A characterization of p-automatic sequences as columns of linear cellular automata

Reem Yassawi Trent University, Canada joint with Eric Rowland http://arxiv.org/pdf/1209.6008v1.pdf

June 5, 2013

Given a symbolic dynamical system (X, T), does there exists a cellular automaton with a subsystem conjugate to (X, T)?

- Given a symbolic dynamical system (X, T), does there exists a cellular automaton with a subsystem conjugate to (X, T)?
- Given a sequence on a finite alphabet, does this sequence occur as a column of a cellular automaton spacetime diagram with eventually periodic initial conditions?

- Given a symbolic dynamical system (X, T), does there exists a cellular automaton with a subsystem conjugate to (X, T)?
- Given a sequence on a finite alphabet, does this sequence occur as a column of a cellular automaton spacetime diagram with eventually periodic initial conditions?

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Theorem[Litow and Dumas, 1993]

Each column of a linear cellular automaton over \mathbb{F}_q , begun from an initial condition with finitely many nonzero entries, is necessarily *p*-automatic.

- Given a symbolic dynamical system (X, T), does there exists a cellular automaton with a subsystem conjugate to (X, T)?
- Given a sequence on a finite alphabet, does this sequence occur as a column of a cellular automaton spacetime diagram with eventually periodic initial conditions?

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Theorem[Litow and Dumas, 1993]

Each column of a linear cellular automaton over \mathbb{F}_q , begun from an initial condition with finitely many nonzero entries, is necessarily *p*-automatic.

Theorem[Rowland, Y, 2012]

If a sequence of elements in \mathbb{F}_q is *p*-automatic, then it is a column of a spacetime diagram of a linear cellular automaton with memory over \mathbb{F}_q whose initial conditions are eventually periodic in both directions. Furthermore, our proof is constructive.

Some pictures

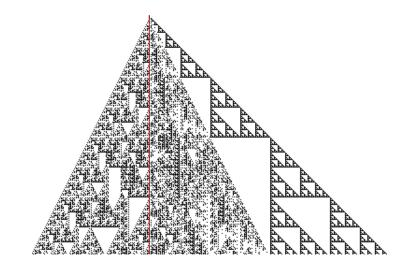


Figure : Spacetime diagram of a linear cellular automaton with memory 12 containing the Thue–Morse sequence as a column.

Some pictures

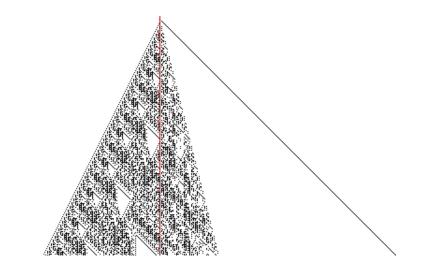


Figure : Spacetime diagram of a linear cellular automaton with memory 20 containing the Rudin-Shapiro sequence as a column.

Some pictures

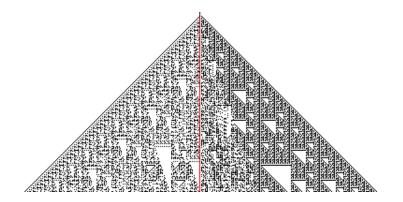


Figure : Spacetime diagram of a linear cellular automaton with memory 27 containing the Baum-Sweet sequence as a column.

<ロト <回ト < 注ト < 注ト

Definitions

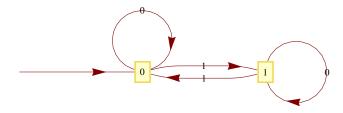
Let $\Sigma_k = \{0, 1, \dots, k-1\}.$

<□ > < @ > < E > < E > E のQ @

Definitions

Let $\Sigma_k = \{0, 1, \dots, k-1\}.$

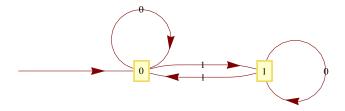
A deterministic finite automaton with output is a 6-tuple $(S, \Sigma_k, \delta, s_0, \mathcal{A}, \omega)$, where S is a finite set of "states", $s_0 \in S$ is the initial state, \mathcal{A} is a finite alphabet, $\omega : S \to \mathcal{A}$ is the output function, and $\delta : S \times \Sigma_k \to S$ is the transition function.



Definitions

Let $\Sigma_k = \{0, 1, \dots, k-1\}.$

A deterministic finite automaton with output is a 6-tuple $(S, \Sigma_k, \delta, s_0, \mathcal{A}, \omega)$, where S is a finite set of "states", $s_0 \in S$ is the initial state, \mathcal{A} is a finite alphabet, $\omega : S \to \mathcal{A}$ is the output function, and $\delta : S \times \Sigma_k \to S$ is the transition function.



We will work only with *p*-automatic sequences. By injecting \mathcal{A} into some \mathbb{F}_q with $|\mathcal{A}| \leq q = p^n$, we can assume $\mathcal{A} = \mathbb{F}_q$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A sequence $(u_n)_{n\geq 0}$ of elements in \mathcal{A} is *k*-automatic if there is a DFAO $(\mathcal{S}, \Sigma_k, \delta, s_0, \mathcal{A}, \omega)$ such that $u_n = \omega(\delta(s_0, (n)_k))$ for all $n \geq 0$.

Definition

A sequence $(u_n)_{n\geq 0}$ of elements in \mathcal{A} is *k*-automatic if there is a DFAO $(\mathcal{S}, \Sigma_k, \delta, s_0, \mathcal{A}, \omega)$ such that $u_n = \omega(\delta(s_0, (n)_k))$ for all $n \geq 0$.

Example: The Thue–Morse sequence is the 2-automatic sequence $(u_n)_{n\geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, \ldots$ where $u_n = 0$ if the number of occurrences of 1 in the binary representation of n is even and $u_n = 1$ otherwise.

Definition

A sequence $(u_n)_{n\geq 0}$ of elements in \mathcal{A} is *k*-automatic if there is a DFAO $(\mathcal{S}, \Sigma_k, \delta, s_0, \mathcal{A}, \omega)$ such that $u_n = \omega(\delta(s_0, (n)_k))$ for all $n \geq 0$.

Example: The Thue–Morse sequence is the 2-automatic sequence $(u_n)_{n\geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, \ldots$ where $u_n = 0$ if the number of occurrences of 1 in the binary representation of n is even and $u_n = 1$ otherwise.

[Cobham, 1972] A sequence is k-automatic if and only if it is the image, under a letter-to-letter projection, of a fixed point of a length-k substitution.

A (one-dimensional) cellular automaton with memory d is a continuous, σ -commuting map $\Phi : (\mathcal{A}^d)^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$. Here by memory we mean a time memory.

・ロト・(部・・ヨト・ヨト・ヨー・ つへぐ)

A (one-dimensional) cellular automaton with memory d is a continuous, σ -commuting map $\Phi : (\mathcal{A}^d)^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$. Here by memory we mean a time memory.

The Curtis–Hedlund–Lyndon theorem also holds for a cellular automaton with memory, so that Φ is a cellular automaton with memory d iff there is a local rule $\phi : (\mathcal{A}^d)^{l+r+1} \to \mathcal{A}$ (l=left radius, r =right radius, $l \ge 0$, $r \ge 0$) such that for all $R \in \mathcal{A}^{d^{\mathbb{Z}}}$ and all $m \in \mathbb{Z}$,

 $(\Phi(R))(m) = \phi(R(m-l), R(m-l+1), \dots, R(m+r)).$ (1)

Conversely, any local rule ϕ defines a cellular automaton Φ with memory using Identity (1).

A (one-dimensional) cellular automaton with memory d is a continuous, σ -commuting map $\Phi : (\mathcal{A}^d)^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$.

Here by memory we mean a *time memory*.

The Curtis–Hedlund–Lyndon theorem also holds for a cellular automaton with memory, so that Φ is a cellular automaton with memory d iff there is a local rule $\phi : (\mathcal{A}^d)^{l+r+1} \to \mathcal{A}$ (l=left radius, r =right radius, $l \ge 0$, $r \ge 0$) such that for all $R \in \mathcal{A}^{d^{\mathbb{Z}}}$ and all $m \in \mathbb{Z}$,

 $(\Phi(R))(m) = \phi(R(m-l), R(m-l+1), \dots, R(m+r)).$ (1) Conversely, any local rule ϕ defines a cellular automaton Φ with memory using Identity (1). If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{l+r+1}$ and \mathbb{F}_q are \mathbb{F}_q -vector spaces.

A (one-dimensional) cellular automaton with memory d is a continuous, σ -commuting map $\Phi : (\mathcal{A}^d)^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$.

Here by memory we mean a *time memory*.

The Curtis–Hedlund–Lyndon theorem also holds for a cellular automaton with memory, so that Φ is a cellular automaton with memory d iff there is a local rule $\phi : (\mathcal{A}^d)^{l+r+1} \to \mathcal{A}$ (l=left radius, r =right radius, $l \ge 0$, $r \ge 0$) such that for all $R \in \mathcal{A}^{d^{\mathbb{Z}}}$ and all $m \in \mathbb{Z}$,

 $(\Phi(R))(m) = \phi(R(m-l), R(m-l+1), \dots, R(m+r)).$ (1) Conversely, any local rule ϕ defines a cellular automaton Φ with memory using Identity (1). If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{l+r+1}$ and \mathbb{F}_q are \mathbb{F}_q -vector spaces. We say that the cellular automaton $\Phi : (\mathbb{F}_q^d)^{\mathbb{Z}} \to \mathbb{F}_q^{\mathbb{Z}}$ with memory d is *linear* if ϕ is an \mathbb{F}_q -linear map.

A (one-dimensional) cellular automaton with memory d is a continuous, σ -commuting map $\Phi : (\mathcal{A}^d)^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$.

Here by memory we mean a *time memory*.

The Curtis–Hedlund–Lyndon theorem also holds for a cellular automaton with memory, so that Φ is a cellular automaton with memory d iff there is a local rule $\phi : (\mathcal{A}^d)^{l+r+1} \to \mathcal{A}$ (l=left radius, r =right radius, $l \ge 0$, $r \ge 0$) such that for all $R \in \mathcal{A}^{d^{\mathbb{Z}}}$ and all $m \in \mathbb{Z}$,

$$(\Phi(R))(m) = \phi(R(m-l), R(m-l+1), \dots, R(m+r)).$$
 (1)

Conversely, any local rule ϕ defines a cellular automaton Φ with memory using Identity (1). If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{l+r+1}$ and \mathbb{F}_q are \mathbb{F}_q -vector spaces. We say that the cellular automaton $\Phi : (\mathbb{F}_q^d)^{\mathbb{Z}} \to \mathbb{F}_q^{\mathbb{Z}}$ with memory d is *linear* if ϕ is an \mathbb{F}_q -linear map.

Example

Rule 90 is an LCA, l=r=1 defined over \mathbb{F}_2 ; its local rule is $(\phi)(a, b, c) = a + c$. Definition If $\Phi : (\mathcal{A}^d)^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is a cellular automaton with memory d, then a *spacetime diagram* for Φ with initial conditions R_0, \ldots, R_{d-1} is the sequence $(R_n)_{n\geq 0}$ where we inductively define $R_n := \Phi(R_{n-d}, \ldots, R_{n-1})$ for $n \geq d$.

Definition If $\Phi : (\mathcal{A}^d)^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is a cellular automaton with memory d, then a *spacetime diagram* for Φ with initial conditions R_0, \ldots, R_{d-1} is the sequence $(R_n)_{n\geq 0}$ where we inductively define $R_n := \Phi(R_{n-d}, \ldots, R_{n-1})$ for $n \geq d$.

Example

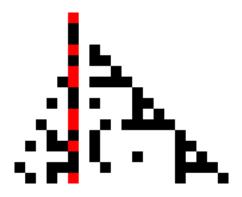


Figure : Spacetime diagram of a linear cellular automaton with memory 12 containing the Thue–Morse sequence as a column.

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Theorem[Rowland, Y, 2012]

If a sequence of elements in \mathbb{F}_q is *p*-automatic then it is a column of a spacetime diagram of a linear cellular automaton with memory over \mathbb{F}_q whose initial conditions are eventually periodic in both directions. Furthermore, the proof is constructive.

Theorem[Rowland, Y, 2012]

If a sequence of elements in \mathbb{F}_q is *p*-automatic then it is a column of a spacetime diagram of a linear cellular automaton with memory over \mathbb{F}_q whose initial conditions are eventually periodic in both directions. Furthermore, the proof is constructive.

Corollary 1

If $(u_n)_{n\geq 0}$ is a *p*-automatic sequence, then the sequence $(u_n)_{n\geq 0}$ is the letter-to-letter projection of a sequence $(v_n)_{n\geq 0}$ which occurs as a column of a linear cellular automaton (without memory) whose initial condition is eventually periodic in both directions.

Theorem[Rowland, Y, 2012]

If a sequence of elements in \mathbb{F}_q is *p*-automatic then it is a column of a spacetime diagram of a linear cellular automaton with memory over \mathbb{F}_q whose initial conditions are eventually periodic in both directions. Furthermore, the proof is constructive.

Corollary 1

If $(u_n)_{n\geq 0}$ is a *p*-automatic sequence, then the sequence $(u_n)_{n\geq 0}$ is the letter-to-letter projection of a sequence $(v_n)_{n\geq 0}$ which occurs as a column of a linear cellular automaton (without memory) whose initial condition is eventually periodic in both directions. Definition

If $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$, define $X_{\mathbf{u}} := \overline{\{\sigma^n(\mathbf{u}) : n \in \mathbb{N}\}}$. The dynamical system $(X_{\mathbf{u}}, \sigma)$ is called the (one-sided) subshift associated with \mathbf{u} .

Theorem[Rowland, Y, 2012]

If a sequence of elements in \mathbb{F}_q is *p*-automatic then it is a column of a spacetime diagram of a linear cellular automaton with memory over \mathbb{F}_q whose initial conditions are eventually periodic in both directions. Furthermore, the proof is constructive.

Corollary 1

If $(u_n)_{n\geq 0}$ is a *p*-automatic sequence, then the sequence $(u_n)_{n\geq 0}$ is the letter-to-letter projection of a sequence $(v_n)_{n\geq 0}$ which occurs as a column of a linear cellular automaton (without memory) whose initial condition is eventually periodic in both directions. Definition

If $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$, define $X_{\mathbf{u}} := \overline{\{\sigma^n(\mathbf{u}) : n \in \mathbb{N}\}}$. The dynamical system $(X_{\mathbf{u}}, \sigma)$ is called the (one-sided) subshift associated with \mathbf{u} . Corollary 2

Let **u** be *p*-automatic. Then $(X_{\mathbf{u}}, \sigma)$ is a factor of a subsystem of some linear cellular automaton $((\mathbb{F}_q^d)^{\mathbb{Z}}, \Phi)$.

Corollary 3 If $(u_n)_{n\geq 0}$ is a *p*-automatic sequence, then for some $r \geq 0$ the sequence $(u_n)_{n\geq r}$ occurs as a column of an invertible cellular automaton with memory.

Corollary 3 If $(u_n)_{n\geq 0}$ is a *p*-automatic sequence, then for some $r \geq 0$ the sequence $(u_n)_{n\geq r}$ occurs as a column of an invertible cellular automaton with memory.

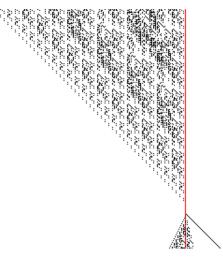


Figure : Spacetime diagram showing the beginning of the infinite history of an invertible cellular automaton containing the Rudin–Shapiro sequence.

Characterizations of automaticity that we use in our proof Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with

coefficients in \mathbb{F}_q respectively.

Recall definitions of $\mathbb{F}_q[t]$, $\mathbb{F}_q(t)$, $\mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively.

[Christol, Kamae, Mendès-France, Rauzy, 1980] The sequence $(u_n)_{n\geq 0}$ of elements in \mathbb{F}_q is *p*-automatic if and only if $F(t) = \sum_{n\geq 0} u_n t^n$ is algebraic over $\mathbb{F}_q(t)$.

Recall definitions of $\mathbb{F}_q[t]$, $\mathbb{F}_q(t)$, $\mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively.

[Christol, Kamae, Mendès-France, Rauzy, 1980] The sequence $(u_n)_{n\geq 0}$ of elements in \mathbb{F}_q is *p*-automatic if and only if $F(t) = \sum_{n\geq 0} u_n t^n$ is algebraic over $\mathbb{F}_q(t)$. Example: If (u_n) is T-M, then $x = F(t) = \sum_{n\geq 0} u_n t^n$ is a root of $P(t, x) = tx + (1 + t)x^2 + (1 + t^4)x^4$.

Recall definitions of $\mathbb{F}_q[t]$, $\mathbb{F}_q(t)$, $\mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively.

[Christol, Kamae, Mendès-France, Rauzy, 1980] The sequence $(u_n)_{n\geq 0}$ of elements in \mathbb{F}_q is *p*-automatic if and only if $F(t) = \sum_{n\geq 0} u_n t^n$ is algebraic over $\mathbb{F}_q(t)$. Example: If (u_n) is T-M, then $x = F(t) = \sum_{n\geq 0} u_n t^n$ is a root of $P(t,x) = tx + (1+t)x^2 + (1+t^4)x^4$. Definition If $F(t,x) = \sum_{m,n} a_{m,n} t^m x^n \in \mathbb{F}_q((t,x))$, the diagonal of F(t,x) is $\sum_m a_{m,m} t^m$.

Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively.

[Christol, Kamae, Mendès-France, Rauzy, 1980] The sequence $(u_n)_{n\geq 0}$ of elements in \mathbb{F}_q is *p*-automatic if and only if $F(t) = \sum_{n\geq 0} u_n t^n$ is algebraic over $\mathbb{F}_q(t)$. Example: If (u_n) is T-M, then $x = F(t) = \sum_{n\geq 0} u_n t^n$ is a root of $P(t,x) = tx + (1+t)x^2 + (1+t^4)x^4$. Definition If $F(t,x) = \sum_{m,n} a_{m,n}t^m x^n \in \mathbb{F}_q((t,x))$, the diagonal of F(t,x) is $\sum_m a_{m,m}t^m$. [Furstenberg, 1967] The Laurent series $F(t) = \sum_{n\geq n_0} u_n t^n$ is algebraic over $\mathbb{F}_q(t)$ if and only if it is the diagonal of a rational Laurent series in two variables over that field.

Recall definitions of $\mathbb{F}_{q}[t], \mathbb{F}_{q}(t), \mathbb{F}_{q}[t]]$, and $\mathbb{F}_{q}((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_{q} respectively.

[Christol, Kamae, Mendès-France, Rauzy, 1980] The sequence $(u_n)_{n\geq 0}$ of elements in \mathbb{F}_q is *p*-automatic if and only if $F(t) = \sum_{n>0} u_n t^n$ is algebraic over $\mathbb{F}_q(t)$. Example: If (u_n) is T-M, then $x = F(t) = \sum_{n>0} u_n t^n$ is a root of $P(t,x) = tx + (1+t)x^2 + (1+t^4)x^4$. Definition If $F(t,x) = \sum_{m,n} a_{m,n} t^m x^n \in \mathbb{F}_q((t,x))$, the *diagonal* of F(t, x) is $\sum_{m} a_{m,m} t^{m}$. [Furstenberg, 1967] The Laurent series $F(t) = \sum_{n \ge n_0} u_n t^n$ is algebraic over $\mathbb{F}_{q}(t)$ if and only if it is the diagonal of a rational Laurent series in two variables over that field.

Christol's theorem combined with Furstenberg's theorem imply that if (u_n) is p-automatic, then (u_n) can be realized as the diagonal of a quarter-lattice array of elements in \mathbb{F}_q which is the formal power series expansion of $E(t,x) = \frac{P(t,x)}{Q(t,x)}$, where $P, Q \in \mathbb{F}_q[t,x]$. → □ → 三 → 三 → ○ への

Heuristic: Rotate this quarter array clockwise so that (u_n) shows up as a column in this diagram, and, under suitable choice of the polynomials, show that you end up with space-time diagram of a linear cellular automaton with memory.

・ロト・日本・モート モー うへぐ

Heuristic: Rotate this quarter array clockwise so that (u_n) shows up as a column in this diagram, and, under suitable choice of the polynomials, show that you end up with space-time diagram of a linear cellular automaton with memory.

In particular the proof of Furstenberg's theorem implies that if (u_n) is automatic, $u_0 = 0$, P(t, F(t))=0 and

 $P_x(0,0)=rac{\partial P(t,x)}{\partial x}|_{(0,0)}
eq 0$, then F(t) is the '-2 column' of of

$$\frac{P_x(t,x)}{P(t,x)}$$

Example: If $P(t,x) = (t^2 + t^9) + x + (t + t^2)x^2 + (t^5 + t^9)x^4$, and $(u_n)_{n\geq 0}$ is T-M, then $P(t, \sum_{n\geq 3} u_n t^{n-2}) = 0$ and $\sum_{n\geq 3} u_n t^{n-2}$ is the -2 column of

$$\frac{P_x(t,x)}{P(t,x)} = \frac{1}{x - (x - P(t,x))} = \frac{1}{x} \sum_{n \ge 0} \left(\frac{x - P(t,x)}{tx}\right)^n t^n$$
$$= \frac{1}{x} + t + \left(\frac{1}{x^2} + 1 + x\right) t^2 + \cdots$$

We shall show that for some r, the shifted sequence u_{r+1}, u_{r+2}, \ldots can be found as a column of a spacetime diagram of a linear cellular automaton with memory.

We shall show that for some r, the shifted sequence $u_{r+1}, u_{r+2}, ...$ can be found as a column of a spacetime diagram of a linear cellular automaton with memory.

Suppose that $G(t) = \sum_{n \ge 1} u_{n+r}t^n$ is a root of $P(t,x) = \sum_{i=0}^m A_i(t)x^{p^i} + B(t) = \alpha x + tQ(t,x)$ where $\alpha \neq 0$.

We shall show that for some r, the shifted sequence $u_{r+1}, u_{r+2}, ...$ can be found as a column of a spacetime diagram of a linear cellular automaton with memory.

Suppose that $G(t) = \sum_{n \ge 1} u_{n+r} t^n$ is a root of $P(t,x) = \sum_{i=0}^m A_i(t) x^{p^i} + B(t) = \alpha x + tQ(t,x)$ where $\alpha \ne 0$. We can use Furstenberg's proof to show that G(t) is Column -2 of $\frac{P_x(t,x)}{P(t,x)}$.

We shall show that for some r, the shifted sequence u_{r+1}, u_{r+2}, \ldots can be found as a column of a spacetime diagram of a linear cellular automaton with memory.

Suppose that $G(t) = \sum_{n \ge 1} u_{n+r}t^n$ is a root of $P(t,x) = \sum_{i=0}^m A_i(t)x^{p^i} + B(t) = \alpha x + tQ(t,x)$ where $\alpha \ne 0$. We can use Furstenberg's proof to show that G(t) is Column -2 of $\frac{P_x(t,x)}{P(t,x)}$.

Now expand to get a series in *t*:

$$\frac{P_x(t,x)}{P(t,x)} = \frac{P_x(t,x)}{\alpha x} \cdot \frac{1}{1 + \frac{tQ(t,x)}{\alpha x}}$$
$$= \frac{P_x(t,x)}{\alpha x} \sum_{n \ge 0} \left(-\frac{Q(t,x)}{\alpha x} \right)^n t^n = \sum_{n \ge 0} R_n(x) t^n$$

We shall show that for some r, the shifted sequence u_{r+1}, u_{r+2}, \ldots can be found as a column of a spacetime diagram of a linear cellular automaton with memory.

Suppose that $G(t) = \sum_{n \ge 1} u_{n+r} t^n$ is a root of $P(t,x) = \sum_{i=0}^m A_i(t) x^{p^i} + B(t) = \alpha x + tQ(t,x)$ where $\alpha \ne 0$. We can use Furstenberg's proof to show that G(t) is Column -2 of $\frac{P_x(t,x)}{P(t,x)}$.

Now expand to get a series in *t*:

$$\begin{array}{ll} \frac{P_x(t,x)}{P(t,x)} &=& \frac{P_x(t,x)}{\alpha x} \cdot \frac{1}{1 + \frac{tQ(t,x)}{\alpha x}} \\ &=& \frac{P_x(t,x)}{\alpha x} \sum_{n \ge 0} \left(-\frac{Q(t,x)}{\alpha x} \right)^n t^n = \sum_{n \ge 0} R_n(x) t^n \end{array}$$

As αx is a monomial, each $R_n(x)$ is a Laurent polynomial.

We shall show that for some r, the shifted sequence $u_{r+1}, u_{r+2}, ...$ can be found as a column of a spacetime diagram of a linear cellular automaton with memory.

Suppose that $G(t) = \sum_{n \ge 1} u_{n+r} t^n$ is a root of $P(t,x) = \sum_{i=0}^m A_i(t) x^{p^i} + B(t) = \alpha x + tQ(t,x)$ where $\alpha \neq 0$. We can use Furstenberg's proof to show that G(t) is Column -2 of $\frac{P_x(t,x)}{P(t,x)}$.

Now expand to get a series in *t*:

$$\frac{P_x(t,x)}{P(t,x)} = \frac{P_x(t,x)}{\alpha x} \cdot \frac{1}{1 + \frac{tQ(t,x)}{\alpha x}}$$

$$= \frac{P_x(t,x)}{\alpha x} \sum_{n \ge 0} \left(-\frac{Q(t,x)}{\alpha x} \right)^n t^n = \sum_{n \ge 0} R_n(x) t^n$$

As αx is a monomial, each $R_n(x)$ is a Laurent polynomial. It remains to show that this 2-d array is the spacetime diagram of a cellular automaton with memory. Multiplying both sides by P(t, x) gives

$$P_{x}(t,x) = \sum_{i=0}^{d} C_{i}(x)t^{i} \sum_{j\geq 0} R_{j}(x)t^{j} = \sum_{n\geq 0} \left(\sum_{i+j=n}^{n} C_{i}(x)R_{j}(x)\right)t^{n}$$
$$= \sum_{n=0}^{d} \left(\sum_{i=0}^{n} C_{i}(x)R_{n-i}(x)\right)t^{n} + \sum_{n\geq d+1} \left(\sum_{i=0}^{d} C_{i}(x)R_{n-i}(x)\right)t^{n},$$

and since $P_x(t,x)$ is a polynomial with deg_t $P_x(t,x) \le d$, we have $\sum_{i=0}^{d} C_i(x) R_{n-i}(x) = 0$ for all $n \ge d+1$. Solving for $R_n(x)$ gives

$$R_{n}(x) = -\sum_{i=1}^{d} \frac{C_{i}(x)}{C_{0}(x)} R_{n-i}(x) = -\sum_{i=1}^{d} \frac{C_{i}(x)}{\alpha x} R_{n-i}(x)$$

for all $n \ge d + 1$, where each $\frac{C_i(x)}{\alpha x}$ is a Laurent polynomial in x.

Technical lemma Suppose that $F(t) = \sum_{n\geq 0} u_n t^n \in \mathbb{F}_q((t))$ is algebraic over $\mathbb{F}_q(t)$. Then $G(t) \in \mathbb{F}_q((t))$ and $P(t, x) \in \mathbb{F}_q[t, x]$ of the form

$$P(t,x) = B(t) + \sum_{i=0}^{m} A_i(t) x^{p^i} = \sum_{i=0}^{d} C_i(x) t^i$$

can be computed such that

- 1. $F(t) = R(t) + t^r G(t)$ for some $r \ge 0$ and $R(t) \in \mathbb{F}_q[t]$,
- 2. P(t, G(t)) = 0.
- 3. G(0) = 0,
- 4. $C_0(x) = A_0(0)x$ is nonzero, $A_i(0) = B(0) = 0$, $1 \le i \le m$,
- 5. $C_d(x)$ is a nonzero monomial,

so that (u_n) can be realized as a column of an invertible linear cellular automaton with memory.

Technical lemma Suppose that $F(t) = \sum_{n\geq 0} u_n t^n \in \mathbb{F}_q((t))$ is algebraic over $\mathbb{F}_q(t)$. Then $G(t) \in \mathbb{F}_q((t))$ and $P(t, x) \in \mathbb{F}_q[t, x]$ of the form

$$P(t,x) = B(t) + \sum_{i=0}^{m} A_i(t) x^{p^i} = \sum_{i=0}^{d} C_i(x) t^i$$

can be computed such that

- 1. $F(t) = R(t) + t^r G(t)$ for some $r \ge 0$ and $R(t) \in \mathbb{F}_q[t]$,
- 2. P(t, G(t)) = 0.
- 3. G(0) = 0,
- 4. $C_0(x) = A_0(0)x$ is nonzero, $A_i(0) = B(0) = 0$, $1 \le i \le m$,
- 5. $C_d(x)$ is a nonzero monomial,

so that (u_n) can be realized as a column of an invertible linear cellular automaton with memory. If in addition, $A_m(t)$ and B(t) are monomials of degree d, then (X_u, σ) can be realized as a subsystem of a linear cellular automaton.

Some questions

Each automatic sequence can be realised as a (one sided) column in an invertible cellular automaton with memory. Does every letter-to-letter projection of a bi-infinite fixed point of a length p substitution occur as a column of a bi-infinite spacetime diagram?

Some questions

- Each automatic sequence can be realised as a (one sided) column in an invertible cellular automaton with memory. Does every letter-to-letter projection of a bi-infinite fixed point of a length p substitution occur as a column of a bi-infinite spacetime diagram?
- Which k-automatic sequences (if k is not a prime power) occur as columns of cellular automaton spacetime diagrams?

Some questions

- Each automatic sequence can be realised as a (one sided) column in an invertible cellular automaton with memory. Does every letter-to-letter projection of a bi-infinite fixed point of a length p substitution occur as a column of a bi-infinite spacetime diagram?
- Which k-automatic sequences (if k is not a prime power) occur as columns of cellular automaton spacetime diagrams?
- Does there exist a (non-eventually-periodic) 3-automatic sequence (u_n)_{n≥0} on F₂ such that (u_n) occurs as a column of a 2-state spacetime diagram? The CA rule cannot be linear over F₂, since a sequence which is both 2-automatic and 3-automatic is eventually periodic by Cobham's theorem.