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Motivating questions

I Given a symbolic dynamical system (X ,T ), does there exists
a cellular automaton with a subsystem conjugate to (X ,T )?

I Given a sequence on a finite alphabet, does this sequence
occur as a column of a cellular automaton spacetime diagram
with eventually periodic initial conditions?

Let Fq denote the finite field with q = pn elements.
Theorem[Litow and Dumas, 1993]
Each column of a linear cellular automaton over Fq, begun from an
initial condition with finitely many nonzero entries, is necessarily
p-automatic.
Theorem[Rowland, Y, 2012]
If a sequence of elements in Fq is p-automatic, then it is a column
of a spacetime diagram of a linear cellular automaton with memory
over Fq whose initial conditions are eventually periodic in both
directions. Furthermore, our proof is constructive.
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Some pictures

Figure : Spacetime diagram of a linear cellular automaton with memory
12 containing the Thue–Morse sequence as a column.



Some pictures

Figure : Spacetime diagram of a linear cellular automaton with memory
20 containing the Rudin-Shapiro sequence as a column.



Some pictures

Figure : Spacetime diagram of a linear cellular automaton with memory
27 containing the Baum-Sweet sequence as a column.



Definitions

Let Σk = {0, 1, . . . , k − 1}.

A deterministic finite automaton with output is a 6-tuple
(S,Σk , δ, s0,A, ω), where S is a finite set of “states”, s0 ∈ S is the
initial state, A is a finite alphabet, ω : S → A is the output
function, and δ : S × Σk → S is the transition function.
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We will work only with p-automatic sequences. By injecting A into
some Fq with |A| ≤ q = pn, we can assume A = Fq.
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If n =
∑l

i=0 aik
i is the standard base-k representation of n with

0 ≤ ai ≤ k − 1 and al 6= 0, define (n)k to be the word a0 a1 · · · al .

Definition
A sequence (un)n≥0 of elements in A is k-automatic if there is a
DFAO (S,Σk , δ, s0,A, ω) such that un = ω(δ(s0, (n)k)) for all
n ≥ 0.

Example: The Thue–Morse sequence is the 2-automatic sequence
(un)n≥0 = 0, 1, 1, 0, 1, 0, 0, 1, . . . where un = 0 if the number of
occurrences of 1 in the binary representation of n is even and
un = 1 otherwise.
[Cobham, 1972] A sequence is k-automatic if and only if it is the
image, under a letter-to-letter projection, of a fixed point of a
length-k substitution.
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Cellular automata with memory
A (one-dimensional) cellular automaton with memory d is a
continuous, σ-commuting map Φ : (Ad)Z → AZ.
Here by memory we mean a time memory.

The Curtis–Hedlund–Lyndon theorem also holds for a cellular
automaton with memory, so that Φ is a cellular automaton with
memory d iff there is a local rule φ : (Ad)l+r+1 → A (l=left

radius, r =right radius, l ≥ 0, r ≥ 0) such that for all R ∈ AdZ

and all m ∈ Z,

(Φ(R))(m) = φ(R(m − l),R(m − l + 1), . . . ,R(m + r)) . (1)

Conversely, any local rule φ defines a cellular automaton Φ with
memory using Identity (1).
If A = Fq, then (Fd

q)l+r+1 and Fq are Fq-vector spaces.

We say that the cellular automaton Φ : (Fd
q)Z → FZ

q with memory
d is linear if φ is an Fq-linear map.

Example

Rule 90 is an LCA, l=r=1 defined over F2; its local rule is
(φ)(a, b, c) = a + c .
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Definition
If Φ : (Ad)Z → AZ is a cellular automaton with memory d , then a
spacetime diagram for Φ with initial conditions R0, . . . ,Rd−1 is the
sequence (Rn)n≥0 where we inductively define
Rn := Φ(Rn−d , . . . ,Rn−1) for n ≥ d .

Example

Figure : Spacetime diagram of a linear cellular automaton with memory
12 containing the Thue–Morse sequence as a column.
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Corollaries

Theorem[Rowland, Y, 2012]
If a sequence of elements in Fq is p-automatic then it is a column
of a spacetime diagram of a linear cellular automaton with memory
over Fq whose initial conditions are eventually periodic in both
directions. Furthermore, the proof is constructive.

Corollary 1
If (un)n≥0 is a p-automatic sequence, then the sequence (un)n≥0 is
the letter-to-letter projection of a sequence (vn)n≥0 which occurs
as a column of a linear cellular automaton (without memory)
whose initial condition is eventually periodic in both directions.
Definition
If u ∈ AN, define Xu := {σn(u) : n ∈ N}. The dynamical system
(Xu, σ) is called the (one-sided) subshift associated with u.
Corollary 2
Let u be p-automatic. Then (Xu, σ) is a factor of a subsystem of
some linear cellular automaton ((Fd

q)Z,Φ).
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Corollary 3 If (un)n≥0 is a p-automatic sequence, then for some
r ≥ 0 the sequence (un)n≥r occurs as a column of an invertible
cellular automaton with memory.

Figure : Spacetime diagram showing the beginning of the infinite history
of an invertible cellular automaton containing the Rudin–Shapiro
sequence.
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Characterizations of automaticity that we use in our proof
Recall definitions of Fq[t],Fq(t),Fq[[t]], and Fq((t)): polynomials,
rational functions, formal power series, formal Laurent series with
coefficients in Fq respectively.

[Christol, Kamae, Mendès-France, Rauzy, 1980 ] The sequence
(un)n≥0 of elements in Fq is p-automatic if and only if
F (t) =

∑
n≥0 unt

n is algebraic over Fq(t).
Example: If (un) is T-M, then x = F (t) =

∑
n≥0 unt

n is a root of

P(t, x) = tx + (1 + t)x2 + (1 + t4)x4.
Definition If F (t, x) =

∑
m,n am,nt

mxn ∈ Fq((t, x)), the diagonal
of F (t, x) is

∑
m am,mt

m.
[Furstenberg, 1967] The Laurent series F (t) =

∑
n≥n0

unt
n is

algebraic over Fq(t) if and only if it is the diagonal of a rational
Laurent series in two variables over that field.
Christol’s theorem combined with Furstenberg’s theorem imply that
if (un) is p-automatic, then (un) can be realized as the diagonal of
a quarter-lattice array of elements in Fq which is the formal power

series expansion of E (t, x) = P(t,x)
Q(t,x) , where P, Q ∈ Fq[t, x ].
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Heuristic: Rotate this quarter array clockwise so that (un) shows
up as a column in this diagram, and, under suitable choice of the
polynomials, show that you end up with space-time diagram of a
linear cellular automaton with memory.

In particular the proof of Furstenberg’s theorem implies that if (un)
is automatic, u0 = 0, P(t,F (t))=0 and

Px(0, 0) = ∂P(t,x)
∂x |(0,0) 6= 0, then F (t) is the ’-2 column’ of of

Px(t, x)

P(t, x)
.

Example: If P(t, x) = (t2 + t9) + x + (t + t2)x2 + (t5 + t9)x4, and
(un)n≥0 is T-M, then P(t,

∑
n≥3 unt

n−2) = 0 and
∑

n≥3 unt
n−2 is

the -2 column of

Px(t, x)

P(t, x)
=

1

x − (x − P(t, x))
=

1

x

∑
n≥0

(
x − P(t, x)

tx

)n

tn

=
1

x
+ t +

(
1

x2
+ 1 + x

)
t2 + · · ·



Heuristic: Rotate this quarter array clockwise so that (un) shows
up as a column in this diagram, and, under suitable choice of the
polynomials, show that you end up with space-time diagram of a
linear cellular automaton with memory.
In particular the proof of Furstenberg’s theorem implies that if (un)
is automatic, u0 = 0, P(t,F (t))=0 and
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Sketch of proof of main result
We shall show that for some r , the shifted sequence ur+1, ur+2, . . .
can be found as a column of a spacetime diagram of a linear
cellular automaton with memory.

Suppose that G (t) =
∑

n≥1 un+r t
n is a root of

P(t, x) =
∑m

i=0 Ai (t)xp
i

+ B(t) = αx + tQ(t, x) where α 6= 0.
We can use Furstenberg’s proof to show that G (t) is Column −2

of Px (t,x)
P(t,x) .

Now expand to get a series in t:

Px(t, x)

P(t, x)
=

Px(t, x)

αx
· 1

1 + tQ(t,x)
αx

=
Px(t, x)

αx

∑
n≥0

(
−Q(t, x)

αx

)n

tn =
∑
n≥0

Rn(x)tn

As αx is a monomial, each Rn(x) is a Laurent polynomial.
It remains to show that this 2-d array is the spacetime diagram of
a cellular automaton with memory.
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Multiplying both sides by P(t, x) gives

Px(t, x) =
d∑

i=0

Ci (x)t i
∑
j≥0

Rj(x)t j =
∑
n≥0

 ∑
i+j=n

Ci (x)Rj(x)

 tn

=
d∑

n=0

(
n∑

i=0

Ci (x)Rn−i (x)

)
tn +

∑
n≥d+1

(
d∑

i=0

Ci (x)Rn−i (x)

)
tn,

and since Px(t, x) is a polynomial with degt Px(t, x) ≤ d , we have∑d
i=0 Ci (x)Rn−i (x) = 0 for all n ≥ d + 1. Solving for Rn(x) gives

Rn(x) = −
d∑

i=1

Ci (x)

C0(x)
Rn−i (x) = −

d∑
i=1

Ci (x)

αx
Rn−i (x)

for all n ≥ d + 1, where each Ci (x)
αx is a Laurent polynomial in x .



Technical lemma Suppose that F (t) =
∑

n≥0 unt
n ∈ Fq((t)) is

algebraic over Fq(t). Then G (t) ∈ Fq((t)) and P(t, x) ∈ Fq[t, x ]
of the form

P(t, x) = B(t) +
m∑
i=0

Ai (t)xp
i

=
d∑

i=0

Ci (x)t i

can be computed such that

1. F (t) = R(t) + trG (t) for some r ≥ 0 and R(t) ∈ Fq[t],

2. P(t,G (t)) = 0.

3. G (0) = 0,

4. C0(x) = A0(0)x is nonzero, Ai (0) = B(0) = 0, 1 ≤ i ≤ m,

5. Cd(x) is a nonzero monomial,

so that (un) can be realized as a column of an invertible linear
cellular automaton with memory.

If in addition, Am(t) and B(t)
are monomials of degree d, then (Xu, σ) can be realized as a
subsystem of a linear cellular automaton.
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Some questions

I Each automatic sequence can be realised as a (one sided)
column in an invertible cellular automaton with memory. Does
every letter-to-letter projection of a bi-infinite fixed point of a
length p substitution occur as a column of a bi-infinite
spacetime diagram?

I Which k-automatic sequences (if k is not a prime power)
occur as columns of cellular automaton spacetime diagrams?

I Does there exist a (non-eventually-periodic) 3-automatic
sequence (un)n≥0 on F2 such that (un) occurs as a column of
a 2-state spacetime diagram? The CA rule cannot be linear
over F2, since a sequence which is both 2-automatic and
3-automatic is eventually periodic by Cobham’s theorem.
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