultz	1986	GMRES
square	orth-tridiag	S-Simon-Yip	1988	GMINRES
rectangular	orth-tridiag	Reichel-Ye	2008	GLSQR

MINRES-type solvers for $Ax \approx b$

A	Process			Solver
symmetric	Lanczos	Paige-S	1975	MINRES
		Choi-Paige-S	2011	MINRES-QLP
rectangular	Golub-Kahan	Paige-S	1982	LSQR
		Fong-S	2011	LSMR
square	Arnoldi	Saad-Schultz	1986	GMRES
square	orth-tridiag	S-Simon-Yip	1988	GMINRES
rectangular	orth-tridiag	Reichel-Ye	2008	GLSQR

All these processes produce similar outputs:

Lanczos	$\begin{pmatrix} b & AV_k \end{pmatrix} = V_{k+1} (\beta e_1$	$T_{k+1,k}$
Golub-Kahan	$\begin{pmatrix} b & AV_k \end{pmatrix} = U_{k+1} \left(\beta e_1 \right)$	$B_{k+1,k}$
orth-tridiag	$\begin{pmatrix} b & AV_k \end{pmatrix} = U_{k+1} (\beta e_1$	$T_{k+1,k}$
and	$\begin{pmatrix} c & A^T U_k \end{pmatrix} = V_{k+1} (\gamma e_1)$	$T_{k,k+1}^T \bigr)$

GMINRES or GLSQR?

MXO60 Aug 8-10, 2013

MINRES-type solvers for $Ax \approx b$

A	Process			Solver
symmetric	Lanczos	Paige-S	1975	MINRES
		Choi-Paige-S	2011	MINRES-QLP
rectangular	Golub-Kahan	Paige-S	1982	LSQR
		Fong-S	2011	LSMR
square	Arnoldi	Saad-Schultz	1986	GMRES
square	orth-tridiag	S-Simon-Yip	1988	GMINRES
rectangular	orth-tridiag	Reichel-Ye	2008	GLSQR

All methods:

MINRES-type solvers for $Ax \approx b$

A	Process			Solver
symmetric	Lanczos	Paige-S	1975	MINRES
		Choi-Paige-S	2011	MINRES-QLP
rectangular	Golub-Kahan	Paige-S	1982	LSQR
		Fong-S	2011	LSMR
square	Arnoldi	Saad-Schultz	1986	GMRES
square	orth-tridiag	S-Simon-Yip	1988	GMINRES
rectangular	orth-tridiag	Reichel-Ye	2008	GLSQR

All methods:

 $\Rightarrow x_k = V_k w_k \text{ where we choose } w_k \text{ from } \min \|\beta e_1 - H_k w_k\|$ GMINRES or GLSQR? MXX060 Aug 8-10, 2013

Symmetric methods for unsymmetric $Ax \approx b$

Lanczos on
$$\begin{pmatrix} I & A \\ A^T & -\delta^2 I \end{pmatrix} \begin{pmatrix} r \\ x \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$$
 gives Golub-Kahan

CG-type subproblem gives LSQR MINRES-type subproblem gives LSMR Symmetric methods for unsymmetric $Ax \approx b$

Lanczos on
$$\begin{pmatrix} I & A \\ A^T & -\delta^2 I \end{pmatrix} \begin{pmatrix} r \\ x \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$$
 gives Golub-Kahan

CG-type subproblem gives LSQR MINRES-type subproblem gives LSMR

Lanczos on
$$\begin{pmatrix} A \\ A^T \end{pmatrix} \begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix}$$
 (square A) is not equivalent to orthogonal tridiagonalization (but seems worth a try!)

Tridiagonalization of general *A* using orthogonal matrices

Some history

GMINRES or GLSQR?

Orthogonal tridiagonalization

• 1988 Saunders, Simon, and Yip, SINUM 25

"Two CG-type methods for unsymmetric linear equations" Focus on square *A* USYMLQ and USYMQR (GSYMMLQ and GMINRES)

Orthogonal tridiagonalization

• 1988 Saunders, Simon, and Yip, SINUM 25

"Two CG-type methods for unsymmetric linear equations" Focus on square A

USYMLQ and USYMQR (GSYMMLQ and GMINRES)

• 2008 Reichel and Ye

"A generalized LSQR algorithm" Focus on rectangular A GLSQR

Orthogonal tridiagonalization

- 1988 Saunders, Simon, and Yip, SINUM 25
 - "Two CG-type methods for unsymmetric linear equations"

Focus on square A

USYMLQ and USYMQR (GSYMMLQ and GMINRES)

• 2008 Reichel and Ye

"A generalized LSQR algorithm" Focus on rectangular *A* GLSQR

• 2008 Golub, Stoll, and Wathen

"Approximation of the scattering amplitude"

Focus on Ax = b, $A^Ty = c$ and estimation of $c^Tx = b^Ty$ without x, y

Orthogonal tridiagonalization

- 1988 Saunders, Simon, and Yip, SINUM 25
 - "Two CG-type methods for unsymmetric linear equations"

Focus on square A

USYMLQ and USYMQR (GSYMMLQ and GMINRES)

• 2008 Reichel and Ye

"A generalized LSQR algorithm" Focus on rectangular *A* GLSQR

• 2008 Golub, Stoll, and Wathen

"Approximation of the scattering amplitude"

Focus on Ax = b, $A^Ty = c$ and estimation of $c^Tx = b^Ty$ without x, y

 2012 Patrick Küschner, Max Planck Institute, Magdeburg Eigenvalues

Need to solve Ax = b and $A^Ty = c$

• CG, SYMMLQ, MINRES work well for symmetric Ax = b

- CG, SYMMLQ, MINRES work well for symmetric Ax = b
- Tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration

- CG, SYMMLQ, MINRES work well for symmetric Ax = b
- Tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration
- If A is symmetric, we get Lanczos and MINRES etc

- CG, SYMMLQ, MINRES work well for symmetric Ax = b
- Tridiagonalization of unsymmetric A is no more than twice the work and storage per iteration
- If A is symmetric, we get Lanczos and MINRES etc
- If A is nearly symmetric, total itns should be not much more (??)

Elizabeth Yip's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve Ax = b, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Elizabeth Yip's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve Ax = b, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

Elizabeth Yip's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve Ax = b, where A is an arbitrary nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

We apply a preconditioned version (Fast Poisson) to the difference equation of unsteady transonic flow with small disturbances. (Compared with ORTHOMIN(5))

Numerical results with orthogonal tridiagonalization

GMINRES or GLSQR?

 20×20

Numerical results (SSY 1988)

$$A = \begin{pmatrix} B & -I & & \\ -I & B & -I & & \\ & \ddots & \ddots & \ddots & \\ & & -I & B & -I \\ & & & -I & B \end{pmatrix} \qquad B = \text{tridiag} \begin{pmatrix} -1 - \delta & 4 & -1 + \delta \end{pmatrix}$$

$$400 \times 400 \qquad \qquad 20 \times 20$$

Numerical results (SSY 1988)

$$A = \begin{pmatrix} B & -I & & \\ -I & B & -I & & \\ & \ddots & \ddots & \ddots & \\ & & -I & B & -I \\ & & & -I & B \end{pmatrix}$$

$$B = \text{tridiag} \begin{pmatrix} -1 - \delta & 4 & -1 + \delta \end{pmatrix}$$

$$400 \times 400$$

$$20 \times 20$$

Megaflops to reach $||r|| \leq 10^{-6} ||b||$:

δ	0.0	0.01	0.1	1.0	10.0	100.0
ORTHOMIN(5)	0.31	0.57	0.75	0.83	2.55	2.11
LSQR	0.28	1.38	1.48	0.80	0.57	0.27
GMINRES	0.30	1.88	1.98	1.41	0.99	0.64

Numerical results (SSY 1988)

$$A = \begin{pmatrix} B & -I & & \\ -I & B & -I & & \\ & \ddots & \ddots & \ddots & \\ & & -I & B & -I \\ & & & -I & B \end{pmatrix}$$

$$B = \text{tridiag} \begin{pmatrix} -1 - \delta & 4 & -1 + \delta \end{pmatrix}$$

$$400 \times 400$$

$$20 \times 20$$

Megaflops to reach $||r|| \leq 10^{-6} ||b||$:

δ	0.0	0.01	0.1	1.0	10.0	100.0
ORTHOMIN(5)	0.31	0.57	0.75	0.83	2.55	2.11
LSQR	0.28	1.38	1.48	0.80	0.57	0.27
GMINRES	0.30	1.88	1.98	1.41	0.99	0.64

Bottom line:

ORTHOMIN sometimes good, can fail. LSQR always better than GMINRES

GMINRES or GLSQR?

MXO60 Aug 8-10, 2013

Numerical results (Reichel and Ye 2008)

- Focused on rectangular A and least-squares (Forgot about SSY 1988 and USYMQR — hence GLSQR)
- Three numerical examples (all square!)

Numerical results (Reichel and Ye 2008)

- Focused on rectangular A and least-squares (Forgot about SSY 1988 and USYMQR — hence GLSQR)
- Three numerical examples (all square!)
- Remember $x_1 \propto v_1 \propto c$ (since $x_k = V_k w_k$ and $c = \gamma v_1$)

Numerical results (Reichel and Ye 2008)

- Focused on rectangular A and least-squares (Forgot about SSY 1988 and USYMQR — hence GLSQR)
- Three numerical examples (all square!)
- Remember $x_1 \propto v_1 \propto c$ (since $x_k = V_k w_k$ and $c = \gamma v_1$)
- Focused on choice of cstopping early looking at $x_k = \begin{pmatrix} x_{k1} & x_{k2} & \dots & x_{kn} \end{pmatrix}$

Numerical results (Reichel and Ye 2008) Example 1 (Fredholm equation)

$$\int_0^\pi \kappa(s,t) x(t) dt = b(s), \qquad 0 \le s \le rac{\pi}{2}$$

• Discretize to get $A\hat{x} = \hat{b}$, n = 400 Solve Ax = b, $\|b - \hat{b}\| = 10^{-3} \|\hat{b}\|$

Numerical results (Reichel and Ye 2008) Example 1 (Fredholm equation)

$$\int_0^\pi \kappa(s,t) x(t) dt = b(s), \qquad 0 \le s \le \frac{\pi}{2}$$

• Discretize to get $A\hat{x} = \hat{b}$, n = 400 Solve Ax = b, $\|A\|$

Solve
$$Ax = b$$
, $\|b - \hat{b}\| = 10^{-3} \, \|\hat{b}\|$

• Among $\{x_k^{\text{LSQR}}\}$, x_3^{LSQR} is closest to \hat{x}

Numerical results (Reichel and Ye 2008) Example 1 (Fredholm equation)

$$\int_0^\pi \kappa(s,t) x(t) dt = b(s), \qquad 0 \le s \le rac{\pi}{2}$$

• Discretize to get $A\hat{x} = \hat{b}$, n = 400 Solve Ax = b, $||b - \hat{b}|| = 10^{-3} ||\hat{b}||$

- Among $\{x_k^{\text{LSQR}}\}$, x_3^{LSQR} is closest to \hat{x}
- GLSQR: choose $c = \begin{pmatrix} 1 & 1 & \dots & 1 \end{pmatrix}^T$ because true $x \approx 100c$

Numerical results (Reichel and Ye 2008) Example 2 (Star cluster)

• 470 stars, $\hat{x} = 256 \times 256$ pixels, $\hat{b} = A\hat{x}$, n = 65536

• Solve
$$Ax = b$$
, $\|b - \hat{b}\| = 10^{-2} \|\hat{b}\|$

Numerical results (Reichel and Ye 2008) Example 2 (Star cluster)

- 470 stars, $\hat{x} = 256 \times 256$ pixels, $\hat{b} = A\hat{x}$, n = 65536
- Solve Ax = b, $\|b \hat{b}\| = 10^{-2} \, \|\hat{b}\|$
- Choose c = b (because $b \approx x$)
- Compare error in x_k^{LSQR} and x_k^{GLSQR} for 40 iterations

Numerical results (Reichel and Ye 2008)

Example 3 (Fredholm equation)

$$\int_0^1 k(s,t) x(t) dt = \exp(s) + (1-e)s - 1, \qquad 0 \le s \le 1$$
 $k(s,t) = egin{cases} s(t-1), & s < t \ t(s-1), & s \ge t \end{cases}$

- Discretize to get $A\hat{x} = \hat{b}$, n = 1024
- Solve Ax = b, $\|b \hat{b}\| = 10^{-3} \, \|\hat{b}\|$
- x_{22}^{LSQR} has smallest error, but oscillates around \hat{x}

Numerical results (Reichel and Ye 2008)

Example 3 (Fredholm equation)

$$\int_0^1 k(s,t) x(t) dt = \exp(s) + (1-e)s - 1, \qquad 0 \le s \le 1$$
 $k(s,t) = egin{cases} s(t-1), & s < t \ t(s-1), & s \ge t \end{cases}$

- Discretize to get $A\hat{x} = \hat{b}$, n = 1024
- Solve Ax = b, $\|b \hat{b}\| = 10^{-3} \, \|\hat{b}\|$
- x_{22}^{LSQR} has smallest error, but oscillates around \hat{x}
- Discretize coarsely to get $A_c x_c = b_c$, n = 4
- Prolongate x_c to get x_{prl} ∈ ℝ¹⁰²⁴ and starting vector c = x_{prl}
 x₄^{GLSQR} is very close to x̂

Conclusions

GMINRES or GLSQR?

Subspaces

• Unsymmetric Lanczos generates two Krylov subspaces:

$$U_k \in \operatorname{span} \{ b \ Ab \ A^2b \ \dots \ A^{k-1}b \}$$

$$V_k \in \operatorname{span} \{ c \ A^{\mathsf{T}}c \ (A^{\mathsf{T}})^2c \ \dots \ (A^{\mathsf{T}})^{k-1}c \}$$

Subspaces

• Unsymmetric Lanczos generates two Krylov subspaces:

$$U_k \in \operatorname{span} \{ b \ Ab \ A^2b \ \dots \ A^{k-1}b \}$$

$$V_k \in \operatorname{span} \{ c \ A^Tc \ (A^T)^2c \ \dots \ (A^T)^{k-1}c \}$$

• Orthogonal tridiagonalization generates

 $U_{2k} \in \operatorname{span} \{ b \ AA^{\mathsf{T}}b \ \dots \ (AA^{\mathsf{T}})^{k-1}b \ Ac \ (AA^{\mathsf{T}})Ac \ \dots \}$ $V_{2k} \in \operatorname{span} \{ c \ A^{\mathsf{T}}Ac \ \dots \ (A^{\mathsf{T}}A)^{k-1}c \ A^{\mathsf{T}}b \ (A^{\mathsf{T}}A)A^{\mathsf{T}}b \ \dots \}$

Subspaces

• Unsymmetric Lanczos generates two Krylov subspaces:

$$U_k \in \operatorname{span} \{ b \ Ab \ A^2b \ \dots \ A^{k-1}b \}$$

$$V_k \in \operatorname{span} \{ c \ A^Tc \ (A^T)^2c \ \dots \ (A^T)^{k-1}c \}$$

• Orthogonal tridiagonalization generates

$$U_{2k} \in \operatorname{span} \{ b \ AA^{T}b \ \dots \ (AA^{T})^{k-1}b \ Ac \ (AA^{T})Ac \ \dots \}$$

$$V_{2k} \in \operatorname{span} \{ c \ A^{T}Ac \ \dots \ (A^{T}A)^{k-1}c \ A^{T}b \ (A^{T}A)A^{T}b \ \dots \}$$

Reichel and Ye 2008:
 Richer subspace for ill-posed Ax ≈ b (can choose c ≈ x)
 A can be rectangular
 Check for early termination of {u_k} or {v_k} sequence

• Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve Ax = b and $A^Ty = c$ simultaneously and to estimate $c^Tx = b^Ty$ at a superconvergent rate:

$$|c^{\mathsf{T}}x_k - c^{\mathsf{T}}x| \approx |b^{\mathsf{T}}y_k - b^{\mathsf{T}}y| \approx \frac{\|b - Ax_k\| \|c - A^{\mathsf{T}}y_k\|}{\sigma_{\min}(A)}$$

• Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve Ax = b and $A^Ty = c$ simultaneously and to estimate $c^Tx = b^Ty$ at a superconvergent rate:

$$|c^{\mathsf{T}}x_k - c^{\mathsf{T}}x| \approx |b^{\mathsf{T}}y_k - b^{\mathsf{T}}y| \approx \frac{\|b - Ax_k\| \|c - A^{\mathsf{T}}y_k\|}{\sigma_{\min}(A)}$$

• Golub, Stoll and Wathen (2008) use orthogonal tridiagonalization with GLSQR to do likewise

• Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve Ax = b and $A^Ty = c$ simultaneously and to estimate $c^Tx = b^Ty$ at a superconvergent rate:

$$|c^{\mathsf{T}}x_k - c^{\mathsf{T}}x| \approx |b^{\mathsf{T}}y_k - b^{\mathsf{T}}y| \approx \frac{\|b - Ax_k\| \|c - A^{\mathsf{T}}y_k\|}{\sigma_{\min}(A)}$$

- Golub, Stoll and Wathen (2008) use orthogonal tridiagonalization with GLSQR to do likewise
 - Matrices, moments, and quadrature

• Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with QMR to solve Ax = b and $A^Ty = c$ simultaneously and to estimate $c^Tx = b^Ty$ at a superconvergent rate:

$$|c^{\mathsf{T}}x_k - c^{\mathsf{T}}x| \approx |b^{\mathsf{T}}y_k - b^{\mathsf{T}}y| \approx \frac{\|b - Ax_k\| \|c - A^{\mathsf{T}}y_k\|}{\sigma_{\min}(A)}$$

- Golub, Stoll and Wathen (2008) use orthogonal tridiagonalization with GLSQR to do likewise
 - Matrices, moments, and quadrature
 - Golub, Minerbo and Saylor 1998
 Nine ways to compute the scattering amplitude (1): Estimating c^Tx iteratively

Block Lanczos

Orthogonal tridiagonalization is equivalent to

• block Lanczos on $A^{T}A$ with starting block $(c A^{T}b)$ Parlett 1987

Block Lanczos

Orthogonal tridiagonalization is equivalent to

- block Lanczos on $A^T A$ with starting block $(c A^T b)$ Parlett 1987
- block Lanczos on $\begin{pmatrix} A \\ A^T \end{pmatrix}$ with starting block $\begin{pmatrix} b \\ c \end{pmatrix}$ Golub, Stoll, and Wathen 2008

Block Lanczos

Orthogonal tridiagonalization is equivalent to

- block Lanczos on $A^T A$ with starting block $(c A^T b)$ Parlett 1987
- block Lanczos on $\begin{pmatrix} A \\ A^T \end{pmatrix}$ with starting block $\begin{pmatrix} b \\ c \end{pmatrix}$ Golub, Stoll, and Wathen 2008

There are two ways of spreading light. To be the candle or the mirror that reflects it. – Edith Wharton

References

- M. A. Saunders, H. D. Simon, and E. L. Yip (1988). Two conjugate-gradient-type methods for unsymmetric linear equations, *SIAM J. Numer. Anal.* 25:4, 927–940.
- L. Reichel and Q. Ye (2008). A generalized LSQR algorithm, *Numer. Linear Algebra Appl.* 15, 643–660.
- G. H. Golub, M. Stoll, and A. Wathen (2008). Approximation of the scattering amplitude and linear systems, *ETNA* 31, 178–203.
- S.-C. Choi (2013).

Minimal residual methods for complex symmetric, skew symmetric, and skew Hermitian systems,

Report ANL/MCS-P3028-0812, Computation Institute, Univ of Chicago.

References

- M. A. Saunders, H. D. Simon, and E. L. Yip (1988). Two conjugate-gradient-type methods for unsymmetric linear equations, *SIAM J. Numer. Anal.* 25:4, 927–940.
- L. Reichel and Q. Ye (2008). A generalized LSQR algorithm, *Numer. Linear Algebra Appl.* 15, 643–660.
- G. H. Golub, M. Stoll, and A. Wathen (2008). Approximation of the scattering amplitude and linear systems, *ETNA* 31, 178–203.
- S.-C. Choi (2013).

Minimal residual methods for complex symmetric, skew symmetric, and skew Hermitian systems,

Report ANL/MCS-P3028-0812, Computation Institute, Univ of Chicago.

Special thanks to Martin Stoll, Lothar Reichel, Chris Paige, and Sou-Cheng Choi

References

- M. A. Saunders, H. D. Simon, and E. L. Yip (1988). Two conjugate-gradient-type methods for unsymmetric linear equations, *SIAM J. Numer. Anal.* 25:4, 927–940.
- L. Reichel and Q. Ye (2008). A generalized LSQR algorithm, *Numer. Linear Algebra Appl.* 15, 643–660.
- G. H. Golub, M. Stoll, and A. Wathen (2008). Approximation of the scattering amplitude and linear systems, *ETNA* 31, 178–203.
- S.-C. Choi (2013).

Minimal residual methods for complex symmetric, skew symmetric, and skew Hermitian systems,

Report ANL/MCS-P3028-0812, Computation Institute, Univ of Chicago.

Special thanks to Martin Stoll, Lothar Reichel, Chris Paige, and Sou-Cheng Choi

Happy birthday Michael!

GMINRES or GLSQR?

MXO60 Aug 8-10, 2013

Gene is with us every day

GMINRES or GLSQR?

MXO60 Aug 8-10, 2013