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Abstract. This is a written account of five Pacific Institute for the
Mathematical Sciences Distinguished Chair Lectures given at the Math-
ematics Department, University of Victoria, BC, in November 2002. The
lectures were devoted to the ergodic theory of Zd-actions, i.e. of several
commuting automorphisms of a probability space. After some introduct-
ory remarks on more general Zd-actions the lectures focused on ‘algeb-
raic’ Zd-actions, their sometimes surprising properties, and their deep
connections with algebra and arithmetic. Special emphasis was given to
some of the very recent developments in this area, such as higher order
mixing behaviour and rigidity phenomena.
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1. Introduction

Although Zd-actions have played an important role in physics (for ex-
ample, in the lattice models of statistical mechanics), the mathematical
theory of these actions has been hampered to some extent by the lack of
classes of examples which one could analyze systematically. The two classical
sources of examples are multi-dimensional shifts of finite type and commut-
ing diffeomorphisms of smooth manifolds. Both these classes have serious
limitations: the first leads very quickly to undecidability problems (men-
tioned briefly in Section 3), and the second by necessity to Zd-actions for
which every Zd′-subaction with d′ > 1 has zero entropy.

About 15 years ago a class of Zd-actions emerged which was rich enough to
exhibit a variety of new and unexpected phenomena and yet simple enough
to allow detailed investigation: the Zd-actions by commuting automorph-
isms of compact abelian groups, or algebraic Zd-actions for short. By using
Pontryagin duality one can associate with each such Zd-action α a module
M over the ring Rd = Z[u±1

1 , . . . , u±1
d ] of Laurent polynomials in d variables

(or, equivalently, over the group ring of Zd), and by identifying certain algeb-
raic properties of this module (which can largely be expressed in terms of its
associated prime ideals) with dynamical properties of α. If one understands
this translation of between algebra and dynamics well enough one can use it
to construct explicit algebraic Zd-actions with prescribed dynamical beha-
viour (such as Zd-actions with completely positive entropy with or without
expansiveness, or mixing zero-entropy Zd-actions which have Zd′-subactions
with completely positive entropy for some d′ with 1 ≤ d′ < d, or Zd-actions
which are mixing of order r, but not of order r + 1, for any r ≥ 2).

Some of the correspondence between algebraic properties of the modules
and dynamical properties of the Zd-actions is quite straightforward, such
as ergodicity and mixing. Other dynamical properties express themselves
more subtly in terms of algebra: expansiveness, entropy and the Bernoulli
property may serve as examples (cf. Section 4). An intriguing connection
between algebra and dynamics which has been clarified only recently is the
link between the higher order mixing behaviour of algebraic Zd-actions and
additive relations in fields: this will be discussed in the Sections 5–7 of these
notes.

Perhaps the most puzzling problems in this area are the rigidity properties
of algebraic Zd-actions with zero entropy, which express themselves in a
number of different ways as scarcity of invariant probability measures, of
Haar measure preserving Borel automorphisms commuting with the actions,
or of measurable conjugacies between such actions. In spite of some recent
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progress many of the main questions are still virtually untouched. I describe
these problems and some of the partial answers in the Sections 8–10.

These notes are, of course, a considerably expanded version of the original
lectures. Some parts of these notes will appear in print as a separate article
under the title Algebraic Zd-actions on zero-dimensional compact abelian
groups.

2. Continuous Zd-actions

Let Y be a be a compact metrizable space, and let d ≥ 1. A continuous
Zd-action T on Y is a homomomorphism n 7→ Tn from Zd into the group
of homeomorphisms of Y . In classical ergodic theory d is usually equal to 1,
i.e. T is determined by the powers of a single homeomorphism T 1 = V of
Y , but in these notes we concentrate on the case where d > 1 and on some
of the phenomena specific to such higher-rank actions.

We fix a continuous Zd-action T on a compact metric space (Y, δ).
A point y ∈ Y is periodic if its orbit {Tn : n ∈ Zd} is finite.
The action T is topologically transitive if there exists a point y ∈ Y with

dense orbit.
The action T is topologically mixing if, for every pair of nonempty open

sets O1,O2 in Y , O1 ∩ T−nO2 6= ∅ for all but finitely many n ∈ Zd.
Finally, T is expansive if

εT = inf
y,y′∈Y
y 6=y′

sup
m∈Zd

δ(Tmy, Tmy′) > 0.

The number εT is called the expansive constant of T . Since Y is compact,
expansiveness is independent of the particular choice of the metric δ, but
the expansive constant obviously depends on δ.

If T and T ′ are continuous Zd-actions on compact metrizable spaces Y

and Y ′, respectively, then T ′ is a topological factor of T (or, to be pedantic,
(Y ′, T ′) is a topological factor of (Y, T )) if there exists a continuous surjective
map φ : Y −→ Y ′ with

φ ◦ Tm = T ′m ◦ φ (2.1)

for every m ∈ Zd. If the map φ in (2.1) can be chosen to be a homeomorphism
then T and T ′ (or (Y, T ) and (Y ′, T ′)) are topologically conjugate. The map φ

in (2.1) is called a (topological) factor map (or conjugacy). More generally, a
not necessarily surjective map φ : X −→ Y is equivariant if it satisfies (2.1)
for every n ∈ Zd.

If µ (resp. µ′) are Borel probability measures on Y (resp. Y ′) which are in-
variant under T (resp. T ′), then (Y ′, T ′, µ′) is a measurable factor of (Y, T, µ)
if there exists a surjective Borel map φ : Y −→ Y ′ with µφ−1 = µ′ satisfying
(2.1) µ-a.e. for every m ∈ Zd. If this Borel map φ : Y −→ Y ′ can be chosen
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to be bijective then (Y, T, µ) and (Y ′, T ′, µ′) are measurably conjugate. The
definition of a measurable equivariant map φ : Y −→ Y ′ is analogous.

For the following discussion we assume that T is a continuous Zd-action on
a compact metric space (Y, δ). If U is an open cover of Y we set N(U) equal
to the number of elements in the smallest subcover of U . Then log N(U)
is subadditive in the sense that log N(U ∨ V) ≤ log N(U) + log N(V) for
all open covers U ,V of Y , where U ∨ V is the open cover of Y consisting
of all intersections U ∩ V with U ∈ U and V ∈ V. For every rectangle
Q =

∏d
j=1{bj , . . . , bj + lj − 1} ⊂ Zd we set 〈Q〉 = minj=1,...,d lj , and |Q| is

(as usual) the cardinality of Q. Put

hcover(T ) = sup
U

h(T,U), (2.2)

where U ranges over the collection of all open covers of Y , and

h(T,U) = lim
〈Q〉→∞

1
|Q| log N

( ∨

m∈Q

T−m(U)
)

. (2.3)

The limit in (2.3) exists by subadditivity and is less than or equal to N(U).
If Q ⊂ Zd is a rectangle then a set E ⊂ Y is (Q, δ, ε)-spanning for T if

there exists, for every y ∈ Y , a y′ ∈ E with δ(Tmy, Tmy′) < ε for all m ∈ Q,
and E is (Q, δ, ε)-separated if there exists, for every pair y 6= y′ in E, an
m ∈ Q with δ(Tmy, Tmy′) ≥ ε. Let rQ(δ, ε) be the smallest cardinality of a
(Q, δ, ε)-spanning set, sQ(δ, ε) the largest cardinality of a (Q, δ, ε)-separated
set, and put

hspan(T ) = lim
ε→0

lim sup
〈Q〉→∞

1
|Q| log rQ(δ, ε),

hsep(T ) = lim
ε→0

lim sup
〈Q〉→∞

1
|Q| log sQ(δ, ε).

(2.4)

Definition 2.1. If T is a continuous Zd-action on a compact metric space
(Y, δ), then

hcover(T ) = hspan(T ) = hsep(T ) = lim
ε→0

lim inf
〈Q〉→∞

1
|Q| log rQ(δ, ε)

= lim
ε→0

lim inf
〈Q〉→∞

1
|Q| log sQ(δ, ε),

(2.5)

and this common value (which is independent of the metric δ) is the topo-
logical entropy htop(T ) of T .

Recall that a finite open cover U of Y is a topological generator for a
continuous Zd-action T on Y if, for every map n 7→ Un from Zd to U ,∣∣∣∣

⋂

n∈Zd

T−n(Un)
∣∣∣∣ ≤ 1,
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where |E| is the cardinality of a set E. If T is a continuous Zd-action on a
compact space Y and U a topological generator for T , then it is easy to see
that

htop(T ) = h(T,U) < ∞. (2.6)

From (2.6) it is immediate that every continuous expansive Zd-action T on a
compact space Y has finite entropy, since every open cover whose diameter1

is less than the expansive constant is a topological generator for T .

3. Symbolic Zd-actions

Let A be a finite set (the alphabet), and let AZd
be the set of all maps

x : Zd −→ A. For every nonempty subset F ⊂ Zd we write

πF : AZd −→ AF

for the projection which restricts each x ∈ AZd
to F . For every n ∈ Zd we

define a homeomorphism σn of the compact space AZd
by

(σnx)m = xn+m (3.1)

for every x = (xm) ∈ AZd
. The map σ : n 7→ σn is the shift-action of Zd

on AZd
, and a subset X ⊂ AZd

is shift-invariant if σn(X) = X for all
n ∈ Zd. A closed nonempty shift-invariant subset X ⊂ AZd

is a subshift,
and the restriction of σ to a subshift X is denoted by σX , and is obviously
expansive.

A closed shift-invariant set X ⊂ AZd
is a shift of finite type (SFT ) if there

exist a finite set F ⊂ Zd and a subset P ⊂ AF such that

X = X(F,P ) = {x ∈ AZd
: πF ◦ σn(x) ∈ P for every n ∈ Zd}. (3.2)

Proposition 3.1. Let A be a finite set, d ≥ 1 and X ⊂ AZd
a closed

shift-invariant subset. The following conditions are equivalent.

(1) There exists a finite set F ⊂ Zd such that

X = {x ∈ AZd
: πF ◦ σn(x) ∈ πF (X) for every n ∈ Zd}; (3.3)

(2) For every nonincreasing sequence X1 ⊃ X2 ⊃ X3 ⊃ · · · of subshifts
of AZd

with
⋂

n≥1 Xn = X there exists an N ≥ 1 with XN = X;
(3) X is a SFT.

If A and B are finite sets and X ⊂ AZd
and Y ⊂ BZd

are subshifts such that
the shift-actions σX and σY are topologically conjugate, then X is a SFT if
and only if Y is a SFT.

1If δ is a metric on X, the diameter of an open cover U of X is supU∈U supx,y∈U δ(x, y).
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Proof. For the implication (1) ⇒ (3) it suffices to choose F as in (3.2) and
to set P = πF (X). Conversely, if X is a SFT with X = X(F,P ), then the set
F satisfies (3.3).

For every closed shift-invariant subset X ⊂ AZd
, the sequence

Xn = {x ∈ AZd
: πQ(n) ◦ σn(x) ∈ πQ(n)(X) for every n ∈ Zd}, n ≥ 1,

with Q(n) = {−n, . . . , n}d ⊂ Zd is nonincreasing and satisfies that
⋂

n≥1 Xn

= X. If X satisfies (2), then X = XN for some N ≥ 1, and hence X is a
SFT by (1). Conversely, if X is a SFT we choose F ⊂ Zd as in (3.3). For
every nonincreasing sequence (Xn) of subshifts of AZd

decreasing to X there
exists an N with πF (XN ) = πF (X) and hence with XN = X. This proves
the equivalence of (1) and (3).

For the last statement we observe that any topological conjugacy φ : X

−→ Y is a block map: there exist positive integers N1, N2 ⊂ Zd such that
φ(x)0 is completely determined by πQ(N1)(x) and φ−1(y)0 is completely
determined by πQ(N2)(y). Hence πQ(n)(φ(x)) is completely determined by
πQ(n+N1)(x) and πQ(n)(φ−1(y)) is completely determined by πQ(n+N2)(y) for
every n ≥ 0.

Suppose that X is a SFT. We set ψ = φ−1 and conclude that

πQ(n)(φ(πQ(n+N1)(ψ(πQ(n+N1+N2)(y))))) = πQ(n)(y) (3.4)

for every y ∈ Y and n ≥ 0, where we are abusing notation atrociously. For
every n ≥ 0 we set

Yn = {y ∈ BZd
: πQ(n) ◦ σn(y) ∈ πQ(n)(Y ) for every n ∈ Zd}.

The discussion above shows that ψ extends to a well-defined shift-equivariant
map ψ̄ : YN2 −→ AZd

with ψ̄(YN2) ⊃ X. As X is a SFT, there exists an
N ≥ N2 with ψ̄(Yn) = X for every n ≥ N . If ψ̄ is injective on Yn for some
n ≥ N , then Yn = Y und Y is a SFT by (1). Arguing by contradiction,
we assume that ψ̄ is noninjective on every Yn, n ≥ N . Then there exist, for
every such n, points y, y′ ∈ Yn with y0 6= y′0, but ψ̄(y) = ψ̄(y′). By choosing
n ≥ N1 + N2 we obtain a contradiction to (3.4). This completes the proof
of the last assertion. ¤

If X ⊂ AZd
is a SFT we may change the alphabet A, if necessary, and

assume that
F = F0 = {0, 1}d. (3.5)

In order to verify this we assume that X = X(F,P ) ⊂ AZd
with P ⊂ AF and

F ⊂ Q(m) = {−m, . . . , m}d for some m ≥ 1, and set Q′ = {−m, . . . , m−1}d,
A′ = πQ′(X) ⊂ AQ′ and define a continuous injective map φ : X −→ A′Z

d

by
φ(x)n = πQ′(σn

Xx)
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for every x ∈ X and n ∈ Zd. Clearly, Y = φ(X) satisfies (3.3) with F = F0

and φ ◦ σX = σY ◦ φ.
Unfortunately it is usually quite difficult (and, in general, undecidable)

to determine even the most elementary properties of X(F,P ) from the initial
data (F, P ). The most notorious of these difficulties is the following: there is
no algorithm which determines, given a finite alphabet A, a nonempty finite
set F ⊂ Zd and a nonempty set P ⊂ AF , whether the space X(F,P ) in (3.2)
is nonempty or not ([2], [36], [49]).

This undecidability problem is closely related to the existence of nonempty
shifts of finite type X(F,P ) without periodic points. Suppose for simplicity
that d = 2, F = F0 = {0, 1}2 ⊂ Z2 and P ⊂ AF . If every nonempty shift of
finite type contained a periodic point, we would have the following algorithm
for deciding whether X(F,P ) is nonempty: for every n ≥ 1, consider the set
of allowed configurations2 Pn ⊂ AQ(n), where Q(n) = {−n, . . . , n}2 ⊂ Z2.
Then we can find an n ≥ 1 for which exactly one of the following possibilities
holds: either there exists an allowed configuration y ∈ Pn which is periodic
(in the sense that the restrictions of y to the left and right (resp. top and
bottom) edges of Q(n) match), or Pn = ∅. In the former case X(F,P ) 6= ∅,
and in the latter case X(F,P ) = ∅.

For concrete examples of higher-dimensional shifts of finite type (e.g. for
those arising in statistical mechanics) it is usually easy to check that the
space is nonempty. However, the undecidability problem mentioned above
is an indication of the difficulty of obtaining general mathematical state-
ments about higher-dimensional Markov systems and shifts of finite type.
We end this discussion with a few classical examples of SFT ’s and some
open problems attached to them.

Examples 3.2. (1) The golden mean shift. The d-dimensional golden mean
(called the d-dimensional hard core model in [7]) is the subshift X ⊂ {0, 1}Zd

consisting of all configurations in which the 1’s are isolated. In other words,
X is the set of points x = (xn) ∈ {0, 1}Zd

with xn±e(i) = 0 for i = 1, . . . , d

whenever xn = 1, where e(i) is the i-th unit vector in Zd. It is easy to
see that σX is topologically mixing. Although the value of the topological
entropy htop(σX) of σX can be determined up to arbitrary precision, there
is no explicit expression for it (cf. e.g. [29]–[30]).

There are many interesting variations of this example in the literature.
Consider, for example, the subshift X ⊂ {−1, 0, 1}Zd

consisting of all config-
urations in which no 1 is adjacent to a −1 (but without any other adjacency
restrictions). According to [7], the shift-action σX has a unique measure of

2An element y = (yk,l, −n ≤ k, l ≤ n) ∈ AQ(n) is allowed if (yk,l, yk+1,l, yk,l+1, yk+1,l+1)
∈ P for every (k, l) ∈ {−n, . . . , n− 1}2.
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maximal entropy (i.e. a shift-invariant probability measure whose entropy is
equal to the topological entropy of σX). However, if we replace the alphabet
A = {−1, 0, 1} by A′ = {−N, . . . ,−1, 0, 1, . . . , N} and denote by X ′ ⊂ A′Z

2

the set of all configurations in which no positive symbol 1, . . . , N is adja-
cent to a negative symbol −1, . . . ,−N , and if N is large enough, then σX′

is thought to have exactly two invariant probability measures of maximal
entropy (cf. [7], where this property is verified for a very similar example).

(2) Chess boards. Let n ≥ 3 and d ≥ 2, and let X(n,d) be the set of all
colourings of the lattice Zd with n colours {0, . . . , n − 1} so that no two
adjacent lattice points have the same colour. For d = 2, the space X(n,2)

can be described as the set of all colourings of an infinite chessboard with n

colours in which adjacent squares are coloured differently (cf. [1], [25]). Again
one can prove without much difficulty that σX(n,d) is topologically mixing
for every n ≥ 3 and d ≥ 2. The topological entropy of σX(3,2) was calculated
by Lieb in [25]: h(σX(3,2)) = 1

2 · log 64
27 . For n ≥ 4 no explicit expression exists

for htop(σX(n,2)); the same is true for htop(σX(n,d)) with n, d ≥ 3.

(3) Dimers on a lattice. Let A = {0, 1, 2, 3}, and let X = X(F,P ) ⊂ AZ2

be defined by

F =
{

(0,1)
(0,0) (1,0)

}
⊂ Z2

P = {{ not 3
0 2 } , { 3

1 not 2 } , { not 3
2 not 2 } , { not 3

3 not 2 } , }
where ‘not j’ has the obvious meaning that we can put any symbol i 6= j

in this location. The space X = X(F,P ) is discussed in detail in [17] and
[47]: it is isomorphic to the set of all coverings of Z2 by dimers, where each
dimer covers exactly two horizontally or vertically adjacent lattice points; the
isomorphism is given by interpreting 0 and 2 as the left and right endpoints
of a horizontal dimer, and 1 and 3 as the bottom and top endpoints of a
vertical dimer. Again it is not too difficult to see that the shift-action σX of
Z2 on X is mixing. The topological entropy of σX is given by

h(σX) =
1
4
·
∫ 1

0

∫ 1

0
log (4− e2πis − e−2πis − e2πit − e−2πit) ds dt

= lim
k,l→∞

1
kl
· log

∣∣{x ∈ X : σ(k,0)x = x and σ(0,l)x = x}∣∣,
(3.6)

where the first identity in (3.6) was proved in [6] and the second in [17].

(4) Zero entropy. Here are two examples of SFT ’s with zero entropy.

(a) Let A = Z/2Z = {0, 1}, F ⊂ Z2 a nonempty finite set, and let P ⊂ AF

be the set of all configurations containing an even number of ‘1’-s. The shift
space X = X(F,P ) ⊂ (Z/2Z)Z2

is, in fact, a subgroup, which makes life
easier in many ways. For example, there is a distinguished shift-invariant



ALGEBRAIC Zd-ACTIONS 9

probability measure on X (the normalized Haar measure λX), and many
dynamical properties of σX can be determined via harmonic analysis. For
details and generalizations of this example we refer to Section 4.

(b) Let A be a finite set, and let Y = AZ be the full shift with alphabet
A. For every continuous, surjective and shift-commuting map φ : Y −→ Y

we consider the closed shift-invariant subset X = {(y(k)) ∈ Y Z : y(k+1) =
φ(y(k))} of Y Z and view X as a closed shift-invariant subset of AZ2

in the
obvious manner. It is clear that X is a SFT ; such examples are sometimes
called cellular automata (cf. [15]). The entropy of the horizontal shift σ(1,0)

is obviously equal to log |A|, but determining the entropy and various other
dynamical properties of σ(0,1) is an algorithmically undecidable problem (cf.
[16], [33]). Note that Example (a) is a cellular automaton in this sense (but
here one sees easily that h(σ(0,1)) = log 2).

Many further examples of SFT ’s can be found in [6], [7], [29], [30], [40]
and [43].

4. Algebraic Zd-actions

Whereas even apparently elementary questions about shifts of finite type
quickly lead into very deep water, there is a class of Zd-actions with a variety
of interesting properties which can be analyzed quite successfully with tools
from algebra, harmonic analysis and, of course, from dynamical systems: the
algebraic Zd-actions.

An algebraic Zd-action is an action α : n 7→ αn of Zd, d ≥ 1, by continu-
ous automorphisms of a compact abelian group X with Borel field BX and
normalized Haar measure λX . Two algebraic Zd-actions α and β on com-
pact abelian groups X and Y are algebraically conjugate if there exists a
continuous group isomorphism φ : X −→ Y with

φ · αn = βn · φ (4.1)

for every n ∈ Zd. Measurable conjugacy, factor maps and equivariance will
always be understood with respect to Haar measure.

In [20] and [41], Pontryagin duality was shown to imply a one-to-one
correspondence between algebraic Zd-actions (up to algebraic conjugacy)
and modules over the ring of Laurent polynomials Rd = Z[u±1

1 , . . . , u±1
d ] with

integral coefficients in the commuting variables u1, . . . , ud (up to module
isomorphism). In order to explain this correspondence we write a typical
element f ∈ Rd as

f =
∑

m∈Zd

fmum (4.2)
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with um = um1
1 · · ·umd

d and fm ∈ Z for every m = (m1, . . . , md) ∈ Zd, where
fm = 0 for all but finitely many m. If α is an algebraic Zd-action on a
compact abelian group X, then the additively-written dual group M = X̂

is a module over the ring Rd with operation

f · a =
∑

m∈Zd

fmα̂m(a) (4.3)

for f ∈ Rd and a ∈ M , where α̂m is the automorphism of M = X̂ dual to
αm. In particular,

um · a = α̂m(a) (4.4)

for m ∈ Zd and a ∈ M . This module M = X̂ is called the dual module of
α. Note that, for every f ∈ Rd, the group homomorphism

f(α) =
∑

n∈Zd

fnαn : X −→ X (4.5)

is dual to multiplication by f on M = X̂ (or, equivalently, that f̂(α)a = f ·a
in (4.3)). In particular, f(α) is surjective if and only if f does not lie in any
prime ideal associated3 with M .

Conversely, any Rd-module M determines an algebraic Zd-action αM on
the compact abelian group XM = M̂ with αm

M dual to multiplication by um

on M for every m ∈ Zd (cf. (4.4)). Note that XM is metrizable if and only
if the dual module M of αM is countable.

Examples 4.1. (1) Let M = Rd. Since Rd is isomorphic to the direct sum∑
Zd Z of copies of Z, indexed by Zd, the dual group X = R̂d is isomorphic to

the Cartesian product TZd
of copies of T = R/Z. We write a typical element

x ∈ TZd
as x = (xn) with xn ∈ T for every n ∈ Zd and choose the following

identification of XRd
= R̂d and TZd

: for every x ∈ TZd
and f ∈ Rd,

〈x, f〉 = e2πi
P

n∈Zd fnxn ,

where f is given by (4.2). Under this identification the Zd-action αRd
on

XRd
= TZd

becomes the shift-action

(αm
Rd

x)n = xm+n. (4.6)

3A prime ideal p ⊂ Rd is associated with an Rd-module M if

p = ann(a) = {f ∈ Rd : f · a = 0M}
for some a ∈ M . The set of all prime ideals associated with M is denoted by asc(M) and
satisfies that [

p∈asc(M)

p =
[

0 6=a∈M

ann(a).

If M is Noetherian, then asc(M) is finite. For details see [23].
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(2) Let I ⊂ Rd be an ideal and M = Rd/I. Since M is a quotient of the
additive group Rd by an α̂Rd

-invariant subgroup (i.e. by a submodule), the
dual group XM = M̂ is the closed αRd

-invariant subgroup

XRd/I = {x ∈ XRd
= TZd

: 〈x, f〉 = 1 for every f ∈ I}

=
{

x ∈ TZd
:

∑

n∈Zd

fnxm+n = 0 (mod 1)

for every f ∈ I and m ∈ Zd

}

=
⋂

f∈I

ker f(αRd
) =

m⋂

i=1

ker fi(αRd
),

(4.7)

where f1, . . . , fm is a set of generators of I, f(αRd
) is defined by (4.5) for

every f ∈ I, and αRd/I is the restriction of the shift-action αRd
in (4.6) to

the shift-invariant subgroup XRd/I ⊂ TZd
.

Conversely, let X ⊂ TZd
= R̂d be a closed subgroup, and let

X⊥ = {f ∈ Rd : 〈x, f〉 = 1 for every x ∈ X}

be the annihilator of X in R̂d. Then X is shift-invariant if and only if X⊥

is an ideal in Rd.

Remark 4.2. Equation (4.7) shows that XRd/I ⊂ TZd
is a shift of finite type

of the form (3.2), albeit with uncountable alphabet T. It is interesting to
note that XRd/I also satisfies the descending chain condition of Proposition
3.1 (2), and that this property is equivalent to the Noetherian property of
the ring Rd. More generally, if α is an algebraic Zd-action on a compact
abelian group X with dual module M , then M is Noetherian if and only
if every nonincreasing sequence X1 ⊃ X2 ⊃ X3 ⊃ · · · of closed α-invariant
subgroups of X is eventually constant. For a more detailed discussion of
these matters we refer to [42].

The correspondence between algebraic Zd-actions α = αM and Rd-mod-
ules M yields a correspondence (or ‘dictionary’) between dynamical prop-
erties of αM and algebraic properties of the module M (cf. [42]). It turns
out that some of the principal dynamical properties of αM can be expressed
entirely in terms of the prime ideals associated with the module M (cf.
Footnote 3 on the preceding page).

Table 1 provides a small illustration of this correspondence; all the rel-
evant results can be found in [42]. In the third column we assume that
the Rd-module M = X̂ defining α is of the form Rd/p, where p ⊂ Rd is
a prime ideal, and describe the algebraic condition on p equivalent to the
dynamical condition on α = αRd/p appearing in the second column. In the
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fourth column we consider a countable Rd-module M and state the algeb-
raic property of M corresponding to the property of α = αM in the second
column.

Property of α α = αRd/p α = αM

(1) α is expansive VC(p) ∩ Sd = ? M is Noetherian and αRd/p is

expansive for every p ∈ asc(M)

(2) αn is ergodic for
some n ∈ Zd

ukn − 1 /∈⊂ p for every k ≥ 1 αn
Rd/p is ergodic for every

p ∈ asc(M)

(3) α is ergodic {ukn − 1 : n ∈ Zd} 6⊂ p for
every k ≥ 1

αRd/p is ergodic for every

p ∈ asc(M)

(4) α is mixing un − 1 /∈ p for every non-zero
n ∈ Zd

αRd/p is mixing for every

p ∈ asc(M)

(5) α is mixing of
every order

Either p is equal to pRd for
some rational prime p, or
p ∩ Z = {0} and αRd/p is
mixing

For every p ∈ asc(M), αRd/p
is mixing of every order

(6) h(α) > 0 p is principal and αRd/p is
mixing

h(αRd/p) > 0 for at least one

p ∈ asc(M)

(7) h(α) < ∞ p 6= {0} If M is Noetherian: p 6= {0}
for every p ∈ asc(M)

(8) α has completely
positive entropy
(or is Bernoulli)

h(αRd/p) > 0 h(αRd/p) > 0 for every

p ∈ asc(M)

Table 1. A Pocket Dictionary

The notation in Table 1 is as follows. In (1),

VC(p) = {c ∈ (Cr {0})d : f(c) = 0 for every f ∈ p}
is the variety of p, and S = {c ∈ C : |c| = 1}. From (2)–(4) it is clear that α

is ergodic if and only if αn is ergodic for some n ∈ Zd, and that α is mixing
if and only if αn is ergodic for every nonzero n ∈ Zd. In (5), α is mixing of
order r ≥ 2 if

lim
n1,...,nr∈Zd

‖ni−nj‖→∞ for 1≤i<j≤d

λX

( r⋂

i=1

α−niBi

)
=

r∏

i=1

λX(Bi) (4.8)

for all Borel sets Bi ⊂ X, i = 1, . . . , r. In (6)–(8), h(α) = htop(α) stands
for the topological entropy of α (which coincides with the metric entropy
hλX

(α)). In [27] and [42] there is an explicit entropy formula for algebraic
Zd-actions: in the special case where α = αRd/p for some prime ideal p ⊂ Rd

this formula reduces to

h(α) =

{
| log M(f)| if p = (f) = fRd is principal,
0 otherwise,

where
M(f) =

{
exp

(∫
Sd log |f(s)| ds) if f 6= 0,

0 if f = 0,
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is the Mahler measure of the polynomial f . Here ds denotes integration
with respect to the normalized Haar measure on the multiplicative subgroup
Sd ⊂ Cd. Furthermore, h(α) = hλX

(α), and if α has completely positive
entropy, then the Haar measure is the unique measure of maximal entropy
on X.

For background, details and proofs of these and further results we refer
to [42] and the original articles cited there. Here we restrict ourselves to a
single example.

Example 4.3. Let d = 2, and let f = 4−u1−u2−u−1
1 −u−1

2 ∈ R2. Since f

is irreducible, the principal ideal (f) = fR2 ⊂ R2 is prime, and Table 1 on
the page before implies that the Z2-action α = αR2/(f) on X = XR2/(f) =

R̂2/(f) in (4.7) is mixing, nonexpansive (since (1, 1) ∈ VC(f) ∩ S2) and has
entropy

h(α) =
∫ 1

0

∫ 1

0
log (4− e2πis − e−2πis − e2πit − e−2πit) ds dt.

A glance at (3.6) shows that h(α) = 4h(σX), where σX is the dimer shift
in Example 3.2 (3). We write σ̄X : n 7→ σ2n

X for the even dimer shift and
conclude that h(α) = h(σ̄X). As α and σ̄X are Bernoulli by Table 1 and [6],
respectively, these two Z2-actions are measurably conjugate by [35], but no
explicit isomorphism between these actions is known (cf. also [46]).

5. Mixing properties of algebraic Zd-actions and additive

relations in fields

In this section we describe the connection between higher order mixing
properties of algebraic Zd-actions and certain diophantine results on additive
relations in fields due to Mahler ([28]), Masser ([31], [21]) and Schlickewei,
W. Schmidt and van der Poorten ([13], [48]).

In the discussion below we shall use the following elementary consequence
of Pontryagin duality.

Lemma 5.1. Let α be an algebraic Zd-action on a compact abelian group
X with dual module M = X̂. Then X is connected if and only if no prime
ideal p ∈ asc(M) contains a nonzero constant, and X is zero-dimensional if
and only if every p ∈ asc(M) contains a nonzero constant.

Proof. If M contains a nonzero element a of finite order n ≥ 2, say, then
〈a, x〉 is an n-th root of unity for every x ∈ X, and the map x 7→ 〈a, x〉
sends X to a finite set containing more than one element. Hence X is not
connected.

Conversely, suppose that every nonzero element of M has infinite or-
der, and that X is not connected. We fix a metric δ on X and choose
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two complementary open sets O1,O2 in X. By compactness there exists
an ε > 0 such that x + Bδ(ε) ⊂ Oi for every x ∈ Oi, i = 1, 2, where
Bδ(ε) = {y ∈ X : δ(y, 0) < ε}.

Choose an increasing sequence of finitely generated subgroups (An) in M

with
⋃

n≥1 An = M . The annihilators Yn = A⊥n form a decreasing sequence
of closed subgroups of X with

⋂
n≥1 Yn = {0}, and hence with Yn ⊂ Bδ(ε)

for all n ≥ n0, say. Our choice of ε implies that x + Yn0 ⊂ Oi for every
x ∈ Oi, i = 1, 2, and hence that the quotient group X/Yn0 is not connected.
As X̂/Yn0 = An0 is finitely generated and has no nonzero elements of finite
order, An0

∼= Zm and Ân0 = X/Yn0
∼= Tm for some m ≥ 1, which contradicts

the diconnectedness of X/Yn0 .
We have established the (well known) fact that X is disconnected if and

only if X̂ = M contains an element a 6= 0 of finite order. If the latter
condition holds we set N = Rd · a and choose a b ∈ N whose annihilator
ann(b) = {f ∈ Rd : f ·b = 0} is maximal (this is possible since the ring Rd is
Noetherian). Then p = ann(b) is a prime ideal which is obviously associated
with M and contains a nonzero constant by assumption.

Conversely, if some p ∈ asc(M) contains a nonzero constant, then M

obviously contains elements of finite order.
Essentially the same argument as above shows that the following condi-

tions are equivalent:

(i) X is zero-dimensional,
(ii) X contains no nontrivial connected subgroups,
(iii) Every element a ∈ M has finite order,
(iv) Every prime ideal p ∈ asc(M) contains a nonzero constant.

This completes the proof of the lemma. ¤

Let p ⊂ Rd be a prime ideal, and let α = αRd/p be the algebraic Zd-action
with dual module M = Rd/p = X̂. If α is not mixing (i.e. mixing of order 2
in the sense of (4.8)), then there exist Borel sets B1, B2 ⊂ X and a sequence
(nk, k ≥ 1) in Zd with limk→∞ nk = ∞ and

lim
k→∞

λX(B1 ∩ α−nkB2) = c

for some c 6= λX(B1)λX(B2). Fourier expansion implies that the latter con-
dition is equivalent to the existence of nonzero elements a1, a2 ∈ M such
that

a1 + unk · a2 = 0

for infinitely many k ≥ 1. In particular,

(um − 1) · a2 = 0 (5.1)
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for some nonzero m ∈ Zd (cf. Table 1 (4)). A very similar argument shows
that α is not mixing of order r ≥ 2 if and only if there exist elements
a1, . . . , ar in M , not all equal to zero, and a sequence ((n(1)

k , . . . ,n(r)
k ), k ≥ 1)

in (Zd)r with limk→∞ ‖n(i)
k − n(j)

k ‖ = ∞ for all i, j with 1 ≤ i < j ≤ r, such
that

un
(1)
k · a1 + · · ·+ un

(r)
k · ar = 0 (5.2)

for every k ≥ 1.
Below we shall see that higher order mixing of an algebraic Zd-action α

on a compact abelian group X can break down in a particularly regular way
(cf. Examples 7.1). We call a nonempty finite subset S ⊂ Zd mixing for α if

lim
k→∞

λX

( ⋂

n∈S

α−knBn

)
=

∏

n∈S

λX(Bn) (5.3)

for all Borel sets Bn ⊂ X, n ∈ S, and nonmixing otherwise. A set S ⊂ Zd

is minimal nonmixing if it is nonmixing, but every nonempty subset S′ ( S

is mixing.
As in (5.2) one sees that a nonempty finite set S ⊂ Zd is nonmixing if

and only if there exist elements an ∈ M, n ∈ S, not all equal to zero, such
that ∑

n∈S

ukn · an = 0 for infinitely many k ≥ 1. (5.4)

The next theorem shows that the higher order mixing behaviour of an
algebraic Zd-action α with dual module M is again completely determined
by that of the actions αRd/p with p ∈ asc(M) (cf. Table 1 (4)–(5), [21] and
[45]).

Theorem 5.2. Let α be an algebraic Zd-action on a compact abelian group
X with dual module M = X̂.

(1) For every r ≥ 2, the following conditions are equivalent:
(a) α is r-mixing (i.e. mixing of order r),
(b) αRd/p is r-mixing for every p ∈ asc(M).

(2) For every nonempty finite set S ⊂ Zd, the following conditions are
equivalent:
(a) S is α-mixing,
(b) S is αRd/p-mixing for every p ∈ asc(M).

For the proof of Theorem 5.2 we have to introduce a little bit of algebraic
terminology. Let p ⊂ Rd be a prime ideal. An Rd-module M is associated
with p if p is the only prime ideal associated with M (cf. Footnote 3 on
page 10). A submodule W of an Rd-module M is p-primary (or p belongs to

W ) if M/W is associated with p. If the module M is Noetherian (which we
assume throughout the remainder of this discussion), then the set asc(M) =
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{p1, . . . , pm} of prime ideals associated with M is finite. By [23, Theorem
VI.5.3] there exist pi-primary submodules Wi ⊂ M, i = 1, . . . , m, with the
following properties:

(1) The primes pi belonging to the submodules Wi are all distinct;
(2) W1 ∩ · · · ∩Wm = {0};
(3) For every subset S ( {1, . . . , m}, ⋂

i∈S Wi 6= {0}.
A family {W1, . . . , Wm} of primary submodules satisfying these conditions
is called a reduced primary decomposition of M .

If q ⊂ Rd is a prime ideal and W a Noetherian Rd-module associated with
q, then [42, Proposition 6.1] states that there exist integers 1 ≤ t ≤ s and
submodules {0} = N0 ⊂ · · · ⊂ Ns = W such that, for every i = 1, . . . , s,
Ni/Ni−1

∼= Rd/qi for some prime ideal qi containing q, qi = q for i = 1, . . . , t,
and qi ) q for i = t + 1, . . . , s.

Proof of Theorem 5.2. Suppose that α is r-mixing. If p ⊂ Rd is a prime
ideal associated with M , then p = ann(a) = {f ∈ Rd : f · a = 0} for some
a ∈ M , and we set N = Rd · a ⊂ M . Then N ∼= Rd/p and Y = N̂ = X/N⊥.
Since N is invariant under the Zd-action α̂ : n 7→ α̂n dual to α, N⊥ is a
closed α-invariant subgroup of X, and the Zd-action αY induced by α on Y

is a factor of α and hence r-mixing. Since the dual module of αY is equal to
Ŷ = N ∼= Rd/p we conclude that αRd/p must be r-mixing.

Conversely, if α is not r-mixing, then (5.2) shows that there exist a non-
zero element (a1, . . . , ar) ∈ M r and a sequence (nk = (n(1)

k , . . . ,n(r)
k ), k ≥ 1)

in (Zd)r such that n(1)
k = 0 for every k ≥ 1, limk→∞ n(j)

k − n(i)
k = ∞ for

1 ≤ i < j ≤ r, and un
(1)
k · a1 + · · · + un

(r)
k · ar = 0 for every k ≥ 1. There

exists a Noetherian submodule N ⊂ M such that {a1, . . . , ar} ⊂ N , and
(5.2) implies that the Zd-action αN , which is a factor of α, is not r-mixing.

Since N is Noetherian, the set of prime ideals associated with N is fi-
nite and equal to {p1, . . . , pm}, say, and we choose a corresponding reduced
primary decomposition W1, . . . ,Wm of N . The map a 7→ (a + W1, . . . , a +
Wm) from N into K =

⊕m
i=1 N/Wi is injective, and the dual homomorphism

from X̄ = K̂ to N̂ = XN is surjective. Hence αN is a factor of αK , so that
αK cannot be r-mixing. By applying (5.2) to the Rd-module K we see that
there exists a j ∈ {1, . . . , m} such that αN/Wj

is not r-mixing.
Put V = N/Wj , p = pj , and choose integers 1 ≤ t ≤ s and submodules

V = Ns ⊃ · · · ⊃ N0 = {0} such that, for every k = 1, . . . , s, Nk/Nk−1
∼=

Rd/qk for some prime ideal p ⊂ qk ⊂ Rd, qk = p for k = 1, . . . , t, and
qk ) p for i = t + 1, . . . , s. We choose Laurent polynomials gk ∈ qk r
p, k = t + 1, . . . , s, and set g = gt+1 · · · gs. Since αV is not r-mixing, (5.2)
implies the existence of a non-zero element (a1, . . . , ar) ∈ V r and a sequence
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(n(k) = (n(1)
k , . . . ,n(r)

k ), k ≥ 1) in (Zd)r such that n(1)
k = 0 for every k ≥ 1,

limk→∞ n(j)
k −n(i)

k = ∞ for 1 ≤ i < j ≤ r, and un
(1)
k · a1 + · · ·+ un

(r)
k · ar = 0

for every k ≥ 1. Put bi = g · ai, and note that 0 6= (b1, . . . , br) ∈ (Nt)r, since
g · a 6= 0 for every non-zero element a ∈ V . There exists a unique integer
l ∈ {1, . . . , t} such that (b1, . . . , br) ∈ (Nl)r r (Nl−1)r, and by setting b′i =
bi +Nl−1 ∈ Nl/Nl−1

∼= Rd/p we obtain that 0 6= (b′1, . . . , b
′
r) ∈ (Nl/Nl−1)r ∼=

(Rd/p)r and un
(1)
k ·b′1 + · · ·+un

(r)
k ·b′r = 0 for every k ≥ 1, so that αRd/p is not

r-mixing by (5.2). Since the prime ideal p is associated with the submodule
N ⊂ M , p is also associated with M , and (1) is proved. The proof of (2) is
identical, except that we use (5.4) instead of (5.2). ¤

6. Mixing properties of Zd-actions on connected groups

In order to exhibit the connection between mixing properties and additive
relations in fields we begin with a theorem by Mahler.

Theorem 6.1 ([28]). Let K be a field of characteristic 0, r ≥ 2, and
let x1, . . . , xr be nonzero elements of K. If we can find nonzero elements
c1, . . . , cr such that the equation

r∑

i=1

cix
k
i = 0

holds for infinitely many k ≥ 0, then there exist integers s ≥ 1 and i, j with
1 ≤ i < j ≤ r such that xs

i = xs
j.

Theorem 6.1 implies the following statement.

Corollary 6.2 ([39]). Let α be a mixing algebraic Zd-action on a compact
connected abelian group X. Then every nonempty finite subset S ⊂ Zd is
mixing.

Proof of Corollary 6.2, given Theorem 6.1. Since X is connected, none of
the prime ideals p ∈ asc(M) contains a nonzero constant by Lemma 5.1.
Furthermore, if a nonempty finite S ⊂ Zd is nonmixing for α, then it is
also nonmixing for some αRd/p, p ∈ asc(M), by Theorem 5.2. In order to
prove Corollary 6.2 it will thus suffice to show that none of the Zd-actions
αRd/p, p ∈ asc(M), has a nonmixing set.

We fix p ∈ asc(M) and conclude from Table 1 (4) that un − 1 /∈ p for
every nonzero n ∈ Zd. If we denote by K = Q(Rd/p) ⊃ Rd/p the field of
fractions of the integral domain Rd/p and set xn = un + p ∈ K for every
n ∈ Zd, then our mixing hypothesis implies that the multiplicative group
{xn : n ∈ Zd} ⊂ K× = K r {0} is isomorphic to Zd, i.e. that all the
xn, n ∈ Zd, are distinct.
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Suppose that a nonempty finite set S ⊂ Zd is αRd/p-nonmixing. Equation
(5.4) translates into the existence of elements cn ∈ K, n ∈ S, not all equal
to zero, such that ∑

n∈S

cnxk
n = 0

for infinitely many k ≥ 0. By Theorem 6.1 there exist distinct elements
m,n ∈ S and a positive integer s with xs

m = xs
n, and hence with usm−usn =

usn(us(m−n) − 1) ∈ p. This violates our earlier assertion that uk − 1 /∈ p for
every nonzero k ∈ Zd, and the resulting contradiction proves that there are
no nonmixing sets for αRd/p and hence for α. ¤

If an algebraic Zd-action α is not mixing of every order, then there exists
a smallest integer r ≥ 2 such that α is not r-mixing. As a consequence
of Lemma 5.1 and (5.2) one obtains the equivalence of Theorem 6.3 and
Corollary 6.4 below.

Theorem 6.3 ([13], [48]). Let K be a field of characteristic 0 and G a
finitely generated multiplicative subgroup of K× = K r {0}. If r ≥ 2 and
(c1, . . . , cr) ∈ (K×)r, then the equation

r∑

i=1

cixi = 1 (6.1)

has only finitely many solutions (x1, . . . , xr) ∈ Gr such that no sub-sum of
(6.1) vanishes.

Corollary 6.4 ([45]). Let α be a mixing algebraic Zd-action on a compact
connected abelian group X. Then α is mixing of every order.

Proof of Corollary 6.4, given Theorem 6.3. As in the proof of Corollary 6.2
we may assume without loss in generality that α = αRd/p for some prime
ideal p ⊂ Rd. Using the same notation as in that proof, we denote by K =
Q(Rd/p) the field of fractions of Rd/p, set xn = un + p ∈ Rd/p ⊂ K for
every n ∈ Zd, and observe that the multiplicative subgroup G = {xn : n ∈
Zd} ⊂ K× is isomorphic to Zd.

Suppose that α is mixing of order r ≥ 2, but not of order r+1. According
to (5.2) there exist elements a1, . . . , ar ∈ K, not all equal to zero, and a
sequence ((n(1)

k , . . . ,n(r)
k ), k ≥ 1) in (Zd)r with limk→∞ ‖n(i)

k − n(j)
k ‖ = ∞

for all i, j with 1 ≤ i < j ≤ r, such that
r∑

i=1

aixn
(i)
k

= 1

for every k ≥ 1. Our hypothesis that α is r-mixing has two consequences:

(i) each ai is nonzero,
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(ii) for every nonempty subset F ( {1, . . . , r}, the set of all k ≥ 1 with
∑

i∈F

aixn
(i)
k

= 0

is finite.

After removing finitely many terms from the sequence ((n(1)
k , . . . ,n(r)

k ), k ≥
1), if necessary, we obtain infinitely many distinct solutions (x1, . . . , xr) ∈ Gr

of the equation (6.1) without vanishing sub-sums, which contradicts The-
orem 6.3. This shows that α has to be mixing of every order. ¤

The ‘absolute’ version of the S-unit theorem in [13] contains a bound
on the number of solutions of (6.1) without vanishing subsums which is
expressed purely in terms of the integer r and the rank of the group G (in
our setting: the rank of the group Zd). This bound implies uniform speed
of r-fold mixing for all mixing algebraic Zd-actions on compact connected
abelian groups which are of the form α = αRd/p for some prime ideal p ⊂ Rd.

7. Mixing properties of Zd-actions on totally disconnected

groups

For algebraic Zd-actions on disconnected groups the higher order mixing
behaviour is complicated by the possible presence of nonmixing sets.

In the following discussion we assume that p > 1 is a rational prime,
denote by R

(p)
d = (Z/pZ)[u±1

1 , . . . , u±1
d ] the ring of Laurent polynomials in

u1, . . . , ud with coefficients in the prime field Fp = Z/pZ and write every
f ∈ R

(p)
d as f =

∑
n∈Zd fnun with fn ∈ Fp for every n ∈ Zd. For every

f =
∑

n∈Zd fnun ∈ Rd we denote by

f/p =
∑

n∈Zd

(fn (mod p))un ∈ R
(p)
d (7.1)

the Laurent polynomial obtained by reducing each coefficient of f modulo
p. For every ideal I ⊂ R

(p)
d , Ī = {f ∈ Rd : f/p ∈ I} is an ideal in Rd, and

R
(p)
d /I ∼= Rd/Ī. Furthermore, Ī ⊂ Rd is a prime ideal if and only if I ⊂ R

(p)
d

is a prime ideal.

The additive group R
(p)
d can be identified with the dual group ̂(Z/pZ)Zd

of (Z/pZ)Zd
by setting

〈h, ω〉 = e2πi(
P

n∈Zd hnωn)/p

for every h ∈ R
(p)
d and ω ∈ (Z/pZ)Zd

. With this identification the shift
σm : (Z/pZ)Zd −→ (Z/pZ)Zd

is dual to multiplication by um on R
(p)
d , and

h(σ) is dual to multiplication by h on R
(p)
d for every h ∈ R

(p)
d (cf. (4.5)).
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If q ⊂ R
(p)
d is an ideal with generators {h(1), . . . , h(k)}, then we can rewrite

(4.7) as

R̂
(p)
d /q = X

R
(p)
d /q = {ω ∈ (Z/pZ)Zd

: 〈h, ω〉 = 1 for every h ∈ q}

=
⋂

h∈q
ker(h(σ)) =

k⋂

i=1

ker(h(i)(σ)),

(7.2)

and
α

R
(p)
d /q = σX

R
(p)
d

/q
(7.3)

is the restriction of the shift-action σ to X
R

(p)
d /q ⊂ (Z/pZ)Zd

.

Examples 7.1. (1) This is a special case of Example 3.2 (4) (a) with F =
{(0, 0), (1, 0), (0, 1)}, presented in algebraic language, and called Ledrappier’s
example after its first appearance in [24]. Let p = (2, 1 + u1 + u2) = 2R2 +
(1 + u1 + u2)R2, M = R2/p, and let α = αM be the algebraic Z2-action on
X = XM = M̂ defined in Example 4.1 (2). Then α is mixing by Table 1 (4),
but the set S = {(0, 0), (1, 0), (0, 1)} ⊂ Z2 is nonmixing.

Indeed, (1 + u1 + u2)2
n · a = 0 for every n ≥ 0 and a ∈ M . For a =

1 + (2, 1 + u1 + u2) ∈ M our identification of M with X̂ in Example 4.1 (2)
implies that x(0,0) +x(2n,0) +x(0,2n) = 0 (mod 1) for every x ∈ X and n ≥ 0.
For B = {x ∈ X : x(0,0) = 0} it follows that

B ∩ α−(2n,0)(B) ∩ α−(0,2n)(B) = B ∩ α−(2n,0)(B),

and hence that

λX(B ∩ α−(2n,0)(B) ∩ α−(0,2n)(B)) = λX(B ∩ α−(2n,0)(B)) = 1/4

for every n ≥ 0. If the set S = {(0, 0), (1, 0), (0, 1)} ⊂ Z2 were α-mixing, we
would have that

lim
n→∞λX(B ∩ α−(2n,0)(B) ∩ α−(0,2n)(B)) = λX(B)3 = 1/8.

By comparing this with (5.3) we see that S is indeed nonmixing.

(2) In order to generalize Example (1) we fix an ideal I ⊂ R
(p)
d and observe

as in Example (1) that the support

S(h) = {n ∈ Zd : hn 6= 0} (7.4)

of every nonzero h ∈ I is a nonmixing set for α
R

(p)
d /I

.

The two following examples show that nonmixing sets can also arise in a
much less obvious manner.

(3) ([21]) Let f = 1 + u1 + u2 + u2
1 + u1u2 + u2

2 ∈ R
(2)
2 , and let p = (f) =

fR
(2)
2 ⊂ R

(2)
2 . Since f is irreducible, p is a prime ideal. We set α = α

R
(2)
2 /p

and X = X
R

(2)
2 /p (cf. (7.2)–(7.3)).
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A direct calculation shows that
(u1 + u2) + (1 + u2)u1 + (1 + u1)u2 = 0,

(1 + u1)3 = (1 + u2)3 = (u1 + u2)3 (mod p).
(7.5)

By raising the first of these equations to the fourth power and substituting
terms according to the second equation we obtain that

0 = (u1 + u2)4 + (1 + u2)4u4
1 + (1 + u1)4u4

2

= (u1 + u2)4 + (1 + u2)(u1 + u2)3u4
1 + (1 + u1)(u1 + u2)3u4

2 (mod p).

It follows that

(u1 + u2) + (1 + u2)u4
1 + (1 + u1)u4

2 ∈ p,

and by repeating this argument we see that

(u1 + u2) + (1 + u2)u4k

1 + (1 + u1)u4k

2 ∈ p (7.6)

for every k ≥ 0. A glance at (5.4) reveals that we have proved that the set
S = {(0, 0), (1, 0), (0, 1)} is α-nonmixing, although it is not the support of
any element of p.

Theorem 7.3 below will explain what is going on here: if we choose a
primitive third root of unity in F̄2, the algebraic closure of the prime field
F2, and set F4 = F2[ω], then the polynomial f ∈ F2[u±1

1 , u±1
2 ] is no longer

irreducible in the ring F4[u±1
1 , u±1

2 ]:

1 + u1 + u2 + u2
1 + u1u2 + u2

2 = (1 + ωu1 + ω2u2)(1 + ω2u1 + ωu2).

For every h ∈ R
(2)
2 we set [h] = h+ p ∈ R

(2)
2 /p. If K = Q(R(2)

2 /p) is the field
of fractions of the integral domain R

(2)
2 /p, then the second equation in (7.5)

is equivalent to saying that ω = [1+u2]
[u1+u2] is a primitive third root of unity in

K and hence that K ⊃ F4. Equation (7.6) translates as

1 + ω4k
[u1]4

k
+ (ω2)4

k
[u2]4

k
= 1 + ω[u1]4

k
+ ω2[u2]4

k
= 0

for every k ≥ 0.

(4) ([21]) Let f = 1 + u1 + u2 + u2
1 + u1u2 + u2

2 + u3
1 + u2

1u2 + u1u
2
2 + u3

2 ∈
R

(2)
2 , g = 1 + u1 + u2 ∈ R

(2)
2 , p = (f) ⊂ R

(2)
2 , q = (g) ⊂ R

(2)
2 , and let

α = α
R

(2)
2 /p = αR2/p̄ and X = X

R
(2)
2 /(f)

= XR2/p̄ as in Example (3). We

claim that the set S = {(0, 0), (1, 0), (0, 1)} is nonmixing for α.
In contrast to Example (3), the polynomial f is irreducible not only in

R
(2)
2 , but also in F̄2[u±1

1 , u±1
2 ], i.e. f is absolutely irreducible. However,

f(u3
1, u

3
2) = 1 + u3

1 + u3
2 + u6

1 + u3
1u

3
2 + u6

2 + u9
1 + u6

1u
3
2 + u3

1u
6
2 + u9

2 = gh

for some h ∈ R
(2)
2 .

We denote by K = Q(R(2)
2 /p) and L = Q(R(2)

2 /q) the fields of fractions of
the integral domains R

(2)
2 /p and R

(2)
2 /q, respectively, and set [h] = h + q ∈
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R
(2)
2 /q ⊂ L for every h ∈ R

(2)
2 . The ring homomorphism η : R

(2)
2 −→ L,

defined by setting η(ui) = [u3
i ] = [ui]3 ∈ R

(2)
2 /q ⊂ L for i = 1, 2, satisfies

that ker η = p = (f). Hence η induces an embedding η′ : K −→ L of K as a
subfield K ′ = η′(K) ⊂ L.

By assumption, 1 + [u1]2
k

+ [u2]2
k

= 0 in L for every k ≥ 0. As 22k = 1
(mod 3) for every k ≥ 0, the sequence of integers lk = 22k−1

3 , k ≥ 0, satisfies
that

1 + [u1]2
2k

+ [u2]2
2k

= 1 + [u3
1]

lk [u1] + [u3
2]

lk [u2] = 0

for every k ≥ 0. This shows that the nonzero vector v = (1, [u1], [u2]) is or-
thogonal to all the vectors wk = (1, [u3

1]
lk , [u3

2]
lk), k ≥ 0, in L3. As wk ∈ K ′3

for every k ≥ 0, there also exists a nonzero vector v′ = (a, b, c) ∈ K ′3 which
is orthogonal to every wk. After identifying K ′ with K and multiplying out
denominators we obtain a nonzero vector (a′, b′, c′) ∈ (R(2)

2 /p)3 such that

a′ + ulk
1 · b′ + ulk

2 · c′ = 0

in R
(2)
2 /p for every k ≥ 0. According to (5.4) this shows that the set S =

{(0, 0), (1, 0), (0, 1)} is indeed nonmixing for α.

In contrast to the connected case, all zero entropy algebraic Zd-actions
on zero-dimensional compact abelian groups have nonmixing sets.

Theorem 7.2. A mixing algebraic Zd-action α on a totally disconnected
compact abelian group X has nonmixing sets (and is thus not mixing of
every order) if and only if it is not Bernoulli.

Proof. Theorem 5.2 shows that α has no nonmixing sets if and only if the
same is true for each αRd/p, p ∈ asc(M), where M = X̂ is the dual module
of α.

As X is zero-dimensional, every p ∈ asc(M) contains a rational prime
p = p(p) > 0 by Lemma 5.1. If some p ∈ asc(M) is principal, then it is of
the form p = p(p)Rd, αRd/p is the shift action of Zd on the full shift space
XRd/p = (Z/p(p)Z)Z , h(αRd/p) = log p(p) > 0, and αRd/p is mixing of every
order.

If the ideal p ∈ asc(M) is nonprincipal, we set q = {f/p(p) : f ∈ p} ⊂
R

(p(p))
d and observe that q 6= {0} and αRd/p = α

R
(p(p))
d /q. Example 7.1 (2)

shows that the support S(h) of every nonzero Laurent polynomial h ∈ q is
a nonmixing set for αRd/p = α

R
(p(p))
d /q and hence, by Theorem 5.2, for α.

If α is Bernoulli, then Table 1 (8) implies that every p ∈ asc(M) is
principal, and Theorem 5.2 and the discussion above show that α is mixing
of every order. If α is not Bernoulli, at least one p ∈ asc(M) is nonprincipal,
and α therefore has nonmixing sets. ¤
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The description of the nonmixing sets of an algebraic Zd-action α is fa-
cilitated by a Theorem of Masser ([21], [31]), which should be seen as an
analogue of Theorem 6.1 in positive characteristic.

Theorem 7.3. Let K be an algebraically closed field of characteristic p > 0,
r ≥ 2, and let (x1, . . . , xr) ∈ (K×)r. The following conditions are equivalent:

(1) There exists a a nonzero element (c1, . . . , cr) ∈ Kr such that
r∑

i=1

cix
k
i = 0

for infinitely many k ≥ 0;
(2) There exists a rational number s > 0 such that the set {xs

1, . . . , x
s
r}

is linearly dependent over the algebraic closure F̄p ⊂ K of the prime
field Fp = Z/pZ.

Corollary 7.4. Let p ⊂ Rd be a prime ideal containing a rational prime
p > 1, and let α = αRd/p be the algebraic Zd-action on X = XRd/p defined in
Example 4.1 (2). We denote by K = Q(Rd/p) ⊃ Rd/p the field of fractions
of the integral domain Rd/p, write K̄ for its algebraic closure, and set xn =
un + p ∈ Rd/p ⊂ K ⊂ K̄ for every n ∈ Zd. If S ⊂ Zd is a nonempty finite
set, then the following conditions are equivalent:

(1) S is not α-mixing;
(2) There exists a rational number s > 0 such that the set {xs

n : n ∈
S} ⊂ K̄ is linearly dependent over F̄p ⊂ K̄.

Proof of Corollary 7.4, given Theorem 7.3. If a nonempty finite subset S ⊂
Zd is not mixing for α, then (5.4) implies that there exist elements {an : n ∈
S} in Rd/p, not all equal to zero, and infinitely many k ≥ 1 such that

∑

n∈S

ukn · an = 0.

If we set xn = un + p ∈ Rd/p ⊂ K for every n ∈ S, we obtain Condition (1)
in Theorem 7.3 and hence Condition (2) in our corollary.

Conversely, if {xs
n : n ∈ S} is linearly dependent over F̄p for some rational

number s > 0, then we obtain a nontrivial equation of the form
∑

n∈S

ωnxs
n = 0

with ωn ∈ F̄p for every n ∈ S. By Theorem 7.3 there exists a nonzero
element (cn, n ∈ S) ∈ K̄S with

∑

n∈S

cnxk
n = 0
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for infinitely many k ≥ 0. Hence there exists a nonzero element (c′n, n ∈
S) ∈ KS with ∑

n∈S

c′nxk
n = 0

for infinitely many k ≥ 0, and after clearing denominators we obtain a
nonzero element (an, n ∈ S) ∈ (Rd/p)S with

∑

n∈S

ukn · an = 0

for infinitely many k ≥ 0. This shows that the set S is α-nonmixing. ¤

In order to understand the dynamical implications of Corollary 7.4 we
return to the Examples 7.1 on page 20.

Examples 7.5. (1) In Example 7.1 (2) we used the fact that f = 1 + u1 +
u2 + u2

1 + u1u2 + u2
2 ∈ R

(2)
2 is irreducible over F2, but not over F̄2. We

define p = (f) ⊂ R
(2)
2 as in that example, set R

(4)
2 = F4[u±1

1 , u±1
2 ] and put

q = (1 + ωu1 + ω2u2) ⊂ R
(4)
2 . If ι : R

(2)
2 −→ R

(4)
2 is the inclusion map and

π : R
(4)
2 7→ R

(4)
2 /q the quotient map, then ker(π ◦ ι) = p, and the map π ◦ ι

induces an embedding of the field of fractions K = Q(R(2)
2 /p) in the field of

fractions L = Q(R(4)
2 /p). As we saw in Example 7.1 (2),

1 + ωu22k

1 + ω2u22k

2 = 0

in L for every k ≥ 0, i.e the vector (1, ω, ω2) ∈ L3 is orthogonal to (1, u22k

1 ,

u22k

2 ) ∈ K ⊂ L for every k ≥ 0. Hence there exists an nonzero v ∈ K3

which is orthogonal to every (1, u22k

1 , u22k

2 ), and v = (u1 + u2, 1 + u2, 1 + u1)
amounts to an explicit choice of such a vector.

The injection η̂ : R
(2)
2 /p −→ R

(4)
2 /p induced by the map π ◦ ι : R

(2)
2 −→

R
(4)
2 /q above embeds the R2-module M = R

(2)
2 /p as a submodule of in-

dex 2 in the R2-module N = R
(4)
2 /q. The corresponding dual factor map

η : XN −→ XM sends α = αM to β = αN and is two-to-one. We shall return
to these two algebraic Z2-actions in Example 8.21 on page 45.

(2) In the notation of Example 7.1 (4) we set p = (f) ⊂ R
(2)
2 , q = (g) ⊂

R
(2)
2 , α = α

R
(2)
2 /p, X = X

R
(2)
2 /p = R̂

(2)
2 /p, β = α

R
(2)
2 /q and Y = X

R
(2)
2 /q =

R̂
(2)
2 /q. We put Γ = 3Z3 and write πΓ : Y −→ (Z/2Z)Γ for the projection

onto the coordinates in Γ. By identifying Γ with Z2 we view πΓ(Y ) as a
closed shift-invariant subgroup of (Z/2Z)Z2

, and a little calculation shows
that πΓ(Y ) = X and that πΓ : Y −→ X is two-to-one.

The set S = {(0, 0), (1, 0), (0, 1)} ⊂ Z2 is obviously β-nonmixing. We write
βΓ : n 7→ β3n for the Γ-action obtained from β by restriction and observe
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that the two-to-one factor map πΓ : Y −→ X sends βΓ to α. Furthermore,
the set S is also βΓ-nonmixing, and this property of S survives under the
factor map πΓ : Y −→ X (this is the essence of the calculation in Example
7.1 (4)).

If an algebraic Zd-action α is r-mixing, then every set S ⊂ Zd with car-
dinality |S| ≤ r is obviously mixing. The converse is far from obvious: if α is
not mixing of order r ≥ 2, and if r is the smallest integer with this property,
does there exist a nonmixing set S ⊂ Zd of size r? Remarkably, this turns
out to be the case, as a consequence of a second theorem by Masser.

Theorem 7.6 ([32]). Let α be an algebraic Zd-action on a compact abelian
group X, and let r ≥ 2. If every subset S ⊂ Zd of cardinality r is mixing,
then α is r-mixing.

In order to explain the connection between Theorem 7.6 and an appro-
priate analogue of Theorem 6.3 we need a definition.

Definition 7.7. Let G be a multiplicative abelian group and n a posit-
ive integer. An infinite subset Ξ ⊂ Gn is broad if it satisfies the following
conditions.

(1) If g ∈ G and 1 ≤ i ≤ n, then there are at most finitely many
(ξ1, . . . , ξn) ∈ Ξ with ξi = g;

(2) If n ≥ 2, g ∈ G and 1 ≤ i < j ≤ n, then there are at most finitely
many (ξ1, . . . , ξn) ∈ Ξ with ξi/ξj = g.

Theorem 7.8 ([32]). Let K be a field of characteristic p > 1 and G ⊂ K×

a finitely generated subgroup. Suppose that n ≥ 1, and that the equation

a1x1 + · · ·+ anxn = 1 (7.7)

has a broad set of solutions (x1, . . . , xn) ∈ Gn for some (a1, . . . , an) ∈ (K×)n.
Then there exist a positive integer m ≤ n and elements (b1, . . . , bm) ∈
(K×)m, (g1, . . . , gm) ∈ Gm, with the following properties.

(1) gi 6= 1 for i = 1, . . . , m;
(2) gi/gj 6= 1 for 1 ≤ i < j ≤ m;
(3) There exist infinitely many k ≥ 1 with

b1g
k
1 + · · ·+ bmgk

m = 1. (7.8)

Proof of Theorem 7.6, given Theorem 7.8. The translation of Theorem 7.6
into Theorem 7.8 works exactly as in Corollary 7.4. If α is an algebraic Zd-
action on a compact abelian group X which is not mixing of order r ≥ 2, and
if r is the smallest integer with this property, then Theorem 5.2 guarantees
the existence of a prime ideal p associated with the dual module M = X̂ of
α such that αRd/p is not r-mixing.
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If r = 2, Table 1 (4) implies that un − 1 ∈ p for some nonzero n ∈ Zd.
Hence ukn − 1 ∈ p and a − ukn · a = 0 for every k ≥ 0 and a ∈ Rd/p, and
(5.4) shows that the set S = {0,n} ⊂ Zd is nonmixing for αRd/p and hence,
by Theorem 5.2, for α.

If r > 2 we denote by K the field of fractions of the integral domain
Rd/p, embed Rd/p in K in the obvious manner, and write G ⊂ K× for
the multiplicative group generated by {xn = un + p : n ∈ Zd}. Since
αRd/p is mixing, G ∼= Zd by Table 1 (4). Equation (5.2) shows that there
exist elements a1, . . . , ar ∈ Rd/p, not all equal to zero, and a sequence
((n(1)

k , . . . ,n(r)
k ), k ≥ 1) in (Zd)r such that limk→∞ ‖n(i)

k − n(j)
k ‖ = ∞ for

all i, j with 1 ≤ i < j ≤ r, and

un
(1)
k · a1 + · · ·+ un

(r)
k · ar = 0

for every k ≥ 1. The minimality of r implies that the ai are all nonzero, and
we may obviously assume in addition that n(r)

k = 0 for every k ≥ 1.

We set ξk = (ξ(1)
k , . . . , ξ

(r−1)
k ) = (un

(1)
k +p, . . . , un

(r−1)
k +p) ∈ Gr−1 for every

k ≥ 1. Then Ξ = {ξk : k ≥ 1} is a broad set of solutions of the equation
a1

ar
x1 + · · ·+ ar−1

ar
xr−1 = 1.

Theorem 7.8 yields a positive integer m ≤ r− 1 and elements (b1, . . . , bm) ∈
(K×)m, (g1, . . . , gm) ∈ Gm, with the properties listed there, such that

b1g
k
1 + · · ·+ bmgk

m = 1

for infinitely many k ≥ 1. Since each gi = uti + p for some unique nonzero
ti ∈ Zd we obtain after clearing denominators that

ukt1 · b′1 + · · ·+ uktm · b′m = b′m+1

for some nonzero elements b′i ∈ Rd/p and infinitely many k ≥ 1. An ap-
plication of (5.4) shows that the set S = {0, t1, . . . , tm} is nonmixing for
αRd/p and hence, by Theorem 5.2, for α. The minimality of r implies that
|S| = m + 1 = r. This completes the proof of the theorem. ¤

In order to appreciate the difficulty in proving Theorem 7.6 one should
once again consider Ledrappier’s Example 7.1 (1). As we saw there, the set
S = {(0, 0), (1, 0), (0, 1)} is nonmixing (and obviously minimal) for the Z2-
action α = α

R
(2)
2 /(f)

defined in that example. However, for every k0, k1, k2, k3

≥ 0 with 2k0 > 2k1 + 2k2 + 2k3 , say, the set

Sk0,k1,k2,k3 = {(2k1 , 0), (0, 2k1), (2k0 − 2k2 , 0), (2k0 − 2k2 , 2k2),

(0, 2k0 − 2k3), (2k3 , 2k0 − 2k3)}
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is also minimal nonmixing: it is the support of the polynomial

gk0,k1,k2,k3 = (1 + u1 + u2)2
k0 + (1 + u1 + u2)2

k1 + u2k0−2k2

1 (1 + u1 + u2)2
k2

+ u2k0−2k3

2 (1 + u1 + u2)2
k3 ∈ p.

By choosing appropriate increasing sequences k
(n)
i , n ≥ 1, i = 0, . . . , 3, we

obtain minimal nonmixing sets Sn = S
k
(n)
0 ,k

(n)
1 ,k

(n)
2 ,k

(n)
3

, n ≥ 1, of varying
shapes without any resemblance to linear multiples of a single nonmixing
set S′ ⊂ Z2. Nevertheless one can extract sufficient information from any
such sequence to obtain a nonmixing set for α; for details we refer to [32].

Theorem 7.6 reduces the problem of determining the order of mixing to
finding nonmixing sets of smallest cardinality. However, even with Corollary
7.4 at hand, the latter problem remains nontrivial: I am not aware of any
good general algorithm for determining polynomials with minimal support
in a given ideal. The following list, taken from [42], illustrates a much easier
problem which can be solved effectively with Corollary 7.4: it shows all
irreducible polynomials f ∈ R

(2)
2 of degree ≤ 4 in each of the variables u1, u2,

such that the set S = {(0, 0), (1, 0), (0, 1)} is nonmixing for α
R

(2)
2 /(f)

. For

convenience we adopt a (hopefully self-explanatory) graphical representation
of the supports of these polynomials as subsets of Z2. We start with the
polynomials of degree ≤ 2.

•• • (corresponding to the polynomial 1 + u1 + u2),

•◦ •• • • ,
•• •• ◦ • ,

•• ◦• • • ,
•• •• • • ,

(corresponding to the polynomials 1 + u1 + u2
1 + u1u2 + u2

2, 1 + u2
1 + u2 +

u1u2 + u2
2, 1 + u1 + u2

1 + u2 + u2
2 and 1 + u1 + u2

1 + u2 + u1u2 + u2
2).

There are 18 irreducible polynomials f ∈ R
(2)
2 of degree 3 such that S is

non-mixing for α
R

(2)
2 /(f)

. The supports of these polynomials are as follows.

•• ◦• ◦ •• ◦ • •
,

•• •• ◦ ◦• • ◦ •
,

•• •◦ ◦ ◦• • • •
,

•• •◦ ◦ •• ◦ • •
,

•• ◦◦ • •• ◦ • •
,

•• ◦◦ ◦ •• • ◦ •
,

•• •◦ • ◦• ◦ • •
,

•• ◦◦ • •• • ◦ •
,

•• •◦ • ◦• • ◦ •
,

•◦ ◦• ◦ •• • • •
,

•◦ •• ◦ ◦• ◦ • •
,

•◦ •• • ◦• ◦ • •
,

•◦ •• ◦ •• • ◦ •
,

•◦ ◦• • •• ◦ • •
,

•◦ ◦• • •• • ◦ •
,

•◦ •• • ◦• • ◦ •
,

•• •• • •• • • •
,

•◦ ◦◦ ◦ ◦• ◦ ◦ •
.

Similarly one can describe the supports of all 54 irreducible polynomials
f ∈ R

(2)
2 of degree 4 such that S is non-mixing for α

R
(2)
2 /(f)

. We begin by
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listing the supports of those polynomials which are symmetric in u1 and u2.
These supports are unaffected if the coordinates are interchanged.

•• ◦◦ • ◦◦ ◦ • ◦• ◦ ◦ • •
,

•• •◦ • •◦ ◦ • •• ◦ ◦ • •
,

•• ◦• • ◦• ◦ • ◦• • • • •
,

•• •• ◦ •• • ◦ •• • • • •
,

•◦ ◦◦ ◦ ◦• ◦ ◦ ◦• • ◦ ◦ •
,

•◦ •◦ • •• • • •• • ◦ ◦ •
.

For each of the remaining polynomials f ∈ R
(2)
2 , the polynomial f̃ (not

shown here) obtained by interchanging the coordinates u1, u2 again has S

as an α
R

(2)
2 /(f̃)

-nonmixing set.

•◦ ◦◦ ◦ ◦◦ ◦ ◦ •• ◦ ◦ • •
,

•◦ •◦ • •◦ • ◦ •• • • • •
,

•◦ •◦ • ◦◦ • ◦ ◦• • ◦ ◦ •
,

•• ◦◦ ◦ ◦◦ • ◦ •• ◦ ◦ • •
,

•• ◦◦ ◦ ◦◦ ◦ • •• • • • •
,

•• ◦◦ • ◦◦ • • •• ◦ • ◦ •
,

•• ◦◦ ◦ •◦ • ◦ ◦• • • • •
,

•• •◦ • •◦ ◦ ◦ •• • ◦ ◦ •
,

•• ◦◦ • ◦◦ ◦ ◦ •• • • • •
,

•• •◦ • •◦ • • •• ◦ • ◦ •
,

•• ◦◦ • •◦ • • ◦• • ◦ ◦ •
,

•• •◦ • ◦◦ • • ◦• • • • •
,

•• •◦ ◦ •◦ • ◦ •• • ◦ ◦ •
,

•• •◦ ◦ ◦◦ ◦ • ◦• • ◦ ◦ •
,

•• ◦• • ◦• ◦ ◦ •• ◦ • ◦ •
,

•• •• • •• ◦ ◦ •• • • • •
,

•• ◦• ◦ ◦• • ◦ •• • ◦ ◦ •
,

•• •• • ◦• • • ◦• ◦ • ◦ •
,

•• ◦• ◦ ◦• ◦ • •• • ◦ ◦ •
,

•• ◦• • •• • • ◦• • ◦ ◦ •
,

•• •• • ◦• • ◦ ◦• • ◦ ◦ •
,

•◦ ◦• • ◦◦ • • •• • ◦ ◦ •
,

•◦ •• ◦ •◦ ◦ • •• • ◦ ◦ •
,

•◦ ◦◦ • ◦• ◦ ◦ •• • ◦ ◦ •
.

8. Isomorphism rigidity of algebraic Zd-actions: the

irreducible case

In this section we turn to a problem of a quite different nature from that
of the last sections. Every algebraic Zd-action α with completely positive
entropy is measurably conjugate to a Bernoulli shift (cf. Table 1 (8) on
page 12). Since entropy is a complete invariant for measurable conjugacy of
Bernoulli shifts by [35], α is measurably conjugate to the Zd-action

αA : n 7→ αAn

for every A ∈ GL(d,Z), since the entropies of all these actions coincide. In
general, however, α and αA are not topologically conjugate.

Every algebraic Zd-action α with positive entropy has Bernoulli factors
by [27] and [38], and two such actions may again be measurably conjugate
without being topologically conjugate. For zero entropy actions, however,
there is some evidence for a very strong form of isomorphism rigidity. In
order to formulate this property we introduce a definition.
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Definition 8.1. Let α and β be algebraic Zd-actions on compact abelian
groups X and Y , respectively. Then (Y, β) is an algebraic factor of (X, α) if
there exists a continuous surjective group homomorphism ψ : X −→ Y with

ψ ◦ αn = βn ◦ ψ (8.1)

for every n ∈ Zd. The map ψ in (8.1) is an algebraic factor map. The actions
α and β (or the pairs (X, α) and (Y, β)) are algebraically conjugate if the
map ψ in (8.1) can be chosen to be a group isomorphism. Finally, α and β

(or (X,α) and (Y, β)) are finitely (algebraically) equivalent if each of them
is an algebraic factor of the other one with a finite-to-one factor map.

A map φ : X −→ Y is affine if it is of the form φ(x) = ψ(x) + y for every
x ∈ X, where ψ : X −→ Y is a continuous surjective group homomorphism
and y ∈ Y . If there exists an affine map φ : X −→ Y satisfying (8.1) (with
φ replacing ψ), then β is obviously an algebraic factor of α.

We say that isomorphism rigidity holds for a class of algebraic Zd-actions
if any measurable conjugacy between two actions in this class coincides a.e.
with an affine map. Let us begin with the class of irreducible Zd-actions to
illustrate a much more general phenomenon.

Definition 8.2. An algebraic Zd-action α on a compact abelian group X

is irreducible if every closed α-invariant subgroup Y ( X is finite.

Irreducible Zd-actions were called almost minimal in [42].

Proposition 8.3. Let α be an irreducible and ergodic algebraic Zd-action
on a compact abelian group X, and let β be an algebraic Zd-action on a
compact abelian group Y 6= {0} such that (Y, β) is an algebraic factor of
(X, α). Then the factor map is finite-to-one, and β is irreducible, ergodic
and finitely equivalent to α. Furthermore there exists a unique prime ideal
p ⊂ Rd with the following properties.

(1) αRd/p is ergodic (and hence Rd/p is infinite — cf. Table 1 (3));
(2) For every ideal I ) p in Rd, Rd/I is finite;
(3) α is finitely equivalent to αRd/p.

Conversely, if p ⊂ Rd is a prime ideal satisfying Condition (2) above,
then the Zd-action α = αRd/p on the group XRd/p is irreducible.

Proof. Let φ : X −→ Y be an algebraic factor map from (X, α) to (Y, β).
The kernel K = kerφ is an α-invariant closed subgroup of X. As Y 6=
{0} by assumption, K is a proper α-invariant subgroup and thus finite by
irreducibility.

Let Z be a proper closed β-invariant subgroup of Y . The subgroup φ−1(Z)
⊂ X is finite by irreducibility. This shows that Z = φ(φ−1(Z)) is finite. The
(obviously ergodic) action β is therefore irreducible.
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The ergodicity of α also implies that every nonzero submodule N ⊂ M

of the dual module M = X̂ of α is infinite: otherwise Z = N̂ = X/N⊥

would be a finite quotient of X by an α-invariant subgroup, contrary to
ergodicity. As the inclusion N ⊂ M is dual to a factor map ψ from (X,α)
to (XN , αN ), the beginning of this proof shows that αN is irreducible and
|M/N | = | kerψ| is finite. In particular, if p is a prime ideal associated with
M , and if a ∈ M satisfies that ann(a) = p and hence N = Rd · a ∼= Rd/p,
then N is infinite, M/N is finite and αN = αRd/p is ergodic and irreducible.

If I ) p is an ideal, then N ′ = I · a ∼= I/p is a submodule of N and hence
— again by irreducibility — of finite index in N . It follows that Rd/I is
finite, as claimed in (2).

If q 6= p is a second prime ideal associated with M then q = ann(b) for
some b ∈ M r N . Every nonzero b′ ∈ N ′ = Rd · b has q as its annihilator.
However, since Rd/q ∼= N ′ is infinite by ergodicity and N ′/N = N ′/(N ∩N ′)
is finite, there exists an h ∈ Rd r q with h · b ∈ N and hence ann(h · b) = p.
This contradiction implies that p is the only prime ideal associated with M .

In order to complete the proof that α and αN = αRd/p are finitely equi-
valent we have to find a (necessarily finite-to-one) algebraic factor map
φ′ : (XN , αN ) −→ (X,α). As in the preceding paragraph we note that there
exists, for every b ∈ M r N , an element hb ∈ Rd r p with hb · b ∈ N . The
polynomial

h =
∏

b∈MrN

hb ∈ Rd r p

satisfies that h·M ⊂ N . The map mh : M −→ N consisting of multiplication
by h is injective by Footnote 3 on page 10, and the surjective homomorphism
φ′ : XN −→ X dual to mh is an algebraic factor map from (XN , αN ) to
(X, α). This proves (3).

We return to the first assertion of this proposition. We have proved that
β is irreducible and hence finitely equivalent to αRd/p for some prime ideal
p ⊂ Rd satisfying the conditions (1) and (2). The factor map φ : (X,α) −→
(Y, β) is dual to an embedding φ̂ : Ŷ −→ M . Since p is the only prime ideal
associated with M , p is also associated with Ŷ , and β is finitely equivalent
to αRd/p and hence to α.

The final assertion has already been verified in the course of this proof. ¤

Irreducibility is an extremely strong hypothesis: if α is mixing it implies
that αn is Bernoulli with finite entropy for every nonzero n ∈ Zd, and hence,
if d > 1, that α has zero entropy. If β is a second irreducible and mixing
algebraic Zd-action on a compact abelian group Y such that h(αn) = h(βn)
for every n ∈ Zd, then αn is measurably conjugate to βn for every n ∈ Zd.
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However, if d > 1, then the actions α and β are generally not measurably
conjugate, as the following theorem and the examples below show.

Theorem 8.4 (Isomorphism rigidity for irreducible Zd-actions). Let d > 1,
and let α1 and α2 be irreducible and mixing algebraic Zd-actions on compact
abelian groups X1 and X2, respectively. If φ : X1 −→ X2 is a measurable
conjugacy of α1 and α2, then φ is λX1-a.e. equal to an affine map. In par-
ticular, measurable conjugacy implies algebraic conjugacy.

Theorem 8.4 is a combination of two theorems in [18] and [22], respect-
ively, and follows from a result on invariant measures of algebraic Zd-actions
with d ≥ 2 whose scope is still something of a mystery. We state a very
special case which will be sufficient for proving Theorem 8.4; possible rami-
fications of Theorem 8.5 will be discussed in Section 9.

Theorem 8.5. Let d ≥ 2, and let α1 and α2 be irreducible and mixing algeb-
raic Zd-actions on compact abelian groups X1 and X2 with normalized Haar
measures λX1 and λX2, respectively. We write α = α1 × α2 for the product-
Zd-action on X = X1 ×X2 and assume that µ is an α-invariant probability
measure on X with the following property: if πi : X −→ Xi denotes the i-th
coordinate projection, then µπ−1

i = λXi, and πi is a measurable conjugacy
of the Zd-actions (X, µ, α) and (Xi, λXi , αi).

Then there exists a closed α-invariant subgroup Y ⊂ X such that µ is a
translate of the Haar measure λY .

Proof. Since the Zd-actions αi are irreducible, Proposition 8.3 shows that
the groups Xi have to be either zero-dimensional or connected (depending
on whether or not the prime ideal p ⊂ Rd appearing there contains a nonzero
constant). If X1 and X2 are finite-dimensional tori, Theorem 8.5 follows from
Corollary 5.2′ in [19, Corrections] (cf. [18, Theorem 5.1]), and this result can
be extended to irreducible Zd-actions on compact connected abelian groups
without much difficulty, using the structure theorems about irreducible Zd-
actions in Subsection 8.1. If X1 and X2 are zero-dimensional, Theorem 8.5
follows from the main result in [22].

The case where one of the groups is connected and the other is zero-
dimensional is impossible: if X1 is connected and X2 zero-dimensional, then
Corollary 6.2 implies that α1 has no nonmixing sets, whereas α2 has non-
mixing sets by Theorem 7.2, since it has entropy zero. Since the hypotheses
of Theorem 8.5 imply that α1 and α2 are measurably conjugate we obtain
a contradiction. ¤

Proof of Theorem 8.4, given Theorem 8.5. Suppose that φ : X1 −→ X2 is
a measurable conjugacy of α1 and α2. We set X = X1 × X2, consider the
product Zd-action α = α1×α2 on X = X1×X2, and denote by µ the unique
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α-invariant probability measure on the graph Γ(φ) = {(x, φ(x)) : x ∈ X1} ⊂
X which satisfies that µπ−1

i = λXi for i = 1, 2, where πi : X −→ Xi are the
coordinate projections. Since all the hypotheses of Theorem 8.4 are satisfied
we conclude that µ is a translate of the Haar measure of a closed subgroup
of X and hence that φ is a.e. equal to an affine map. ¤

In order to present examples of the subtle isomorphism behaviour of irre-
ducible algebraic Zd-actions we start with a description of such actions on
connected groups, taken from [12].

8.1. Irreducible Zd-actions on compact connected abelian groups.
There is an intimate connection between irreducible Zd-actions on compact
connected abelian groups and ideal classes of algebraic number fields (cf.
e.g. [12], [18], [41], [42]). Since this connection plays a central role in the
construction of examples it will be useful to describe it in some detail; further
information can be found in [12], [42, Section 7] and [50].

Let K be an algebraic number field, i.e. a finite extension ofQ. A valuation
of K is a map φ : K −→ R+ with the property that φ(a) = 0 if and only if
a = 0, φ(ab) = φ(a)φ(b), and φ(a + b) ≤ c ·max{φ(a), φ(b)} for some c ≥ 1
in R and all a, b ∈ K. The valuation φ is non-trivial if φ(K) ) {0, 1}. A
non-trivial valuation φ is non-archimedean if φ(a + b) ≤ max{φ(a), φ(b)}
for all a, b ∈ K, and archimedean otherwise. Two valuations φ, ψ of K are
equivalent if there exists an s > 0 with φ(a) = ψ(a)s for all a ∈ K. An
equivalence class v of non-trivial valuations of K is called a place of K; such
a place v is finite if it consists of non-archimedean valuations, and infinite
otherwise.

If v is a place of K, then a sequence (an, n ≥ 1) in K is v-Cauchy if
limk,l→∞ φ(ak − al) = 0 for some (and hence for every) valuation φ ∈ v.
With this notion of a Cauchy sequence one can define the completion Kv of
K at the place v.

Ostrowski’s Theorem ([8, Theorem 2.2.1]) states that every non-trivial
valuation φ of Q is either equivalent to the absolute value m

n 7→ |mn | = |mn |∞,
or to the p-adic valuation |mn |p = p(n′−m′) for some rational prime p, where
m = pm′

m′′, n = pn′n′′, and neither m′′ nor n′′ are divisible by p. The
completions Q∞ and Qp of Q are equal to R and the field of p-adic rationals,
respectively.

For every valuation φ of K, the restriction of φ to Q ⊂ K is a valuation
of Q and is thus equivalent either to | · |∞ or to | · |p for some rational prime
p. In the first case the place v 3 φ is infinite (or lies above ∞), and in the
second case v lies above p (or p lies below v).

We denote by w the place of Q below v and observe that the field Kv is
a finite-dimensional vector space over the locally compact, metrizable field
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Qw and hence locally compact and metrizable. Choose a Haar measure λv

on Kv (with respect to addition) and denote by modKv : Kv −→ R the map
satisfying

λv(aB) = modKv(a)λv(B) (8.2)

for every a ∈ Kv and every Borel set B ⊂ Kv. The restriction of modKv to
K is a valuation in v, denoted by | · |v.

Above every place v of Q there are at least one and at most finitely many
places of K. We write P (K), P

(K)
f , and P

(K)
∞ , for the sets of places, finite

places and infinite places of K. An infinite place v of K is either real (if
Kv = R) or complex (if Kv = C). The field K is totally real if Kv = R for
every v ∈ P

(K)
∞ , and totally complex if Kv = C for every v ∈ P

(K)
∞ .

For every v ∈ P (K), the sets

Rv = {a ∈ Kv : |a|v ≤ 1}, R×v = {a ∈ Kv : |a|v = 1} (8.3)

are compact. If v ∈ P
(K)
f , then Rv is the unique maximal compact subring

of Kv and is also open, and the ideal

Pv = {a ∈ Kv : |a|v < 1} ⊂ Rv (8.4)

is open, closed and maximal. The set

oK =
⋂

v∈P
(K)
f

{a ∈ K : |a|v ≤ 1} (8.5)

is the ring of integral elements in K.
Now suppose that d ≥ 1 and c = (c1, . . . , cd) ∈ (Q̄×)d, where Q̄ is the

algebraic closure of Q and Q̄× = Q̄r{0}. We set K = Kc = Q(c1, . . . , cd) =
Q[c±1

1 , . . . , c±1
d ] and

Sc = P (K)
∞ ∪ {v ∈ P

(K)
f : |ci|v 6= 1 for some i = 1, . . . , d}. (8.6)

The set Sc is finite by [50, Theorem III.3]. We denote by

ιc : K −→ Vc =
∏

v∈Sc

Kv (8.7)

the diagonal embedding a 7→ (a, . . . , a), a ∈ K, and write

Rc = {a ∈ K : |a|v ≤ 1 for every v ∈ P (K) r Sc} ⊃ oK (8.8)

for the ring of Sc-integers in K. The set Vc is a locally compact algebra
over K with respect to coordinate-wise addition, multiplication and scalar
multiplication, and ιc(Rc) is a discrete, co-compact, additive subgroup of
Vc. Put

Yc = Vc

/
ιc(Rc) (8.9)

and write
πc : Vc −→ Yc (8.10)



ALGEBRAIC Zd-ACTIONS 34

for the quotient map. According to [43, (7.6)] we may identify Yc with the
dual group of Rc, i.e.

Yc = R̂c. (8.11)

If every ci, i = 1, . . . , d, is a unit in oK then Sc = P
(K)
∞ and

Vc
∼= Rr(K), Yc

∼= Tr(K), (8.12)

where

r(K) = [K : Q] = |{v ∈ P (K)
∞ : Kv = R}|+ 2|{v ∈ P (K)

∞ : Kv = C}|. (8.13)

In general,
ci ∈ R×c = {a ∈ Rc : a−1 ∈ Rc} (8.14)

is a unit in Rc for every 1 ≤ i ≤ d. We put, for every n = (n1, . . . , nd) ∈ Zd,

cn = cn1
1 · · · cnd

d , (8.15)

write every a ∈ Vc as a = (av) = (av, v ∈ S) with av ∈ Kv for every v ∈ S,
and define a Zd-action β̄c on Vc by setting

β̄n
c a = ιc(cn)a = (cnav) (8.16)

for every a = (av) ∈ Vc and n ∈ Zd. As β̄n
c (ιc(Rc)) = ιc(Rc) for every

n ∈ Zd, β̄c induces an algebraic Zd-action βc on the compact abelian group
Yc in (8.9) by

βn
c (a + ιc(Rc)) = β̄n

c a + ιc(Rc) (8.17)

for every n ∈ Zd and a ∈ Vc, whose dual action β̂c : n 7→ β̂n
c is given by

β̂n
c b = cnb (8.18)

for every n ∈ Zd and b ∈ Rc = Ŷc (cf. (8.11)).
We denote by ηc : f 7→ f(c) the evaluation map and define the ideal

Pc = ker ηc. Then

Rd/Pc
∼= ηc(Rd) = Z[c±1] = Z[c±1

1 , . . . , c±1
d ] ⊂ Rc, (8.19)

and Rc is a module over the integral domain Z[c±1].

Lemma 8.6. The Z[c±1]-module Rc is equal to oK [c±1] and is thus finitely
generated.

Proof. The inclusion oK [c±1] ⊂ Rc is obvious. For the reverse inclusion let
x ∈ Rc and put

Ex = {v ∈ Sc ∩ P
(K)
f : |x|v > 1}.

If Ex = ∅ then x ∈ oK and we are done. Now assume that k ≥ 1 and that
y ∈ oK [c±1] for every y ∈ Rc with |Ey| < k. If |Ex| = k and v ∈ Ex, then
we can find an n ∈ Zd with |cn|v > |x|v. By the Chinese remainder theorem
there exists a ∈ oK such that

|a|v = 1 and |acn|w < 1 for every w ∈ Sc r {v}.
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Then x(acn)−1 ∈ Rv and, since oK is dense in Rv, we can find b ∈ oK and
d ∈ Rv such that

x(acn)−1 = b + d with |d|v ≤ |cn|−1
v .

This shows that

|x− abcn|v = |adcn|v ≤ 1,

|x− abcn|w = |x|w for w ∈ Ex r {v},
|x− abcn|w ≤ 1 for w ∈ P

(K)
f rEx.

Our induction hypothesis implies that x − abcn ∈ oK [c±1] and hence that
x ∈ oK [c±1]. By induction, Rc ⊂ oK [c±1], as promised.

Since oK is a finitely generated Z-module, Rc is finitely generated over
Z[c±1]. ¤

Let L ⊂ K be a finitely generated Z[c±1]-submodule. We denote by α̂(c,L)

the Zd-action on L defined by

α̂n
(c,L)a = cna (8.20)

for every n ∈ Zd and a ∈ L and write α(c,L) for the dual algebraic Zd-action
on

XL = L̂. (8.21)

Since K = Q[c] we can write every a ∈ K as a = b/n for some b ∈ Rc

and n ∈ Z. As L is assumed to be finitely generated, we can find a common
integer N > 0 such that NL ⊂ Rc. If

θ̂L : X̂L = L −→ Rc = Ŷc (8.22)

is the injective map defined by multiplication with N , then we obtain a dual
algebraic factor map

θL : Yc −→ XL (8.23)

between the algebraic Zd-actions βc and α(c,L).
For the particular choices L = Rc and L = Z[c±1] we obtain the actions

βc = α(c,Rc) on Yc = R̂c,

αc = α(c,Z[c±1]) on Xc = Ẑ[c±1],
(8.24)

which will be referred to as the maximal and minimal irreducible actions
associated with the point c. The motivation for this terminology is provided
by Proposition 8.15 on page 41 and the fact that every Z[c±1]-submodule
L ⊂ Rc must contain an isomorphic copy of Z[c±1].

Proposition 8.7. For any two nonzero finitely generated Z[c±1]-modules
L ⊂ L′ ⊂ K the module L′/L is finite.
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Furthermore the Zd-action βc on Yc is irreducible, the factor map θL : Yc

−→ XL in (8.22)–(8.23) is finite-to-one, and the action α(c,L) on XL is
irreducible and finitely equivalent to βc.

For the proof of Proposition 8.7 we need another lemma.

Lemma 8.8. Let o ⊂ K be a finitely generated subring with identity of the
algebraic number field K. Then every nonzero ideal J ⊂ o has finite index.

Proof. Assume that we have already shown that some finitely generated
subring o ⊂ K containing 1 has the property that |o/J| < ∞ for every
nonzero ideal J ⊂ o. By assumption Z ⊂ o.

Let a ∈ K be an algebraic number with primitive minimal polynomial
f(x) ∈ Z[x], and let J ⊂ o[a] be a nonzero ideal. We set S = o r {0}
and consider the number fields S−1o = L and S−1o[a] = L[a] = L′. As
{0} ( S−1J ⊂ L′, it follows that S−1J = L′ and J ∩ S 6= {0}

By our hypothesis on o, the nonzero ideal J ∩ o has finite index in o. We
claim that

there exists a monic polynomial h ∈ Z[x] with h(a) ∈ J. (8.25)

Indeed, since Z ⊂ o and J∩ o has finite index in o, there exists a positive
integer n ∈ J. We denote by I = 〈n, f〉 ⊂ Z[x] the ideal generated by the
elements n, f ∈ Z[x] and assert that

I contains a monic polynomial h. (8.26)

By evaluating the generators of I at a we conclude that h(a) ∈ J, which
shows that (8.25) is a consequence of (8.26).

In order to prove (8.26) we first assume that n = pe is a prime power.
We write f as a sum f = f1 − pf2 with f1, f2 ∈ Z[x], where the leading
coefficient of f1 is co-prime to p. Multiplication with a = fe−1

1 + fe−2
1 pf2 +

· · ·+(pf2)e−1 ∈ Z[x] gives that fe
1−pefe

2 ∈ I. We have thus found polynomials
a, b ∈ Z[x] such that h′p = fe

1 = af + bpe ∈ I has a leading coefficient which
is co-prime to p and hence to n = pe. If m is the degree of h′p we can apply
Euclid’s algorithm to find integers k, k′ such that the leading coefficient of

hp = kh′p + k′nxm ∈ I (8.27)

is one.
If n contains a product of at least two distinct primes we write n =

pe1
1 · · · pek

k for the prime power decomposition of n and use the isomorphism
Z/nZ ∼= ∏k

j=1 Z/p
ej

j Z to obtain an isomorphism

θ : (Z/nZ)[x] −→
k∏

j=1

(Z/p
ej

j Z)[x]
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of the polynomial rings. Denote by f̄ ∈ R = (Z/nZ)[x] the polynomial ob-
tained by reducing each coefficient of f modulo n and put θ(f̄) = (f̄1, . . . , f̄k)
with f̄j ∈ Rj = (Z/p

ej

j Z)[x] for every j = 1, . . . , k. The preceding paragraph
shows that the principal ideal generated by f̄j in Rj contains a polynomial
h̄j with leading coefficient 1, i.e. that there exists a ḡj ∈ Rj with h̄j = f̄j ḡj .
The polynomial g ∈ R with θ(g) = (ḡ1, . . . , ḡk) satisfies that f̄ ḡ ∈ R has
leading coefficient 1. This shows that there exists a g′ ∈ Z[x] such that the
polynomial h = fg + ng′ ∈ I has leading coefficient 1 and proves (8.26) and
hence (8.25).

If m is the degree of the polynomial h found in (8.25), then
∣∣o[a]/J

∣∣ =
∣∣o + ao + · · ·+ am−1o/J

∣∣ ≤ ∣∣o/o ∩ J
∣∣m < ∞.

This shows that the ring o[a] again has the property that |o[a]/J| < ∞ for
every nonzero ideal J ⊂ o[a].

The proof of the lemma is completed by induction on the number of
generators of the subring o. ¤

Proof of Proposition 8.7. This is a slight extension of [42, Theorem 7.1] (cf.
[12]).

Let L ⊂ L′ ⊂ K be two nonzero finitely generated Z[c±1]-submodules.
Since L ⊂ K is nonzero, Z[c±1]a ⊂ L for some nonzero a ∈ L. Since L′

is finitely generated as a Z[c±1]-module and L′ ⊂ K = Q[c], we can find
M ∈ Z such that

Z[c±1]a ⊂ L ⊂ L′ ⊂ 1
M
Z[c±1].

Lemma 8.8 shows that Z[c±1]a has finite index in 1
MZ[c±1], which completes

the proof of the first statement of the proposition.
For the second statement we consider the action βc on Yc. If Z ⊂ Yc is

a proper invariant closed subgroup, then the annihilator L = Z⊥ ⊂ Rc is a
nonzero Z[c±1]-submodule. Therefore has L finite index in Rc and Z is finite.
This shows that βc is irreducible. Proposition 8.3 implies the remaining
statements. ¤

Our next theorem shows that every irreducible algebraic Zd-action α on
a compact abelian connected group is of the form α(c,L) described in (8.20)–
(8.21).

Theorem 8.9. Suppose that d ≥ 1, and that α is an algebraic Zd-action
on an infinite compact connected abelian group X. Then α is irreducible
if and only if it is finitely equivalent to each of the irreducible algebraic
Zd-actions αc on Xc and βc on Yc for some c = (c1, . . . , cd) ∈ (Q̄×)d.
Furthermore there exists a finitely generated Z[c±1]-submodule L ⊂ K such
that α is algebraically conjugate to the Zd-action α(c,L) on XL defined in



ALGEBRAIC Zd-ACTIONS 38

(8.20)–(8.21). Without loss of generality one may assume in addition that
L ⊂ Rc.

Proof. Let α be an irreducible algebraic action on the compact connected
abelian group X with dual module M = X̂ and let p be an associated prime
ideal for M . There exists a ∈ M such that

{f ∈ Rd : f · a = 0} = p.

This shows that the map f + p 7→ θ̂(f) = fa from Rd/p to M is an injective
module homomorphism. By duality, θ : X −→ XRd/p a factor map. From
Proposition 8.3 we see that θ is finite-to-one and the action αRd/p on XRd/p
is irreducible.

As X is connected, the dual module is torsion-free as an abelian group
and p does not contain a constant. Hilbert’s Nullstellensatz shows that there
exists a point

c ∈ V (p) = {c′ ∈ Q× : f(c′) = 0 for every f ∈ p}.
Let π : Rd/p −→ Rd/pc be the canonical projection map, where

pc = {f ∈ Rd : f(c = 0)}. (8.28)

Then π̂ : Xc −→ X is injective. As αRd/p is irreducible by the previous
paragraph, every non-trivial closed α-invariant subgroup must be finite and
π̂ must be surjective. By duality, π is injective and p = pc.

Proposition 8.3 also shows that the actions αRd/pc and α are finitely
equivalent. Let φ : Xc −→ X be a factor map. The dual homomorphism
φ̂ : M −→ Rd/pc

∼= Z[c±1] of φ is injective. Hence L = φ̂(M) ⊂ Z[c±1] ⊂ K

is a nonzero finitely generated Z[c±1]-submodule and the Zd-actions α and
α(c,L) are algebraically conjugate. ¤

So far we have concentrated on the dual modules of irreducible algebraic
Zd-actions. By using the locally compact group Vc in (8.7) we can describe
explicitly the actual actions and the groups carrying them.

Corollary 8.10. Let d ≥ 1, and let α be an irreducible Zd-action on an
infinite compact connected abelian group X. We denote by c ∈ (Q̄×)d the
point described in Theorem 8.9 and define the ring Rc ⊂ K, the set Sc ⊂
P (K), the algebra Vc =

∏
v∈S Kv and the embedding ιc : K −→ Vc as in

(8.6)–(8.7). Then there exists a finitely generated Z[c±1]-submodule K ⊂ K

such that α is algebraically conjugate to the Zd-action α′(c,K) on the compact
abelian group

X ′
K = Vc/ιS(K), (8.29)

defined as in (8.17) by

α′n(c,K)(a + ιS(K)) = β̄n
(c,S)a + ιS(K) (8.30)
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for every n ∈ Zd and a ∈ Vc. Furthermore one can always assume that
K ⊂ Rc.

Conversely, if K ⊂ K is a nonzero finitely generated Z[c±1]-submodule,
then the Zd-action α′(c,K) on the compact group X ′

K in (8.29)–(8.30) is irre-
ducible and finitely equivalent to αc and βc.

Proof. According to Theorem 8.9 there exists a finite-to-one factor map
φ : Yc −→ X. The map φ induces a continuous surjective group homo-
morphism ψ : Vc −→ X with ψ ◦ β̄n

c = αn ◦ ψ for every n ∈ Zd, whose
kernel K′ = kerψ is invariant under the Zd-action β̄c in (8.16) and contains
ιS(Rc) as a subgroup of finite index.

Choose an integer N ≥ 1 with K′′ = NK′ ⊂ ιS(Rc) and denote by
K ⊂ Rc the ηc(Rd)-submodule satisfying ιS(K) = K′′. If mN : Vc −→ Vc

denotes multiplication by N , then

X ∼= Vc/K′ ∼= mN (Vc)/mN (K′′) ∼= Vc/K′′ ∼= Vc/ιS(K) = X ′
K,

and the isomorphism of X and X ′
K carries the Zd-action α to α′(c,K).

The other statements are clear from Proposition 8.7, since K has finite
index in Rc. ¤

Theorem 8.9 and Corollary 8.10 give a variety of representations of irredu-
cible algebraic Zd-action on infinite compact connected abelian groups. For
a fixed c all these representations are finitely equivalent. Theorem 8.13 will
show that these representations are sometimes, but not always, algebraically
conjugate.

We can give an easy characterization of those actions which are algebra-
ically conjugate to the minimal actions αc (cf. (8.24)).

Definition 8.11. Let α be an algebraic Zd-action on a compact abelian
group X. The dual group X̂ of X is cyclic under the dual action α̂ of α (or
α has cyclic dual) if there exists a character a ∈ X̂ such that X̂ is generated
by the set {α̂na : n ∈ Z}.
Proposition 8.12. Let d ≥ 1, and let α be an irreducible algebraic Zd-
action on an infinite compact connected abelian group X. If c ∈ Q̄× is the
point appearing in Theorem 8.9, then α is algebraically conjugate to αc if
and only if α has cyclic dual.

Proof. The action αc has cyclic dual, since the element 1 ∈ Z[c±1] = X̂c is
cyclic under α̂c.

If α and αc are algebraically conjugate, there exists a continuous group
isomorphism φ : X −→ XRd/pc

with φ ◦ αn = αn
c ◦ φ for every n ∈ Zd, and

the dual isomorphism φ̂ : Rd/pc −→ X̂ sends 1 ∈ Z[c±1] to a cyclic element
a ∈ X̂ for α̂.
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Conversely, if a ∈ X̂ is a cyclic element of α̂, then the map

h(c) 7→ h(α̂)(a) =
∑

n∈Zd

hnα̂na

for h =
∑

n∈Zd hnun ∈ Rd induces a module-isomorphism ψ̂ : Z[c±1] −→ X̂

whose dual ψ : X −→ XRd/P = X̂Rd/P is an algebraic conjugacy of α and
αc. ¤

We continue by describing the connection between algebraic conjugacy
classes of irreducible algebraic Zd-actions and ideal classes in algebraic num-
ber fields. This will give us a collection of nonconjugate but finitely equival-
ent algebraic actions.

Every nonzero ideal I ⊂ RS is called an S-integral ideal of K and has
finite index in RS by Lemma 8.8. Two S-integral ideals I, J of K lie in the
same ideal class if there exists an element a ∈ K with aI = J.

Theorem 8.13. Suppose that K is an algebraic number field, c ∈ (K×)d

a vector of nonzero algebraic numbers with K = Q(c), and let Sc ⊂ P (K)

be the set of places defined by (8.6). Then the Zd-action α(c,I) on XI = Î is
irreducible for every nonzero ideal I ⊂ Rc. Furthermore, if I, J are nonzero
ideals in Rc, then α(c,I) and α(c,J) are finitely equivalent, and α(c,I) and
α(c,J) are algebraically conjugate if and only if I and J lie in the same ideal
class.

Proof. Theorem 8.9 shows that the action α(c,I) is irreducible.
If I, J are nonzero ideals in Rc, then α(c,I) and α(c,J) are obviously algeb-

raically conjugate whenever I and J lie in the same ideal class.
Conversely, if φ : XI −→ XJ is an algebraic conjugacy of α(c,I) and α(c,J),

then the dual map φ̂ : J −→ I is an ηc(Rd)-module isomorphism (cf. (8.19)),
i.e. φ̂(f(c)a) = f(c)φ̂(a) for every f ∈ Rd and a ∈ I. Since K is the field of
fractions of Z[c±1] we can extend φ̂ to a K-linear map ψ̂ : K −→ K by fixing
a nonzero element a ∈ I and setting ψ̂

(f(c)
g(c)a

)
= f(c)

g(c) φ̂(a) for every f, g ∈ Rd

with g(c) 6= 0. An elementary calculation shows that ψ̂
(f(c)

g(c)

)
= φ̂

(f(c)
g(c)

)

whenever f(c)
g(c) ∈ I. If b = ψ̂(1), then the K-linearity of ψ̂ guarantees that

ψ̂(a) = ba for every a ∈ K, and hence that J = φ̂(I) = ψ̂(I) = bI. This
shows that I and J lie in the same ideal class. ¤

We end this discussion of irreducible actions with a few words about
centralizers of such actions.

Definition 8.14. Let α be an algebraic Zd-action on a compact abelian
group X. The algebraic centralizer C0(α) is the group of all continuous group
automorphisms of X which commute with α.
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The affine centralizer Caff(α) is the group of all affine bijections of X

which commute with α, and is of the form Caff(α) = C0(α)× Fix(α), where
Fix(α) is the group of fixed points of α.

The measurable centralizer CλX
(α) is the group of all Haar measure pre-

serving bijective Borel maps φ : X −→ X which commute with α modulo
λX .

If α is an irreducible and mixing algebraic Zd-action with d ≥ 2, then
Theorem 8.4 implies that CλX

(α) = Caff(α) = C0(α) × Fix(α). Hence both
the set of fixed points and the algebraic centralizer of α are invariant under
measurable conjugacy, which is a good reason for being interested in these
objects.

Proposition 8.15. Let α be an irreducible algebraic Zd-action on a compact
connected abelian group X, and let c = (c1, . . . , cd) ∈ (Q̄×)d be the point
described in Theorem 8.9. If Rc ⊂ K = Q(c) is the ring of Sc-integers in
K = Q(c), then

C0(α) ⊂ C0(βc) ∼= R×c ∼= F × Z|Sc|−1,

where Rc is the ring of units in Rc, F is the finite cyclic group consisting
of all roots of unity on K and βc is the Zd-action on Yc = R̂c defined in
(8.24).

Proof. Multiplication by any a ∈ R×c is an automorphism of Rc and induces
a dual automorphism of Yc which commutes with the Zd-action βc. In order
to see that every automorphism γ of Yc commuting with βc arises in this
manner we consider the dual automorphism γ̂ of Rc and set a = γ̂(1). Since
γ̂ commutes with multiplication by cn for every n ∈ Zd and hence with
multiplication by any element in Z[c±1], γ̂ coincides with multiplication
by a on Z[c±1] ⊂ Rc. We use Lemma 8.6 and Proposition 8.7 to find an
integer M ≥ 1 with MRc ⊂ Z[c±1] and conclude that γ̂ coincides with
multiplication by a on Rc. As γ̂ is invertible we find that a ∈ R×c and hence
that C0(βc) ∼= R×c ∼= F × Z|Sc|−1, where the second isomorphism is proved
in [34, Theorem 3.5].

If an algebraic Zd-action α on a compact abelian group X is finitely
equivalent to βc, then Theorem 8.9 shows that α = α(c,L) and X = XL = L̂

for some Z[c±1]-submodule L ⊂ Rc. Suppose that γ is an automorphism of
X which commutes with α. Then the same proof as above shows that there
exists an element a ∈ K× such that γ̂ coincides with multiplication by a on
L = X̂. If a /∈ Rc we obtain a contradiction to the finiteness of Rc/L proved
in Proposition 8.7. This shows that C0(α) ⊂ C0(βc) ∼= Rc, as claimed. ¤

We end the discussion in this subsection with a list of examples, taken
from [18].
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Example 8.16. Let K be a totally real cubic field given by the irreducible
polynomial f(x) = x3 + 3x2 − 6x + 1, i.e. K = Q(γ) where γ is one of
its roots. The algebraic integers γ1 = γ and γ2 = 2 − 4γ − γ2 are units
with f(γ1) = f(γ2) = 0. The smallest subring in K containing γ1 and γ2

is Z[γ1, γ2] = Z[γ]. A basis in fundamental units is ε = γ2+5γ+1
3 and ε − 1,

hence the ring of units UK is not contained in Z[γ].
With respect to the basis {1, γ, γ2} in Z[γ], multiplication by γ1 and γ2

is given by the matrices

A =
(

0 1 0
0 0 1−1 6 −3

)
, B =

(
2 −4 −1
1 −4 −1
1 −5 −1

)
,

respectively (if acting from the right on row–vectors).
With respect to the basis {−2

3 + 5
3γ + 1

3γ2,−1
3 + 7

3γ + 2
3γ2} in oK , multi-

plications by γ1 and γ2 are given by the matrices

A′ =
( 1 2 −1
−1 −2 2

2 5 −2

)
, B′ =

( 1 −1 −1
−1 −2 −1
−1 −4 −2

)
.

We have A′ = V AV −1, B′ = V BV −1 for V =
( 2 −2 −1

0 −3 0
1 −4 −2

)
. Since A is a

companion matrix of f , the Z2-action α generated by A and B has a cyclic
element in Z3. If A′ also had a cyclic element m = (m1,m2,m3) ∈ Z3, then
the vectors

m=(m1,m2,m3), mA′=(m1−m2+2m3,2m1−2m2+5m3,−m1+2m2−2m3)

m(A′)2=(−3m1+5m2−7m3,−7m1+12m2−16m3,5m1−7m2+12m3),

would have to generate Z3 or, equivalently

det
( m1 m2 m3

m1−m2+2m3 2m1−2m2+5m3 −m1+2m2−2m3−3m1+5m2−7m3 −7m1+12m2−16m3 5m1−7m2+12m3

)

= 3m3
1 + 18m2

1m3 − 9m1m
2
2 − 9m1m2m3

+ 27m1m
2
3 + 3m3

2 − 9m2m
2
3 + 3m3

3 = 1.

(8.31)

This contradiction shows that A′ has no cyclic vector, and since B′ = 2 −
4A′−A′2, the action α′ generated by A′ and B′ does not have a cyclic dual.
By Theorem 8.4 the finitely equivalent actions α and α′ are not measurably
conjugate.

Example 8.17. Consider the totally real cubic field K given by the irredu-
cible polynomial f(x) = x3− 7x2 + 11x− 1. Then K = Q(γ) where γ is one
of its roots. In this field the ring of integers oK has basis {1, γ, 1

2γ2 + 1
2} and

hence [oK : Z[γ]] = 2. The fundamental units in oK are {1
2γ2−2γ+ 1

2 , γ−2}.
We choose the units γ = γ1 = (1

2γ2 − 2γ + 1
2)2 and γ2 = γ − 2 which are

contained in both orders, oK and Z[γ].
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In Z[γ] we consider the basis {1, γ, γ2} relative to which the multiplica-
tion by γ1 is represented by the companion matrix A =

(
0 1 0
0 0 1
1 −11 7

)
and

multiplication by γ2 is represented by the matrix B =
(−2 1 0

0 −2 1
1 −11 5

)
.

For oK with the basis {1, γ, 1
2γ2 + 1

2}, multiplication by γ1 and γ2 is
represented by the matrices

A′ =
(

0 1 0−1 0 2
−3 −5 7

)
, B′ =

(−2 1 0
−1 −2 2
−3 −5 5

)
,

respectively. Here α and α′ are not algebraically conjugate since A is cyclic
on Z3, whereas A′ not (the determinant corresponding to (8.31) is equal to

2m3
1 + 4m2

1m2 + 22m1m
2
2 − 8m3

2 + 30m2
1m3

+ 138m1m2m3 − 12m2
2m3 + 82m1m

2
3 + 46m2m

2
3 + 34m3

3

and is thus divisible by 2). A second reason for non-conjugacy is that the
action α has 2 fixed points on T3: (0, 0, 0) and (1

2 , 1
2 , 1

2), while α′ has 4 fixed
points: (0, 0, 0), (1

2 , 1
2 , 1

2), (1
2 , 1

2 , 0), and (0, 0, 1
2).

For our final set of examples we introduce a definition.

Definition 8.18. Let K be an algebraic number field, S a finite number of
places of K containing all infinite places, and let RS be defined as in (8.8)
with S replacing Sc. A d-tuple c = (c1, . . . , cd) in R×S is a free S-unit system
if it generates a free abelian group, i.e. if the equation cn = cn1

1 · · · cnd
d = 1

with n = (n1, . . . , nd) ∈ Zd implies that n = 0.
A free S-unit system c = (c1, . . . , cd) is fundamental if every a ∈ R×S can

be written uniquely as a = uck1
1 · · · ckd

d with u ∈ F and k1, . . . , kd ∈ Z, where
F is the finite cyclic group consisting of all roots of unity in K.

Examples 8.19. (a) Let K = Q(γ), where γ has minimal polynomial
f(x) = x3 − 2x2 − 8x − 1. In this field the ring of integers is equal to
oK = Z[γ] with fundamental units γ1 = γ and γ2 = γ + 2. Two actions
are constructed with this set of units on two different lattices, oK with the
basis {1, γ, γ2}, representing the principal ideal class, and L with the basis
{2, 1+γ, 1+γ2}, representing to the second ideal class. Notice that the units
γ1 and γ2 do not belong to L, but L is a Z[γ]-module. The first action α is
generated by the matrices

A =
(

0 1 0
0 0 1
1 8 2

)
, B =

(
2 1 0
0 2 1
1 8 4

)
,

which represent multiplication by γ1 and γ2, respectively, on oK . The second
action α′ is generated by matrices

A′ =
(−1 2 0
−1 1 1
−5 9 2

)
, B′ =

(
1 2 0−1 3 1

−5 9 5

)
,
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which represent multiplication by γ1 and γ2, respectively, on L in the given
basis. By Proposition 8.7 these actions are finitely equivalent, but by The-
orem 8.13 they are not algebraically and hence not measurably conjugate.

The action α has 2 fixed points on T3: (0, 0, 0) and (1
2 , 1

2 , 1
2), while the

action α′ has a single fixed point (0, 0, 0). This gives another proof that the
actions are not measurably conjugate.

(b) This example is obtained from a totally real cubic field with class
number 3, Galois group S3, and discriminant 2597. It can be represented
as K = Q(γ) where γ is a unit in K with minimal polynomial f(x) =
x3 − 2x2 − 8x + 1. In this field the ring of integers oK = Z[γ] and the
fundamental units are γ1 = γ and γ2 = γ +2. Three actions are constructed
with this set of units on three different lattices, oK with the basis {1, γ, γ2},
representing the principal ideal class, L with the basis {2, 1 + γ, 1 + γ2}
representing the second ideal class, and L2 with the basis {4, 3 + γ, 3 + γ2}
representing the third ideal class.

Multiplication by γ1 and γ2 generates the following three finitely equi-
valent actions which are not algebraically conjugate by Theorem 8.13, and
therefore not measurably conjugate:

A =
(

0 1 0
0 0 1−1 8 2

)
and B =

(
2 1 0
0 2 1−1 8 4

)
;

A′ =
(−1 2 0
−1 1 1
−6 9 2

)
and B′ =

(
1 2 0−1 3 1

−6 9 4

)
;

A′′ =
( −3 4 0
−3 3 1
−10 11 2

)
and B′′ =

( −1 4 0
−3 5 1
−10 11 4

)
.

Each action has 2 fixed point in T3, (0, 0, 0) and (1
2 , 1

2 , 1
2), but they are

distinguished by Theorem 8.13.

(c) Let K = Q(γ) with class number 1 and discriminant 1304 given by
the polynomial x3 − x2 − 11x − 1. For this field we have [oK : Z(γ)] = 2.
Generators in oK can be taken to be {1, γ, β = γ2+1

2 }. Fundamental units are
γ1 = −γ, γ2 = −5+14γ +10β = 14γ +5γ2 ∈ Z[γ]. Thus the whole group of
units lies in Z[γ]. To construct the generators for two non-conjugate action
α and α′ we consider multiplication by γ1 and γ2 in the bases {1, α, α2} and
{1, α, β}, respectively. The resulting matrices are:

A =
(

0 −1 0
1 0 −1
1 11 1

)
B =

(
0 14 5
5 55 19
19 214 74

)
,

A′ =
(

0 −1 0
1 0 −2
0 −6 −1

)
B =

( −5 14 10
−14 55 38
−30 114 79

)
.

The first action has only one fixed point, the origin; the second has four fixed
points (0, 0, 0), (1

2 , 1
2 , 1

2), (1
2 , 1

2 , 0), and (0, 0, 1
2). This proves nonconjugacy.
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8.2. Irreducible Zd-actions on zero-dimensional compact abelian
groups.

Example 8.20 (The trivial centralizer of Ledrappier’s example). In Ex-
ample 7.1 (1) we considered the Z2-action α = α

R
(2)
2 /(f)

with f = 1+u1+u2 ∈
R

(2)
2 . We claim that

C0(α) = Caff(α) = CλX
(α) = {αn : n ∈ Z2}

(cf. Definition 8.14 on page 40).
Since 0 is the only fixed point of α, C0(α) = Caff(α) = CλX

(α) by Theorem
8.4. As α has cyclic dual, every automorphism β ∈ C0(α) is completely
determined by the element g + (f) = β̂(1 + (f)) ∈ X̂ = R

(2)
2 /(f), where β is

the automorphism of X̂ dual to β. As β is a group automorphism, its kernel
is trivial, which translates into the statement that the varieties

V (f) = {(c1, c2) ∈ (F̄2)× × (F̄2)× : f(c1, c2) = 0}
= {(c1, 1 + c1) : c1 ∈ (F̄2)×, 1 + c1 ∈ (F̄2)×},

V (g) = {(c1, c2) ∈ (F̄2)× × (F̄2)× : g(c1, c2) = 0}
of f and g do not intersect (this statement is meaningful in spite of the
fact that g is determined only up to addition of an element in (f)). After
modifying g by an element of (f) we may assume that

g(u1, u2) =
∑

m=(m1,m2)∈F

um1
1 (1 + u1)m2 = h(u1),

say, for some finite subset F ⊂ Z2. Our hypothesis on the intersection of
varieties guarantees that h(u1) 6= 0 for every u1 ∈ (F̄2)×, and hence that
h(u1) = uk1

1 (1 + u1)k2 and g = uk (mod (f)) for some k = (k1, k2) ∈ Z2.
This proves that β = αk for some k ∈ Z2.

Example 8.21. Consider the Z2-action α = αM and αN with M = R
(2)
2 /p

and N = R
(4)
2 /q in Example 7.5 (1), where p = (1+u1+u2+u2

1+u1u2+u2
2) ⊂

R
(2)
2 and q = (1+ωu1+ω2u2) ⊂ R

(4)
2 . There we found a two-to-one algebraic

factor map from (X ′, α′) = (XN , αN ) to (X,α) = (XM , αM ). However, the
dual module X̂ = M is obviously cyclic in the sense of Definition 8.11,
whereas the module X̂ ′ = N is not. Theorem 8.4 shows that the finitely
equivalent actions α and α′ are not measurably conjugate.

By exploiting the fact that the polynomials f ′ = 1 + u2
1 + u2 + u1u2 + u2

2

and f ′′ = 1 + u1 + u2
1 + u2 + u2

2 are irreducible in R
(2)
2 , but not in R

(4)
2 , one

can construct further examples of this kind.

Example 8.22 (Nonconjugacy of Z2-actions with positive entropy). Let

f1 =1 + u1 + u2
1 + u1u2 + u2

2,



ALGEBRAIC Zd-ACTIONS 46

f2 =1 + u2
1 + u2 + u1u2 + u2

2,

f3 =1 + u1 + u2
1 + u2 + u2

2,

f4 =1 + u1 + u2
1 + u2 + u1u2 + u2

2,

in R2, put pi = (2, fi) ⊂ R2, Ji = (4, 2fi) ⊂ R2, Mi = R2/Ji, Ni = R2/pi,
and define the algebraic Z2-actions αi = αMi on Xi = XMi and βi = αNi

on Yi = XNi as in Example 4.1 (2). For every i = 1, . . . , 4, the prime ideals
associated with the module Mi are (2) = 2R2 and pi, and the inclusion of
2Mi

∼= Ni in Mi is dual to an algebraic factor map φi : Xi −→ Yi from
(Xi, αi) to (Yi, βi). Since kerφi

∼= R̂2/2R2 = (Z/2Z)Z2
and the actions

βi have zero entropy, the Pinsker algebra π(αi) of αi is the sigma-algebra
BXi/ ker φi

of kerφi-invariant Borel sets in Xi. In other words, the Z2-action
induced by αi on the Pinsker algebra π(αi) is measurably conjugate to βi.

Since any measurable conjugacy of αi and αj would map π(αi) to π(αj)
and induce a conjugacy of βi and βj , Theorem 8.4 implies that αi and αj

are measurably nonconjugate for 1 ≤ i < j ≤ 4.

9. Isomorphism rigidity of algebraic Zd-actions: the general

case

In Section 8 we investigated the isomorphism problem for irreducible al-
gebraic Zd-actions. Although the discussion below shows that one can relax
the hypothesis of irreducibility in Theorem 8.4 to some extent, the methods
currently do not extend significantly beyond the class of expansive and mix-
ing algebraic Zd-actions α on compact abelian groups X with the property
that h(αn) < ∞ for every n ∈ Zd (i.e. the rank one case in the terminology
of [10]). For example, if p, q ⊂ R3 are nonprincipal prime ideals with 2 gen-
erators such that the zero-entropy Z3-actions α = αR3/p and β = αR3/q are
measurably conjugate (cf. Table 1 (6)), and if the groups X = XRd/p and
Y = XRd/q are connected, there are at present no general results about iso-
morphism rigidity of such actions. As far as I know, the following ‘cautious
conjecture’ from [44] may have a positive answer under the hypothesis that
the groups X and Y are connected (it is now known to be wrong without
this hypothesis by [3] and [4]).

Conjecture 9.1. Let d > 1, and let α and β be expansive and mixing algeb-
raic Zd-actions on compact connected abelian groups X and Y , respectively.
If α and β have zero entropy, then any measurable conjugacy between them
is a.e. equal to an affine map.

Conjecture 9.1 would be implied by a positive answer to the following
problem.
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Problem 9.2. Let d ≥ 2, and let α1 and α2 be expansive and mixing algeb-
raic Zd-actions on compact abelian groups X1 and X2 with normalized Haar
measures λX1 and λX2 , respectively. We write α = α1 ×α2 for the product-
Zd-action on X = X1 ×X2 and assume that µ is an α-invariant probability
measure on X with the following property: if πi : X −→ Xi denotes the i-th
coordinate projection, then µπ−1

i = λXi , and πi is a measurable conjugacy
of the Zd-actions α on (X,µ) and αi on (Xi, λXi).

Does there exists a closed α-invariant subgroup Y ⊂ X such that µ is a
translate of the Haar measure λY ?

Theorem 8.5 is, of course, a special case of this problem, which is in turn
part of a much more general quest to determine all invariant and ergodic
probability measures of a zero entropy mixing algebraic Zd-action α with
d ≥ 2 (where the mixing hypothesis is imposed only to ensure that there is
no single group automorphism β such that αn is a power of β for all n in
some subgroup of finite index in Zd). The first instance of this problem is
due to Furstenberg (cf. [14]): Is every nonatomic probability measure µ on T
which is simultaneously invariant under multiplication by 2 and by 3 equal to
Lebesgue measure? In spite of some remarkable progress due to Rudolph in
[37], who proved that any such measure with positive entropy under either of
these multiplications has to be equal to λT, Furstenberg’s original question
is still open, and several ingenious proofs by Host and others depend in a
very crucial way on positive entropy. For extensions of Rudolph’s results to
commuting automorphisms of finite-dimensional tori or solenoids we refer
to the paper by Katok and Spatzier [19] and to recent work in progress by
Einsiedler and Lindenstrauss [11], which contains the currently most general
statement about invariant probability measures for irreducible and mixing
algebraic Zd-actions on compact connected abelian groups.

Theorem 9.3. Let d ≥ 2, and let α be an irreducible and mixing algebraic
Zd-action on a finite-dimensional torus or solenoid X. If µ is an α-invariant
and ergodic probability measure on X which has positive entropy under some
αn, n ∈ Zd, then there exists a finite index subgroup Λ ⊂ Zd with the fol-
lowing properties.

(1) Let n1, . . . ,nk ∈ Zd be a complete set of representatives of Zd/Λ, let
αΛ be the restriction of α to Λ, and let µ = 1

k

∑k
i=1 µi be the αΛ-ergodic

decomposition of µ. There exists an infinite closed αΛ-invariant subgroup
Y ⊂ X such that each µi is invariant under translation by the subgroup
Yi = αni(Y ).

(2) For every i = 1, . . . , k, the measure µi and the Λ-action αΛ descend
naturally to the factor X/Yi, and every αn, n ∈ Λ, has zero entropy on X/Yi

with respect to µi.
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Although much more is known about isomorphism rigidity of algebraic
Zd-actions on zero-dimensional compact abelian groups than in the connec-
ted case (cf. Section 10), the problem of describing the invariant probability
measures of even the simplest examples is in no better state than in the con-
nected case. Here are two unresolved questions about Ledrappier’s Example
7.1 (1).

Problem 9.4. Let α = α
R

(2)
2 /(1+u1+u2)

be the shift-action on the group

X = X
R

(2)
2 /(1+u1+u2)

in Example 7.1 (1).

(1) If µ is an α-invariant probability measure on X with full support (i.e.
with µ(O) > 0 for every nonempty open subset O ⊂ X), is µ = λX?

(2) If µ is a nonatomic α-invariant probability measure on X which is
ergodic under some αn, is µ = λX?

10. Isomorphism rigidity of algebraic Zd-actions: the

disconnected case

This chapter is devoted to isomorphism rigidity results (and counter-
examples) for expansive and mixing algebraic Zd-actions on zero-dimensional
compact abelian groups. The exposition follows [4] and [5].

10.1. Measurable polynomials.

Definition 10.1. Let X, Y be compact abelian groups, and let U(X, Y ) be
the group of all λX -equivalence classes of Borel maps f : X −→ Y , furnished
with pointwise addition as composition and the topology of convergence in
Haar measure. For every x ∈ X we denote by ∂x : U(X, Y ) −→ U(X, Y ) the
continuous map defined by

∂x(f)(x′) = f(x + x′)− f(x′)

for every x′ ∈ X and f ∈ U(X, Y ), and we set

∂x = ∂x1 ◦ ∂x2 ◦ · · · ◦ ∂xk
: U(X, Y ) −→ U(X,Y )

for every k ≥ 1 and x = (x1, . . . , xk) ∈ Xk.
An element f ∈ U(X,Y ) is a measurable polynomial if there exists an

integer k ≥ 1 with ∂x(f) = 0 (mod λX) for every x ∈ Xk. If k is the
smallest such integer, then the degree deg(f) of the measurable polynomial
f is equal to k − 1.

For every a ∈ Ŷ and f ∈ U(X, Y ) we denote by 〈a, f〉 ∈ U(X, S) the map
x 7→ 〈a, f(x)〉, where 〈a, x〉 is the value of the character a ∈ Ŷ at the point
x ∈ X.
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Lemma 10.2. An element f ∈ U(X, Y ) is a measurable polynomial if and
only if 〈a, f〉 ∈ U(X, S) is a measurable polynomial for every a ∈ Ŷ , and f

has degree ≤ k if and only if deg(〈a, f〉) ≤ k for every a ∈ Ŷ . Finally, f is
continuous if and only if 〈a, f〉 is continuous for every a ∈ Ŷ .

Proof. We set Ω = SbY and write every ω ∈ Ω as ω = (ωa, a ∈ Ŷ ) with
ωa ∈ S for every a ∈ Ŷ . Define a continuous injective group homomorphism
Φ: Y −→ SbY by setting

Φ(y)a = 〈a, y〉
for every a ∈ Ŷ and y ∈ Y . Then Z = Φ(Y ) is a closed subgroup of Ω,
and the map f ′ = Φ ◦ f : X −→ Z is a measurable polynomial (of degree
≤ k) if and only if each coordinate x 7→ f ′(x)a = 〈a, f(x)〉 of the map
f ′ is an S-valued measurable polynomial (of degree ≤ k) for every a ∈ Ŷ .
Since Φ: X −→ Z is a topological group isomorphism, the last statement is
obvious. ¤

Lemma 10.3. Let f ∈ U(X,Y ) and k ≥ 1. Then the map x 7→ ∂x(f) from
Xk to U(X, Y ) is continuous.

Proof. The same argument as in Lemma 10.2 allows us to assume without
loss in generality that Y = S.

Consider the special case where k = 2. For any f ∈ U(X, S) and x ∈ X

we denote by f̄ the complex conjugate of f and write fx ∈ U(X, S) for the
map given by fx(x′) = f(x + x′). Define maps S1, . . . , S4 : X2 −→ U(X, S)
by

S1(x1, x2) = fx1+x2 , S2(x1, x2) = fx1 , S3(x1, x2) = fx2 , S4(x1, x2) = f,

where the bar denotes complex conjugation. For every x ∈ X2, ∂x(f) =
S1(x) · S2(x) · S3(x) · S4(x). Since the right regular representation of X

on L2(X, λX) is continuous, each Si is a continuous map from X2 into
L2(X,λX) and hence also a continuous map from X2 into U(X, S). As mul-
tiplication is continuous in U(X, S), this proves our assertion for k = 2. In
the general case we define S1, . . . , S2k in an analogous way and apply the
same argument as above. ¤

Proposition 10.4 ([4]). Let X,Y be compact abelian groups, and let f ∈
U(X,Y ) be a measurable polynomial.

(1) There exists a unique continuous map f ′ : X −→ Y such that f = f ′

(mod λX).
(2) The map f ′ is constant if and only if deg(f) = 0, and affine if and

only if deg(f) ≤ 1.
(3) If X is connected, then f has degree ≤ 1.
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Proof. For k ≥ 0 we denote by Pk ⊂ U(X,Y ) the topological space consist-
ing of all measurable polynomials p : X −→ Y of degree at most k, furnished
with the subspace topology. If f is a measurable polynomial of degree 0, then
f is λX -a.e. equal to a constant y ∈ Y . If deg(f) = 1, then there exists, for
every x ∈ X, a unique constant c(x) ∈ Y with ∂x(f) = c(x) (mod λX), and
the map x 7→ c(x) is a Borel measurable — and thus continuous — group
homomorphism. Hence there exists, for every x ∈ X, a Borel set Bx ⊂ X

with λX(Bx) = 1 such that

f(x + x′) = c(x) + f(x′) (10.1)

for every x ∈ X and x′ ∈ Bx. Fubini’s Theorem implies that there exists a
Borel set B ⊂ X with λX(B) = 1 such that (10.1) holds for every x′ ∈ B

and λX -a.e. x ∈ X, which shows that f is a.e. equal to an affine map.
We have proved that every map in P1 is a.e. equal to a continuous map.

Continuing by induction, we assume that k is a positive integer such that
every measurable polynomial of degree ≤ k is a.e. equal to a continuous map
and consider a polynomial f ∈ Pk+1 ⊂ U(X, Y ). According to Lemma 10.3
it suffices to prove the continuity of f in the special case where Y = S, and
we assume therefore without loss in generality that f ∈ U(X, S).

Since the characters form an orthonormal basis of L2(X, λX) we deduce
that P1 is homeomorphic to P0 × X̂, where X̂ is equipped with the discrete
topology, and we write θ : P1 −→ X̂ for the projection map. The map

x 7→ q(x) = θ ◦ ∂x(f)

from Xk to X̂ is continuous by Lemma 10.3. Since X̂ is discrete, q(Xk) is
finite, and there exists an open subgroup K1 ⊂ Xk such that q is constant on
each coset of K1 in Xk. We choose an open subgroup K ⊂ X with Kk ⊂ K1.
Then ∂x(f) lies in P0 for all x ∈ Kk, so that the restriction of f to K is
a measurable polynomial of degree at most k. Let K + z1, . . . ,K + zl be
the distinct cosets of K in X, and let, for i = 1, . . . , l, fi : X −→ S be the
map defined by fi(x) = f(zi + x). Since ∂x(fi)(x) = ∂x(f)(zi + x) for each
i, we conclude that restriction of each fi to K is a measurable polynomial
of degree at most k. By the induction hypothesis, the restriction of each
fi to K agrees λK-a.e. with a continuous map, i.e. f agrees λX -a.e. with a
continuous map.

If X is connected then q is trivial, i.e. the degree of f is ≤ k. By a slight
modification of the above induction argument, f agrees λX -a.e. with an
affine map. ¤

10.2. Topological rigidity.

Theorem 10.5 ([4]). Let α and β be mixing algebraic Zd-actions on compact
abelian groups X and Y , respectively. Suppose furthermore that there exists
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an integer k ≥ 2 with the following property: for every closed β-invariant
subgroup Z ⊂ Y , the restriction βZ of β to Z is not (k + 1)-mixing. Then
every equivariant Borel map φ : (X, α) −→ (Y, β) is a measurable polynomial
of degree ≤ k − 1 and hence a.e. equal to a continuous map.

We begin the proof of Theorem 10.5 with a lemma.

Lemma 10.6. Let α be a mixing algebraic Zd-action on a compact abelian
group X, k ≥ 1, and let fi : Xk −→ R+, i = 0, . . . , k, be continuous maps
with the following properties.

(1) For every i = 1, . . . , k and (x1, . . . , xk) ∈ Xk, fi(x1, . . . , xk) = 0
whenever xj = 0 for some j ∈ {1, . . . , k};

(2) There exist sequences (n(i)
m , m ≥ 1), i = 1, . . . , k, in Zd with

lim
m→∞n(i)

m = ∞
for i = 1, . . . , k, and

f0 ≤
k∑

i=1

fi ◦ ᾱn
(i)
m (10.2)

for every m ≥ 1, where ᾱ : n −→ αn × · · · × αn is the diagonal
Zd-action on Xk induced by α.

Then f0 ≡ 0.

Proof. If f0 6≡ 0, then there exist nonempty open subsets U1, . . . ,Uk in X

and an ε > 0 such that

f0(x1, . . . , xk) > ε for every (x1, . . . , xk) ∈ U1 × · · · × Uk. (10.3)

Since each fi is continuous, it is uniformly continuous on Xk, and there
exists an open neighbourhood U of 0 in X such that

fi(x1, . . . , xk) < ε/k (10.4)

whenever i ∈ {1, . . . , k} and xj ∈ U for some j ∈ {1, . . . , k}.
As α is mixing, there exists an integer M ≥ 1 with α−n

(i)
m (U) ∩ Ui 6= ∅

for every i = 1, . . . , k and m ≥ M . Fix xi ∈ α−n
(i)
M (U) ∩ Ui for i = 1, . . . , k.

Then αn
(i)
M xi ∈ U and hence, by (10.3),

fi ◦ ᾱn
(i)
M (x1, . . . , xk) < ε/k

for i = 1, . . . , k, which violates (10.2)–(10.3). ¤

Proof of Theorem 10.5. It suffices to show that 〈a, φ〉 : X −→ Y is a meas-
urable polynomial of degree ≤ k − 1 for every character a ∈ Ŷ . We set

A = {a ∈ Ŷ : 〈a, φ〉 is a measurable polynomial of degree ≤ k − 1}
and assume that A ( Ŷ .
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The group A is obviously invariant under β̂, and its annihilator

Z = A⊥ = {y ∈ Y : 〈a, y〉 = 1 for every a ∈ A}.
is a closed β-invariant subgroup of Y .

By assumption, βZ is not (k + 1)-mixing. Hence there exist characters
b0, . . . , bk ∈ Ẑ with b0 6= 0, and sequences (n(i)

m , m ≥ 1), i = 1, . . . , k, in Zd

with
lim

m→∞n(i)
m = ∞

for i = 1, . . . , k, such that

b0 =
k∑

i=1

β̂n
(i)
m

Z bi

for every m ≥ 1. We extend each bi ∈ Ẑ to an element b′i ∈ Ŷ and obtain
elements am ∈ A, m ≥ 1, with

b′0 =
k∑

i=1

β̂n
(i)
m b′i + am

for every m ≥ 1. By composing this equation with φ we obtain that

〈b′0, φ〉 = 〈am, φ〉 ·
k∏

i=1

〈β̂n
(i)
m b′i, φ〉 = 〈am, φ〉 ·

k∏

i=1

〈b′i, φ ◦ αn
(i)
m 〉

for every m ≥ 1. Put

fi(x1, . . . , xk) = ‖∂k(x1, . . . , xk)(〈b′i, φ〉)− 1‖2

for every (x1, . . . , xk) ∈ Xk and i = 0, . . . , k, and note that

f0 ≤
k∑

i=1

fi ◦ ᾱn
(i)
m + ‖∂k(x1, . . . , xk)(〈am, φ〉)− 1‖2 (10.5)

for every m ≥ 1, where we are using the same notation as in Lemma 10.6.
As am ∈ A, 〈am, φ〉 is a measurable polynomial of degree ≤ k, and hence
∂k(x1, . . . , xk)(〈am, φ〉) = 1 λY -a.e. The inequality (10.5) thus reduces to

f0 ≤
k∑

i=1

fi ◦ ᾱn
(i)
m

for every m ≥ 1, and Lemma 10.6 guarantees that f0 ≡ 0. This shows that
b′0 ∈ A and hence b0 = 0, and the resulting contradiction to our choice of b0

implies that A = Ŷ and that φ is a measurable polynomial of degree ≤ k−1,
as claimed. ¤
Corollary 10.7. Let d > 1, and let α and β be algebraic Zd-actions on
compact abelian groups X and Y , respectively. Suppose that Y is zero-
dimensional and that β has zero entropy. Then there exists a continuous
factor map φ′ : (X, α) −→ (Y, β) such that φ = φ′ λX -a.e.
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Proof. Let N = Ŷ be the dual module of β. Then there exists an increasing
sequence (Nk, k ≥ 1) of submodules of N such that N =

⋃
k≥1 Nk and each

Nk is Noetherian. For every k ≥ 1, the annihilator Yk = N⊥
k ⊂ Y is a closed

β-invariant subgroup, and we denote by πk : Y −→ Y/Yk the quotient map.
Let φ : (X,α) −→ (Y, β) be a measurable factor map such that φk = πk◦φ

is a measurable polynomial for every k ≥ 1. Then πk ◦ φ is λX -a.e. equal
to a continuous factor map φk : (X, α) −→ (Y/Yk, βY/Yk

) for every k ≥ 1,
where βY/Yk

is the Zd-action on Y/Yk induced by β. As
⋂

k≥1 Yk = {0Y },
compactness implies that there exists, for every neighbourhood U of the
identity in Y , an integer K ≥ 1 with Yk ⊂ U for every k ≥ K. If φ is not
equal to a continuous map λX -a.e., then the same is true for some φk, which
leads to a contradiction. This observation allows us to assume without loss
in generality that N = Ŷ is Noetherian.

As
⋃

k≥1 Nk = N we know that
⋂

k≥1 Yk = {0Y }. By compactness there
exists, for every neighbourhood U of the identity in Y , an integer K ≥ 1
with Yk ⊂ U for every k ≥ K. If φ is not equal to a continuous map λX -a.e.,
then the same is true for some φk = πk ◦φ, which contradicts the hypothesis
in preceding paragraph. This allows us to assume without loss in generality
that N = Ŷ is Noetherian.

Let therefore N be Noetherian, and let Asc(N) be the set of associated
prime ideals of N . Since Y is zero-dimensional, every p ∈ Asc(N) contains
a rational prime constant p(p) > 1 by Lemma 5.1, and Table 1 (6) implies
that p ) (p(p)) = p(p)Rd, since β has zero entropy. We choose and fix,
for every p ∈ Asc(N), a Laurent polynomial f(p) ∈ p r (p(p)), observe
that the polynomial f(p)/p(p) ∈ R

(p(p))
d in (7.1) is nonzero, and denote by

K = maxp∈Asc(N) |S(f(p)/p(p))| the maximal cardinality of the supports of
these polynomials.

Suppose that Z ⊂ Y is a closed β-invariant subgroup. We write L = Ẑ

for the dual module of Z, choose a prime ideal q ∈ Asc(L) and an element
a ∈ L with q = ann(a), and set L′ = Rd · a ∼= Rd/q. Since L is a quotient
of N , q contains some p ∈ Asc(N), and Example 7.1 (2) shows that αL′ ∼=
αRd/q — and hence βZ = αL — is not mixing of order |S(f(q))| ≤ K. By
Theorem 10.5, φ is a measurable polynomial and thus coincides λ-a.e. with
a continuous factor map. ¤

10.3. Homoclinic points and isomorphism rigidity. Once we know
that measurable conjugacies and factor maps between two algebraic Zd-
actions (X, α) and (Y, β) are automatically continuous it is not too difficult
to verify that they have to be polynomials (the approach using homoclinic
points described below is one such method). If the groups X and Y are
connected, these polynomials are affine by Proposition 10.4, which proves
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isomorphism rigidity. However, if the groups X and Y are zero-dimensional,
polynomials may have degrees > 1, and one needs additional hypotheses
(whose necessity will be illustrated below in Example 10.15) to ensure that
the measurable conjugacies and factor maps are affine.

Definition 10.8. Let α be an algebraic Zd-action on a compact abelian
group X, and let Γ ⊂ Zd be a subgroup. An element x ∈ X is (α, Γ)-
homoclinic (to the identity element 0X of X), if

lim
n→∞
n∈Γ

αnx = 0X .

The α-invariant subgroup ∆(α,Γ)(X) ⊂ X of all (α, Γ)-homoclinic points is
an Rd-module under the operation

f · x = f(α)(x)

for every f ∈ Rd and x ∈ ∆(α,Γ)(X) (cf. (4.5)), and is called the Γ-homoclinic
module of α (cf. [26]).

Proposition 10.9. Let α be an expansive algebraic Zd-action on a compact
abelian group X, and let Γ ⊂ Zd be a subgroup. Then ∆(α,Γ) 6= {0X} if and
only if the entropy h(αΓ) of the algebraic Γ-action αΓ on X is positive, and
∆(α,Γ) is dense in X if and only if αΓ has completely positive entropy (where
entropy is always taken with respect to Haar measure).

Proof. This is [26, Theorems 4.1 and 4.2]. ¤

If an expansive and mixing algebraic Zd-action α on a compact abelian
group X has zero entropy, then the homoclinic group ∆α(X) of this Zd-
action is trivial by Proposition 10.9, but ∆(α,Γ) will be dense in X for ap-
propriate subgroups Γ ⊂ Zd. We investigate this phenomenon in the special
case where p > 1 is a rational prime, f ∈ R

(p)
d an irreducible Laurent poly-

nomial such that the convex hull C(f) ⊂ Rd of the support S(f) ⊂ Zd of f

contains an interior point (cf. (7.4)), and where α = α
R

(p)
d /(f)

is the shift-

action of Zd on the compact abelian group X = X
R

(p)
d /(f)

⊂ FZd

p defined in

(7.2)–(7.3).
We write [ . , . ] and ‖ · ‖ for the Euclidean inner product and norm on Rd

and
Sd−1 = {v ∈ Rd : ‖v‖ = 1}

for the unit sphere in Rd and set, for every nonzero element m ∈ Zd,

m∗ = m
‖m‖ ,

Γm = {n ∈ Zd : [m,n] = 0}. (10.6)
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Proposition 10.10. [5] Let d > 1, p > 1 a rational prime, f ∈ R
(p)
d an

irreducible Laurent polynomial such that the shift-action α = α
R

(p)
d /(f)

of Zd

on the compact abelian group X = X
R

(p)
d /(f)

⊂ FZd

p in (7.2)–(7.3) is mixing,

and let m ⊂ Zd be a nonzero element such that the restriction αΓm of α to the
subgroup Γm in (10.6) is expansive. Then the homoclinic group ∆(α,Γm)(X)
is dense in X. Furthermore there exists an open subset W ⊂ Sd−1 such that
every nonzero element n ∈ Zd with n∗ ∈ Sd−1 has the following properties.

(1) ∆(α,Γn)(X) is dense in X;
(2) ∆(α,Γm)(X) ∩∆(α,Γn)(X) = {0X}.

The proof of Proposition 10.10 is given in [5]. By using this proposi-
tion and some algebraic structure theory one obtains the following rigidity
result for measurable factor maps between algebraic Zd-actions on zero-
dimensional compact abelian groups.

Theorem 10.11. Let d > 1, and let α and β be mixing algebraic Zd-actions
on zero-dimensional compact abelian groups X and Y , respectively. Suppose
that there exists a subgroup Γ ⊂ Zd of of infinite index such that the restric-
tion αΓ of α to Γ is expansive and has completely positive entropy. Then
every measurable factor map φ : (X, α) −→ (Y, β) is λX -a.e. equal to an
affine map.

Theorem 10.11 was proved independently in [5] and [9]; the latter proof
depends on a characterization of invariant measures analogous to the con-
nection between the Theorems 8.5 and 8.4. Here we follow the ‘homoclinic’
route in [5]; however, before turning to the proof of this result, we mention
a couple of corollaries which generalize the main result in [21] in different
directions.

Corollary 10.12. Let d > 1, and let α and β be mixing algebraic Zd-actions
on zero-dimensional compact abelian groups X and Y , respectively. Suppose
that there exists a nonzero element n ∈ Zd such that the automorphism αn is
expansive. Then every measurable factor map φ : (X, α) −→ (Y, β) is λX -a.e.

equal to an affine map.

Proof. Since every mixing (= ergodic) group automorphism has completely
positive entropy, this is Theorem 10.11 with Γ of rank one. ¤

Corollary 10.13. Let d > 1, p a rational prime, and p, q ⊂ R
(p)
d nonzero

prime ideals such that the Zd-actions α = α
R

(p)
d /p and β = α

R
(p)
d /q on the

compact zero dimensional groups X = X
R

(p)
d /p and Y = X

R
(p)
d /q in (7.2)–

(7.3) are mixing. Then α and β are measurably conjugate if and only if they
are algebraically conjugate, and hence if and only if p = q. Furthermore,
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every measurable conjugacy φ : (X, α) −→ (Y, β) is λX -a.e. equal to an affine
map.

Proof. The existence of a subgroup Γ ⊂ Zd of infinite index with the proper-
ties required by Theorem 10.11 is proved in [10] (the rank of Γ is the maximal
number of algebraically independent elements in the set {un +p : n ∈ Zd} ⊂
R

(p)
d /p). Let φ : (X,α) −→ (Y, β) be a measurable conjugacy. By Theorem

10.11, there exist y ∈ Y and a continuous homomorphism θ : X −→ Y such
that φ(x) = y + θ(x) for λX -a.e. x ∈ X. It is easy to verify that θ is an
algebraic conjugacy of (X,α) and (Y, β).

In order to see that algebraic conjugacy implies that p = q we note that,
for every f ∈ R

(p)
d , the maps f(α) and f(β) in (4.5) are surjective if and

only if f /∈ p (resp. f /∈ q). ¤

We begin our sketch of the proof of Theorem 10.11 with a lemma.

Lemma 10.14. For i = 1, 2, 3, let αi be a mixing algebraic Zd-action on
a compact abelian group Xi, and let φ : (X1 ×X2, α1 × α2) −→ (X3, α3) be
a continuous factor map such that φ(x1, x2) = 0X3 whenever x1 = 0X1 or
x2 = 0X2. Suppose furthermore that there exist subgroups Γ1, Γ2 in Zd such
that the homoclinic groups ∆(αi,Γi)(Xi) are dense in Xi for i = 1, 2, and that
∆(α3,Γ1)(X3) ∩∆(α3,Γ2)(X3) = {0X3}. Then φ(X1 ×X2) = {0X3}.
Proof. Since φ is a continuous factor map,

lim
m→∞
m∈Γ1

αm
3 φ(x1, x2) = lim

m→∞
m∈Γ1

φ(αm
1 x1, α

m
2 x2) = 0X3

= lim
n→∞
n∈Γ2

αn
3 φ(x1, x2) = lim

n→∞
n∈Γ2

φ(αn
1 x1, α

n
2 x2)

for every xi ∈ ∆(αi,Γi)(Xi), i = 1, 2. Hence

φ(x1, x2) ∈ ∆(α3,Γ1)(X3) ∩∆(α3,Γ2)(X3) = {0X3}.
As ∆(αi,Γi)(Xi) ⊂ Xi is dense for i = 1, 2 and φ is continuous this implies
our assertion. ¤

Leaving technicalities and a bit of algebra aside, the basic idea of the proof
of Theorem 10.11 is the fact that there exist two subgroups Γ1, Γ2 ⊂ Zd such
that each action αΓi has a dense group of homoclinic points and there are
no nonzero common homoclinic points for the actions βΓi . Since we know
already that the factor map φ : X −→ Y is continuous, we can form a new
map ψ : X ×X −→ Y by setting

ψ(x1, x2) = ψ(x1 + x2)− ψ(x1)− ψ(x1) + ψ(0).

Since ψ ◦ (αn × αn) = βn ◦ ψ for all n ∈ Zd, and since ψ is continuous and
hence uniformly continuous, ψ(x1, x2) ∈ ∆(β,Γ1) ∩ ∆(β,Γ2) = {0} whenever
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xi ∈ ∆(α,Γi), i = 1, 2. Hence ψ vanishes on the dense set ∆(α,Γ1)×∆(α,Γ1) ⊂
X ×X and is thus equal to zero by continuity. This shows that φ is affine.

The crucial point in this argument is that two such subgroups Γ1, Γ2

suffice under the hypotheses of Theorem 10.11. In general one can find fi-
nitely many such subgroups Γ1, . . . , Γn ⊂ Zd such that each action αΓi has a
dense group of homoclinic points and there are no nonzero common homo-
clinic points for the actions βΓi , i = 1, . . . , n, and obtains that the map
ψ : Xn −→ Y with

ψ(x1, . . . , xn) =
∑

F⊂{1,...,n}
(−1)|F | φ

(∑

i∈F

xi

)

vanishes on Xn. This implies that φ is a polynomial of degree n−1, but not
necessarily of degree 1.

The following examples from [5] show that Theorem 10.11 and Corollary
10.13 need not hold if any of the assumptions are dropped.

Examples 10.15. (1) A non-surjective and non-affine equivariant map.
Let d = 3, p = 2, and consider the polynomials f1, f2 ∈ R

(2)
3 defined by

f1 = 1 + u1 + u2, f2 = 1 + u1 + u2 + u2
1 + u1u2 + u2

2 + u3. Let p = (f1, f2) ⊂
R

(2)
3 denote the ideal generated by f1 and f2, and let q = (f2) ⊂ R

(2)
3

be the principal ideal generated by f2. It is easy to see that p and q are
prime ideals. We define the shift-actions α1 = α

R
(2)
3 /p and α2 = α

R
(2)
3 /q on

X1 = X
R

(2)
3 /p ⊂ FZ3

2 and X2 = X
R

(2)
3 /q ⊂ FZ3

2 , respectively, by (7.2)–(7.3).
From Table 1 it is clear that α1 and α2 are mixing and have zero entropy.

We write ? for the component-wise multiplication (z ? z′)n = znz′n in FZ3

2

and observe that
σn(z ? z′) = (σnz) ? (σnz′)

for every z, z′ ∈ FZ3

2 and n ∈ Z3 (cf. (3.1)). We claim that

x ? x′ ∈ X2 for every x, x′ ∈ X1. (10.7)

In order to verify this we define subsets Si ⊂ Z3, i = 0, . . . , 3, by

S0 = S(f2), S1 = S(f1),

S2 = {(1, 0, 0), (1, 1, 0), (2, 1, 0)} = S(u1f1),

S3 = {(0, 1, 0), (0, 2, 0), (1, 1, 0)} = S(u2f1),

and consider the set Z of all z ∈ FS0
2 with

∑
n∈Si

zn = 0 for i = 0, . . . , 3.
A calculation shows that, for every z, z′ ∈ Z, the component-wise product
w = z ? z′ ∈ FS0

2 satisfies that
∑

n∈S0
wn = 0. This implies (10.7).

Take a non-zero m ∈ Z3 such that αm
1 z = z for some non-zero z ∈ X1 and

define φ : X1 −→ X2 by φ(x) = x ? αm
1 x. Clearly φ is a Z3-equivariant map

from (X1, α1) to (X2, α2). We choose y ∈ X1 such that z ? (αm
1 y− y) 6= 0X2 .
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Since φ(0X1) = 0X2 and φ(z + y)− φ(z)− φ(y) = z ? (αm
1 y − y) 6= 0X2 , the

map φ is not affine.

(2) A non-affine factor map ψ : (X, α) −→ (X ′, α′) between expansive and
mixing zero-entropy algebraic Z3-actions, where α′ has an expansive Z2-sub-
action with completely positive entropy. We use the same notation as in
Example (1). Let r = pq = (f1f2, f

2
2 ) ⊂ R

(2)
3 be the ideal generated by f1f2

and f2
2 and let β denote the algebraic Z3-action α

R
(2)
3 /r on Y = X

R
(2)
3 /r ⊂

FZ3

2 . From Table 1 it follows that the action (Y, β) is mixing and has zero
entropy. We define continuous group homomorphisms θ1 : Y −→ X1 and
θ2 : Y −→ X2 by

θ1(y) = f2(σ)(y), θ2(y) = f1(σ)(y).

It is easy to verify that for i = 1, 2, θi : (Y, β) −→ (Xi, αi) is an algebraic
factor map. Let ψ : (Y, β) −→ (X2, α2) be the Z3-equivariant continuous
map defined by

ψ(x) = θ2(x) + φ ◦ θ1(x),

where φ : X1 −→ X2 is as in the previous example. Since θ1 is a surjective
homomorphism and φ is non-affine, it follows that φ ◦ θ1 is non-affine, i.e.
that ψ is a non-affine map. It is easy to see that the restriction of θ2 to X2

is a surjective map from X2 to itself. Since θ1(x) = 0 for all x ∈ X2 ⊂ Y ,
this shows that ψ is a non-affine factor map from (Y, β) to (X2, α2).

(3) Two measurably conjugate expansive and mixing zero-entropy algeb-
raic Z3-actions on non-isomorphic compact zero-dimensional abelian groups.
Let (X1, α1) and (X2, α2) be as in Example (1), and let (X,α) denote the
product action (X1, α1)×(X2, α2). Following [3] we define a zero-dimensional
compact abelian group Y and an algebraic Z3-action β on Y by setting
Y = X1 ×X2 with composition

(x, y)¯ (x′, y′) = (x + x′, x ? x′ + y + y′)

for every (x, x′), (y, y′) ∈ Y , and by letting

βn(x, y) = (αn
1 x, αn

2 y)

for every (x, y) ∈ Y and n ∈ Z3. The ‘identity’ map φ : X −→ Y , defined by

φ(x, y) = (x, y)

for every (x, y) ∈ X, is obviously a topological conjugacy of (X, α) and
(Y, β) with λXφ−1 = λY (by Fubini’s theorem). However, φ is not a group
isomorphism. In fact, the groups X and Y are not isomorphic: since X is a
subgroup (F2⊕F2)Z

3
, every element in X has order 2, whereas (x, 0X2) ∈ Y

and (x, 0X2)¯ (x, 0X2) = (0X2 , x) 6= 0Y for every nonzero x ∈ X1.
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