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A mathematical view

...of reflection seismic imaging, as practiced in the petroleum industry:

• an inverse problem, based on a model of seismic wave propagation

• contemporary practice relies onpartial linearizationand high-frequency asymp-
totics

• recent progress in understanding capabilities, limitations of methods based on
linearization/asymptotics in presence ofstrong refraction: applications ofmi-
crolocal analysiswith implications for practice

• limitations of linearization lead to many open problems
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Agenda

1. The reflection seismic experiment, nature of data and of Earth mechanical fields,
the acoustic model, linearization and its limitations, definition of imaging based
on high frequency asymptotics, geometric optics analysis of the model-data rela-
tionship and the GRT representation, zero-offset migration, standard processing
= layered imaging

2. Analysis of GRT migration, asymptotic inversion, difficulties due to multipathing,
global theory of imaging, ”wave equation” imaging;

3. The partially linearized inverse problem (“velocity analysis”), extended models,
importance of invertibility, geometric optics of extensions, some invertible ex-
tensions, automating the solution of the partially linearized inverse problem via
differential semblance.

2



Marine reflection seismology

• acoustic source (airgun array, explosives,...)

• acoustic receivers (hydrophone streamer, ocean bottom cable,...)

• recording and onboard processing

hydrophone streamer
acoustic source
(airgun array)x xr sh

Land acquisition similar, but acquisition and processing are more complex. Vast
bulk (90%+) of data acquired each year is marine.

Data parameters: timet, source locationxs, and receiver locationxr or half offset
h = xr−xs

2 , h = |h|.
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Idealized marine “streamer” geometry:xs andxr lie roughly on constant depth
plane, source-receiver lines are parallel→ 3 spatial degrees of freedom (eg.xs, h):
codimension 1. [Other geometries are interesting, eg. ocean bottom cables, but
streamer surveys still prevalent.]

How much data? Contemporary surveys may feature

• Simultaneous recording by multiple streamers (up to 12!)

• Many (roughly) parallel ship tracks (“lines”), areal coverage

• single line (“2D”)∼ Gbyte; multiple lines (“3D”)∼ Tbyte

NB: In these lectures, will largely ignore sampling issues and treat data as contin-
uously sampled.First of many approximations...
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Gathers: distinguished data subsets

Aka “bins”, extracted from data after acquisition.

Characterized by common value of an acquisition parameter

• shot (or common source) gather: traces with same shot location xs (previous
expls)

• offset (or common offset) gather: traces with same half offset h

• ...
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Shot gather, Mississippi Canyon
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Lightly processed...see the waves!
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A key observation

The most striking visual characteristic of seismic reflection data: presence of wave
events (“reflections”) = coherent space-time structures.

What features in the subsurface structure cause reflectionsto occur?

Abrupt (wavelength scale) changes in material mechanics act as internal bound-
aries, causing reflection of waves.

What is the mechanism through which this occurs?
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Well logs: a “direct” view of the subsurface
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Blocked logs from well in North Sea (thanks: Mobil R & D). Solid: p-wave ve-
locity (m/s), dashed: s-wave velocity (m/s), dash-dot: density (kg/m3). “Blocked”
means “averaged” (over 30 m windows). Original sample rate of log tool < 1 m.
Reflectors= jumps in velocities, density,velocity trends.
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The Modeling Task

A useful model of the reflection seismology experiment must

• predict wave motion

• produce reflections from reflectors

• accomodate significant variation of wave velocity, material density,...

A really goodmodel will also accomodate

• multiple wave modes, speeds

• material anisotropy

• attenuation, frequency dispersion of waves

• complex source, receiver characteristics
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The Acoustic Model

Not really good, but good enough for this week and basis of most contemporary
processing.

Relatesρ(x)= material density,λ(x) = bulk modulus,p(x, t)= pressure,v(x, t) =
particle velocity,f(x, t)= force density (sound source):

ρ
∂v

∂t
= −∇p + f ,

∂p

∂t
= −λ∇ · v (+ i.c.′s, b.c.′s)

(compressional) wave speedc =
√

λ
ρ
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acoustic field potentialu(x, t) =
∫ t

−∞ ds p(x, s):

p =
∂u

∂t
, v =

1

ρ
∇u

Equivalent form: second order wave equation for potential

1

ρc2

∂2u

∂t2
−∇ ·

1

ρ
∇u =

∫ t

−∞

dt∇ ·

(

f

ρ

)

≡
f

ρ

plus initial, boundary conditions.
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Theory

Weak solutionof Dirichlet problem inΩ ⊂ R
3 (similar treatment for other b. c.’s):

u ∈ C1([0, T ]; L2(Ω)) ∩ C0([0, T ]; H1
0(Ω))

satisfying for anyφ ∈ C∞
0 ((0, T ) × Ω),

∫ T

0

∫

Ω

dt dx

{

1

ρc2

∂u

∂t

∂φ

∂t
−

1

ρ
∇u · ∇φ +

1

ρ
fφ

}

= 0

Theorem (Lions, 1972) Suppose thatlog ρ, log c ∈ L∞(Ω), f ∈ L2(Ω × R). Then
weak solutions of Dirichlet problem exist, uniquely determined by initial data

u(·, 0) ∈ H1
0(Ω),

∂u

∂t
(·, 0) ∈ L2(Ω)

NB: No hint of waves here...
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Further idealizations

• density is constant,

• source force density isisotropic point radiator with known time dependence
(“source pulse”w(t))

f(x, t;xs) = w(t)δ(x− xs)

⇒ acoustic potential, pressure depends onxs also.

Forward map F [c] = time history of pressure for eachxs at receiver locationsxr

(predicted seismic data), as function of velocity fieldc(x):

F [c] = {p(xr, t;xs)}
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Reflection seismic inverse problem

givenobserved seismic datad, find c so that

F [c] ≃ d

This inverse problem is

• large scale - up to Tbytes, Pflops

• nonlinear

• yields to no known direct attack
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Partial linearization

Almost all useful technology to date relies on partial linearization: writec = v(1+r)

and treatr as relative first order perturbation aboutv, resulting in perturbation of
presure fieldδp = ∂δu

∂t
= 0, t ≤ 0, where

(

1

v2

∂2

∂t2
−∇2

)

δu =
2r

v2

∂2u

∂t2

Definelinearized forward map F by

F [v]r = {δp(xr, t;xs)}

Analysis ofF [v] is the main content of contemporary reflection seismic theory.
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Linearization error

Critical question: If there is any justiceF [v]r = directional derivativeDF [v][vr]

of F - but in what sense? Physical intuition, numerical simulation, and not nearly
enough mathematics: linearization error

F [v(1 + r)] − (F [v] + F [v]r)

• smallwhenv smooth,r rough or oscillatory on wavelength scale - well-separated
scales

• largewhenv not smooth and/orr not oscillatory - poorly separated scales

2D finite difference simulation: shot gathers with typical marine seismic geometry.
Smooth (linear)v(x, z), oscillatory (random)r(x, z) depending only onz(“layered
medium”). Source waveletw(t) = bandpass filter.
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Left: Total velocityc = v(1 + r) with smooth (linear) backgroundv(x, z), oscilla-
tory (random)r(x, z). Std dev ofr = 5%.
Right: Simulated seismic response (F [v(1 + r)]), wavelet = bandpass filter 4-10-
30-45 Hz. Simulator is (2,4) finite difference scheme.
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Left: Simulated seismic response of smooth model (F [v]),
Right: Simulated linearized response, rough perturbationof smooth model (F [v]r)
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Left: Simulated seismic response of rough model (F [v]),
Right: Simulated linearized response, smooth perturbation of rough model (F [v]r)
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Left: linearization error (F [v(1+ r)]−F [v]−F [v]r), rough perturbation of smooth
background
Right: linearization error, smooth perturbation of rough background (plotted with
same grey scale).
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Summary

• v smooth,r oscillatory⇒ F [v]r approximatesprimary reflection = result of
wave interacting with material heterogeneity only once (single scattering); error
consists ofmultiple reflections, which are “not too large” ifr is “not too big”,
and sometimes can be suppressed.

• v nonsmooth,r smooth⇒ error consists oftime shiftsin waves which are very
large perturbations as waves are oscillatory.

No mathematical results are known which justify/explain these observations in any
rigorous way, except in 1D.
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Velocity Analysis and Imaging

Velocity analysisproblem = partially linearized inverse problem: givend find v, r

so that

S[v] + F [v]r ≃ d

Imaging problem = linear subproblem: givend andv, find r so that

F [v]r ≃ d − S[v]

Last 20 years:

• much progress on imaging

• much less on velocity analysis
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Aymptotic assumption

Linearization is accurate⇔ length scale ofv >> length scale ofr ≃ wavelength,
properties ofF [v] dominated by those ofFδ[v] (= F [v] with w = δ). Implicit in
migration concept (eg. Hagedoorn, 1954); explicit use: Cohen & Bleistein, SIAM
JAM 1977.

Key idea:reflectors (rapid changes inr) emulatesingularities; reflections(rapidly
oscillating features in data) also emulate singularities.

NB: “everybody’s favorite reflector”: the smooth interfaceacross whichr jumps.
But this is an oversimplification - reflectors in the Earth may be complex zones of
rapid change, pehaps in all directions. More flexible notionneeded!!
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Wave Front Sets

Recall characterization of smoothness via Fourier transform: u ∈ D′(Rn) is smooth
atx0 ⇔ for some nbhdX of x0, anyφ ∈ E(X) andN , there isCN ≥ 0 so that for
anyξ 6= 0,

∣

∣

∣

∣

F(φu)

(

τ
ξ

|ξ|

)∣

∣

∣

∣

≤ CNτ−N

Harmonic analysis of singularities,aprèsHörmander: thewave front setWF (u) ⊂
R

n × R
n − {0} of u ∈ D′(Rn) - captures orientation as well as position of singu-

larities.

(x0, ξ0) /∈ WF (u) ⇔, there is some open nbhdX×Ξ ⊂ R
n×R

n−{0} of (x0, ξ0)
so that for anyφ ∈ E(X), N , there isCN ≥ 0 so that for allξ ∈ Ξ,

∣

∣

∣

∣

F(φu)

(

τ
ξ

|ξ|

)
∣

∣

∣

∣

≤ CNτ−N
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Housekeeping chores

(i) note that the nbhdsΞ may naturally be taken to becones;

(ii) u is smooth atx0 ⇔ (x0, ξ0) /∈ WF (u) for all ξ0 ∈ R
n − {0};

(iii) WF (u) is invariant under chg. of coords if it is regarded as a subsetof the
cotangent bundleT ∗(Rn) (i.e. theξ components transform as covectors).

[Good refs: Duistermaat, 1996; Taylor, 1981; Hörmander, 1983]

The standard example: ifu jumps across the interfacef(x) = 0, otherwise smooth,
thenWF (u) ⊂ Nf = {(x, ξ) : f(x) = 0, ξ||∇f(x)} (normal bundleof f = 0).
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Wavefront set of a jump discontinuity
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WF (H(φ)) = {(x, ξ) : φ(x) = 0, ξ||∇φ(x)}
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Microlocal property of differential operators

Supposeu ∈ D′(Rn), (x0, ξ0) /∈ WF (u), andP (x, D) is a partial differential
operator:

P (x, D) =
∑

|α|≤m

aα(x)Dα

D = (D1, ..., Dn), Di = −i
∂

∂xi

α = (α1, ..., αn), |α| =
∑

i

αi,

Dα = Dα1
1 ...Dαn

n

Then(x0, ξ0) /∈ WF (P (x, D)u) [i.e.: WF (Pu) ⊂ WF (u)].
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Proof

ChooseX × Ξ as in the definition,φ ∈ D(X) form the required Fourier transform
∫

dx eix·(τξ)φ(x)P (x, D)u(x)

and start integrating by parts: eventually

=
∑

|α|≤m

τ |α|ξα

∫

dx eix·(τξ)φα(x)u(x)

whereφα ∈ D(X) is a linear combination of derivatives ofφ and theaαs. Since
each integral is rapidly decreasing asτ → ∞ for ξ ∈ Ξ, it remains rapidly decreas-
ing after multiplication byτ |α|, and so does the sum.Q. E. D.
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Formalizing the reflector concept

Key idea, restated: reflectors (or “reflecting elements”) will be points inWF (r).
Reflections will be points inWF (d).

These ideas lead to a usable definition ofimage: a reflectivity model̃r is an image
of r if WF (r̃) ⊂ WF (r) (the closer to equality, the better the image).

Idealizedmigration problem : givend (henceWF (d)) deduce somehow a function
which hasthe right reflectors, i.e. a functioñr with WF (r̃) ≃ WF (r).

NB: you’re going to needv! (“It all depends on v(x,y,z)” - J. Claerbout)
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Integral representation of linearized operator

With w = δ, acoustic potentialu is same as Causal Green’s functionG(x, t;xs) =
retarded fundamental solution:

(

1

v2

∂2

∂t2
−∇2

)

G(x, t;xs) = δ(t)δ(x − bxs)

andG ≡ 0, t < 0. Then (w = δ!) p = ∂G
∂t , δp = ∂δG

∂t , and
(

1

v2

∂2

∂t2
−∇2

)

δG(x, t;xs) =
2

v2(x)

∂2G

∂t2
(x, t;xs)r(x)

Simplification: from now on, defineF [v]r = δG|
x=xr

- i.e. lose at-derivative.
Duhamel’s principle⇒

δG(xr, t;xs) =

∫

dx
2r(x)

v(x)2

∫

dsG(xr, t − s;x)
∂2G

∂t2
(x, s;xs)
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Add geometric optics...

Geometric optics approximation ofG should be good, asv is smooth. Summary: if
x “not too far” fromxs, then

G(x, t;xs) = a(x;xs)δ(t − τ (x; xs)) + R(x, t;xs)

where the traveltimeτ (x; xs) solves the eikonal equation

v|∇τ | = 1, τ (x;xs) ∼
|x − xs|

v(xs)
, x → xs

and the amplitudea(x;xs) solves the transport equation

∇ · (a2∇τ ) = 0, ...

Refs: Courant & Hilbert, FriedlanderSound Pulses, WWSFoundationsand many
refs cited there...
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Simple Geometric Optics

“Not too far” means: there should be one and only one ray of geometric optics
connecting eachxs or xr to eachx ∈ suppr.

Will call this thesimple geometric opticsassumption.

Within region satisfying simple geometric optics assumption,τ is smooth (x 6= xs)
solution of eikonal equation. Effective methods for numerical solution of eikonal,
transport equations: ray tracing (Lagrangian), various sorts of upwind finite differ-
ence (Eulerian) methods. See eg. Sethian book, WWS 1999 MGSSnotes (online)
for details.
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Caution - caustics!

For “random but smooth”v(x) with varianceσ, more than one connecting ray oc-
curs as soon as the distance isO(σ−2/3). Suchmultipathingis invariably accompa-
nied by the formation of acaustic= envelope of rays (White, 1982).

Upon caustic formation, the simple geometric optics field description above is no
longer correct.

Failure of GO at caustic understood in 19th century. Generalization of GO to re-
gions containing caustics accomplished by Ludwig and Kravtsov, 1966-7, elabo-
rated by Maslov, Ḧormander, Duistermaat, many others.
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A caustic example (1)
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sin1: velocity field

2D Example of strong refraction: Sinusoidal velocity fieldv(x, z) = 1+0.2 sin πz
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sin 3πx
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A caustic example (2)
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Rays in sinusoidal velocity field, source point = origin. Note formation of caustic,
multiple rays to source point in lower center.
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An oft-forgotten detail

All of this is meaningful only if the remainderR is small in a suitable sense: energy
estimate (Exercise!) ⇒

∫

dx

∫ T

0

dt |R(x, t;xs)|
2 ≤ C‖v‖C4

(this is an easy, suboptimal estimate - with more work can replace 4 with 2)

If v ∈ C∞, can complete the geometric optics approximation of the Green’s func-
tion so that the difference isC∞ - then the two sides have the same singularities, ie.
the same wavefront set.
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Finally, a wave!

The geometric optics approximation to the Green’s function

G(x, t;xs) ≃ a(x;xs)δ(t − τ (x; xs))

describes a (singular) quasi-spherical waves [spherical,if v = const., for then
τ (x,xs) = |x − xs|/v].

Geometric optics is the the best currently available explanation for waves in het-
erogeneous media.Note the inadequacy:v must besmooth, but the compressional
velocity distribution in the Earth varies on all scales!
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The linearized operator as Generalized Radon

Transform

Assume:supp r contained in simple geometric optics domain (each point reached
by unique ray from any source or receiver point).

Then distribution kernelK of F [v] is

K(xr, t,xs;x) =

∫

dsG(xr, t − s;x)
∂2G

∂t2
(x, s;xs)

2

v2(x)

≃

∫

ds
2a(xr,x)a(x,xs)

v2(x)
δ′(t − s − τ (xr,x))δ′′(s − τ (x,xs))
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=
2a(x,xr)a(x,xs)

v2(x)
δ′′(t − τ (x,xr) − τ (x,xs))

provided that

∇xτ (x,xr) + ∇xτ (x,xs) 6= 0

⇔ velocity atx of ray fromxs not negative of velocity of ray fromxr ⇔ no forward
scattering. [Gel’fand and Shilov, 1958 - when is pullback of distribution again a
distribution].
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GRT = “Kirchhoff” modeling

So: forr supported in simple geometric optics domain, no forward scattering⇒

δG(xr, t;xs) ≃

∂2

∂t2

∫

dx
2r(x)

v2(x)
a(x,xr)a(x,xs)δ(t − τ (x,xr) − τ (x,xs))

That is: pressure perturbation is sum (integral) ofr over reflection isochron{x :

t = τ (x,xr) + τ (x,xs)}, w. weighting, filtering. Note: ifv =const. then isochron
is ellipsoid, asτ (xs,x) = |xs − x|/v!

(y,x )+  (y,x )ττt=

x x

y

s

r s

r
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Zero Offset data and the Exploding Reflector

Zero offset data (xs = xr) is seldom actually measured (contrast radar, sonar!), but
routinelyapproximatedthroughNMO-stack(to be explained later).

Extracting image from zero offset data, rather than from all(100’s) of offsets, is
tremendousdata reduction- when approximation is accurate, leads to excellent
images.

Imaging basis: theexploding reflectormodel (Claerbout, 1970’s).
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For zero-offset data, distribution kernel ofF [v] is

K(xs, t,xs;x) =
∂2

∂t2

∫

ds
2

v2(x)
G(xs, t − s;x)G(x, s;xs)

Under some circumstances (explained below),K ( = G time-convolved with itself)
is “similar” (also explained) tõG = Green’s function forv/2. Then

δG(xs, t;xs) ∼
∂2

∂t2

∫

dx G̃(xs, t,x)
2r(x)

v2(x)

∼ solutionw of
(

4

v2

∂2

∂t2
−∇2

)

w = δ(t)
2r

v2

Thus reflector “explodes” at time zero, resulting field propagates in “material” with
velocity v/2.
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Explain when the exploding reflector model “works”, i.e. when G time-convolved
with itself is “similar” to G̃ = Green’s function forv/2. If supp r lies in simple
geometry domain, then

K(xs, t,xs;x) =

∫

ds
2a2(x,xs)

v2(x)
δ(t − s − τ (xs,x))δ′′(s − τ (x,xs))

=
2a2(x,xs)

v2(x)
δ′′(t − 2τ (x,xs))

whereas the Green’s functioñG for v/2 is

G̃(x, t;xs) = ã(x,xs)δ(t − 2τ (x,xs))

(half velocity = double traveltime, same rays!).
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Difference between effects ofK, G̃: for eachxs scaler by smooth fcn - preserves
WF (r) henceWF (F [v]r) and relation between them. Also: adjoints have same
effect onWF sets.

Upshot: from imaging point of view (i.e. apart from amplitude, derivative (filter)),
kernel ofF [v] restricted to zero offset is same as Green’s function forv/2, provided
that simple geometry hypothesis holds:only one ray connects each source point to
each scattering point, ie.no multipathing.

See Claerbout, IEI, for examples which demonstrate that multipathing really does
invalidate exploding reflector model.
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Standard Processing

Inspirational interlude: the sort-of-layered theory =“Standard Processing”

Suppose werev,r functions ofz = x3 only, all sources and receivers atz = 0.
Then the entire system is translation-invariant inx1, x2 ⇒ Green’s functionG its
perturbationδG, and the idealized dataδG|z=0 are really only functions oft, z, and
half-offseth = |xs−xr|/2. There would beonly one seismic experiment, equivalent
to anycommon midpoint gather(“CMP”).

This isn’t really true -look at the data!!! However it isapproximatelycorrect in
many places in the world: CMPs change very slowly with midpoint xm = (xr +

xs)/2.
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Standard processing: treat each CMPas if it were the result of an experiment per-
formed over a layered medium, but permit the layers to vary with midpoint.

Thusv = v(z), r = r(z) for purposes of analysis, but at the endv = v(xm, z), r =

r(xm, z).

F [v]r(xr, t;xs)

≃

∫

dx
2r(z)

v2(z)
a(x, xr)a(x, xs)δ

′′(t − τ (x, xr) − τ (x, xs))

=

∫

dz
2r(z)

v2(z)

∫

dω

∫

dxω2a(x, xr)a(x, xs)e
iω(t−τ(x,xr)−τ(x,xs))
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Since we have already thrown away smoother (lower frequency) terms, do it again
usingstationary phase.Upshot (see 2000 MGSS notes for details): up to smoother
(lower frequency) error,

F [v]r(h, t) ≃ A(z(h, t), h)R(z(h, t))

Herez(h, t) is the inverse of the 2-way traveltime

t(h, z) = 2τ ((h, 0, z), (0, 0, 0))

i.e. z(t(h, z′), h) = z′. R is (yet another version of) “reflectivity”

R(z) =
1

2

dr

dz
(z)

That is,F [v] is a a derivative followed by a change of variable followed bymulti-
plication by a smooth function. Substitutet0 (vertical travel time) forz (depth) and
you get “Inverse NMO” (t0 → (t, h)). Will be sloppy and callz → (t, h) INMO.
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Anatomy of an adjoint

∫

dt

∫

dh d(t, h)F [v]r(t, h) =

∫

dt

∫

dh d(t, h)A(z(t, h), h)R(z(t, h))

=

∫

dz R(z)

∫

dh
∂t

∂z
(z, h)A(z, h)d(t(z, h), h) =

∫

dz r(z)(F [v]∗d)(z)

soF [v]∗ = − ∂
∂z

SM [v]N [v], where

• N [v] = NMO operator N [v]d(z, h) = d(t(z, h), h)

• M [v] = multiplication by ∂t
∂z

A

• S = stacking operatorSf(z) =
∫

dh f(z, h)
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Normal Op is PDO⇒ Imaging

F [v]∗F [v]r(z) = −
∂

∂z

[
∫

dh
dt

dz
(z, h)A2(z, h)

]

∂

∂z
r(z)

Microlocal property of PDOs⇒ WF (F [v]∗F [v]r) ⊂ WF (r) i.e. F [v]∗ is an imag-
ing operator.

If you leave out the amplitude factor (M [v]) and the derivatives, as is commonly
done, then you get essentially the same expression - so (NMO,stack) is an imaging
operator!

It’s even easy to get an (asymptotic) inverse out of this - exercise for the reader.

Now make everything dependent onxm and you’ve got standard processing. (end
of layered interlude).
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But the Earth is not layered!

In general,

Is F [v]∗ an imaging operator?

What sort of thing isF [v]∗F [v]??

Stay tuned!
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Review: Normal Operators and imaging

If d = F [v]r, then

F [v]∗d = F [v]∗F [v]r

Recall: In the layered case,F [v]∗F [v] is an operator which preserves wave front
sets.

WheneverF [v]∗F [v] preserves wave front sets,F [v]∗ is an imaging operator.

1



Review: Generalized Radon Representation

Assume (1)r (oscillatory) supported in simple geometric optics domainfor v (smooth),
(2) no forward scattering. Then

F [v]r(xr, t;xs) ≃

∫

dx
2r(x)

v2(x)
a(x,xr)a(x,xs)δ

′′(t− τ (x,xr) − τ (x,xs))

Similar representation of adjoint follows:

F [v]∗d(x) =

∫ ∫ ∫

dxr dxs dt a(x,xr)a(x,xs)δ
′′(t−τ (x;xs)−τ (x;xr))d(xr, t;xs)

2



Beylkin, J. Math. Phys.1985

For r supported in simple geometric optics domain,

•WF (F [v]∗F [v]r) ⊂WF (r)

• if d = F [v]+F [v]r (data consistent with linearized model), thenF [v]∗(d−F [v])

is an image ofr

• an operatorF [v]† exists for whichF [v]†(d−F [v])− r is smootherthanr, under
some constraints onr - an inverse modulo smoothing operatorsor parametrix.
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Outline of proof

ExpressF [v]∗F [v] as “Kirchhoff modeling” followed by “Kirchhoff migration”;
(ii) introduce Fourier transform; (iii) approximate for large wavenumbers using
stationary phase, leads to representation ofF [v]∗F [v] modulo smoothing error as
pseudodifferential operator(“ΨDO”):

F [v]∗F [v]r(x) ≃ p(x, D)r(x) ≡

∫

dξ p(x, ξ)eix·ξr̂(ξ)

in which p ∈ C∞, and for somem (theorder of p), all multiindicesα, β, and all
compactK ⊂ R

n, there exist constantsCα,β,K ≥ 0 for which

|Dα
xD

β

ξ
p(x, ξ)| ≤ Cα,β,K(1 + |ξ|)m−|β|, x ∈ K

Explicit computation ofsymbol p - for details, see Notes on Math Foundations.
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Microlocal PropertyofΨDOs

:

if p(x,D) is aΨDO, u ∈ E ′(Rn) thenWF (p(x,D)u) ⊂ WF (u).

Will prove this, from which imaging property of prestack Kirchhoff migration fol-
lows. First, a few other properties:

• differential operators areΨDOs (easy - exercise)

• ΨDOs of orderm form a module overC∞(Rn) (also easy)

• product ofΨDO orderm, ΨDO orderl = ΨDO order≤ m + l; adjoint ofΨDO
orderm is ΨDO orderm (harder)

Complete accounts of theory, many apps: books of Duistermaat, Taylor, Nirenberg,
Treves, Ḧormander.
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Proof of Microlocal Property

Suppose(x0, ξ0) /∈ WF (u), choose neighborhoodsX, Ξ as in defn, withΞ conic.
Need to choose analogous nbhds forP (x,D)u. Pick δ > 0 so thatB3δ(x0) ⊂ X,
setX ′ = Bδ(x0).

Similarly pick 0 < ǫ < 1/3 so thatB3ǫ(ξ0/|ξ0|) ⊂ Ξ, and choseΞ′ = {τξ : ξ ∈

Bǫ(ξ0/|ξ0|), τ > 0}.

Need to chooseφ ∈ E ′(X ′), estimateF(φP (x, D)u). Chooseψ ∈ E(X) so that
ψ ≡ 1 onB2δ(x0).

NB: this implies that ifx ∈ X ′, ψ(y) 6= 1 then|x − y| ≥ δ.
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Write u = (1 − ψ)u + ψu. Claim: φP (x, D)((1 − ψ)u) is smooth.

φ(x)P (x, D)((1 − ψ)u))(x)

= φ(x)

∫

dξ P (x, ξ)eix·ξ
∫

dy (1 − ψ(y))u(y)e−iy·ξ

=

∫

dξ

∫

dy P (x, ξ)φ(x)(1 − ψ(y))ei(x−y)·ξu(y)

=

∫

dξ

∫

dy (−∇2
ξ)
MP (x, ξ)φ(x)(1 − ψ(y))|x − y|−2Mei(x−y)·ξu(y)

7



using the identity

ei(x−y)·ξ = |x − y|−2
[

−∇2
ξe
i(x−y)·ξ

]

and integrating by parts2M times in ξ. This is permissible becauseφ(x)(1 −

ψ(y)) 6= 0 ⇒ |x − y| > δ.

According to the definition ofΨDO,

|(−∇2
ξ)
MP (x, ξ)| ≤ C|ξ|m−2M

For anyK, the integral thus becomes absolutely convergent afterK differentiations
of the integrand, providedM is chosen large enough. Q.E.D. Claim.

This leaves us withφP (x, D)(ψu). Pickη ∈ Ξ′ and w.l.o.g. scale|η| = 1.
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Fourier transform:

F(φP (x, D)(ψu))(τη) =

∫

dx

∫

dξ P (x, ξ)φ(x)ψ̂u(ξ)eix·(ξ−τη)

Introduceτθ = ξ, and rewrite this as

= τn
∫

dx

∫

dθ P (x, τθ)φ(x)ψ̂u(τθ)eiτx·(θ−η)

Divide the domain of the inner integral into{θ : |θ − η| > ǫ} and its complement.
Use

−∇2
xe
iτx·(θ−η) = τ 2|θ − η|2eiτx·(θ−η)
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Integrate by parts2M times to estimate the first integral:

τn−2M

∣

∣

∣

∣

∫

dx

∫

|θ−η|>ǫ

dθ (−∇2
x)
M [P (x, τθ)φ(x)]ψ̂u(τθ)

× |θ − η|−2Meiτx·(θ−η)
∣

∣

∣

≤ Cτn+m−2M

m being the order ofP . Thus the first integral is rapidly decreasing inτ .
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For the second integral, note that|θ − η| ≤ ǫ ⇒ θ ∈ Ξ, per the defn ofΞ′. Since
X × Ξ is disjoint from the wavefront set ofu, for a sequence of constantsCN ,
|ψ̂u(τθ)| ≤ CNτ

−N uniformly for θ in the (compact) domain of integration, whence
the second integral is also rapidly decreasing inτ . Q. E. D.

And that’s why Kirchhoff migration works, at least in the simple geometric optics
regime.
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Inversion aperture

Γ[v] ⊂ R
3 × R

3 − 0:

if WF (r) ⊂ Γ[v], thenWF (F [v]∗F [v]r) = WF (r) andF [v]∗F [v] “acts invertible”.
[construction ofΓ[v] - later!]

Beylkin: with proper choice of amplitudeb(xr, t;xs), the modified Kirchhoff mi-
gration operator

F [v]†d(x) =

∫ ∫ ∫

dxr dxs dt b(xr, t;xs)δ(t− τ (x; xs) − τ (x;xr))d(xr, t;xs)

yieldsF [v]†F [v]r ≃ r if WF (r) ⊂ Γ[v]

12



For details of Beylkin construction: Beylkin, 1985; Milleret al 1989; Bleistein,
Cohen, and Stockwell 2000; WWS Math Foundations, MGSS notes1998. All
components are by-products of eikonal solution.

aka: Generalized Radon Transform (“GRT”) inversion, Ray-Born inversion, migra-
tion/inversion, true amplitude migration,...

Many extensions, eg. to elasticity: Bleistein, Burridge, deHoop, Lambaŕe,...

Apparent limitation: construction relies on simple geometric optics (no multipathing)
- is this really necessary?
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Example of GRT Inversion (application ofF [v]†): K. Araya (1995), “2.5D” in-
version of marine streamer data from Gulf of Mexico: 500 source positions, 120
receiver channels, 750 Mb.
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Why Beylkin isn’t enough

The theory developed by Beylkin and others cannot be the end of the story:

• The “single ray” hypotheses generally fails in the presenceof strong refraction.

• B. White, “The Stochastic Caustic” (1982): For “random but smooth”v(x) with
varianceσ, points at distanceO(σ−2/3) from source have more than one ray
connecting to source, with probability 1 -multipathingassociated with formation
of caustics= ray envelopes.

• Formation of caustics invalidates asymptotic analysis on which Beylkin result is
based.
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Why it matters

• Strong refraction leading to multipathing and caustic formation typical of salt
(4-5 km/s) intrusion into sedimentary rock (2-3 km/s) (eg. Gulf of Mexico),
also chalk tectonics in North Sea and elsewhere - some of the most promising
petroleum provinces!
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Escape from simplicity - the Canonical Relation

How do we get away from “simple geometric optics”, SSR, DSR,... - all violated
in sufficiently complex (and realistic) models? RakeshComm. PDE1988, Nolan
Comm. PDE1997: global description ofFδ[v] as mapping reflectors7→ reflections.

Y = {xs, t,xr} (time × set of source-receiver pairs) submfd ofR
7 of dim. ≤ 5,

Π : T ∗(R7) → T ∗Y the natural projection

supp r ⊂ X ⊂ R
3

Canonical relationCFδ[v] ⊂ T ∗(X) − {0} × T ∗(Y ) − {0} describes singularity
mapping properties ofF :

(x, ξ,y, η) ∈ CFδ[v] ⇔

for someu ∈ E ′(X), (x, ξ) ∈WF (u), and (y, η) ∈WF (Fu)
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Rays Construction of the Relation

Rays of geometric optics: solutions of Hamiltonian system

dX

dt
= ∇ΞH(X,Ξ),

dΞ

dt
= −∇XH(X,Ξ)

with H(X,Ξ) = 1
2
[1 − v2(X)|Ξ|2] = 0 (null bicharacteristics).

Characterization of CF :

((x, ξ), (xs, t,xr, ξs, τ, ξr)) ∈ CFδ[v] ⊂ T ∗(X) − {0} × T ∗(Y ) − {0}

⇔ there arerays of geometric optics(Xs,Ξs), (Xr,Ξr) and timests, tr so that

Π(Xs(0), t,Xr(t),Ξs(0), τ,Ξr(t)) = (xs, t,xr, ξs, τ, ξr),

Xs(ts) = Xr(t− tr) = x, ts + tr = t, Ξs(ts) − Ξr(t− tr)||ξ
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SinceΞs(ts), −Ξr(t − tr) have same length, sum = bisector⇒ velocity vectors of
incident ray from source and reflected ray from receiver (traced backwards in time)
make equal angles with reflector atx with normalξ.

Upshot: canonical relation ofFδ[v] simply enforces the equal-angles law of reflec-
tion.

Further,rays carry high-frequency energy, in exactly the fashion that seismologists
imagine.

Finally,Rakesh’s characterization ofCF is global: no assumptions about ray geom-
etry, other than no forward scattering and no grazing incidence on the acquisition
surfaceY , are needed.
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The Picture
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Proof: Plan of attack

Recall that

F [v]r(xr, t;xs) =
∂δu

∂t
(xr, t;xs)

where

1

v2

∂2δu

∂t2
−∇2δu =

1

v2

∂2u

∂t2
r

1

v2

∂2u

∂t2
−∇2u = δ(t)δ(x − xs)

andu, δu ≡ 0, t < 0.

Need to understand (1)WF (u), (2) relationWF (r) ↔ WF (ru), (3)WF of soln
of WE in terms ofWF of RHS (this also gives (1)!).
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Singularities of the Acoustic Potential Field

Main tool: Propagation of Singularities theorem of Ḧormander (1970).

Given symbolp(x, ξ), order m, with asymptotic expansion, definenull bicharater-
istics(= rays) as solutions(x(t), ξ(t)) of Hamiltonian system

dx

dt
=
∂p

∂ξ
(x, ξ),

dξ

dt
= −

∂p

∂x
(x, ξ)

with p(x(t), ξ(t)) ≡ 0.

Theorem: Supposep(x, D)u = f , and suppose that fort0 ≤ t ≤ t1, (x(t), ξ(t)) /∈

WF (f). Then either{(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂ WF (u) or {(x(t), ξ(t)) : t0 ≤

t ≤ t1} ⊂ T ∗(Rn) −WF (u).
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Source to Field

RHS of wave equation foru = δ function inx, t. WF set ={(x, t, ξ, τ ) : x = xs, t =

0} - i.e. no restriction on covector part.

⇒ (x, t, ξ, τ ) ∈ WF (u) iff a ray starting at(xs, 0) passes over(x, t) - i.e. (x, t)

lies on the “light cone” with vertex at(xx, 0). Symbol for wave op isp(x, t, ξ, τ ) =
1
2
(τ 2 − v2(x)|ξ|2), so Hamilton’s equations for null bicharacteristics are

dX

dt
= −v2(X)Ξ,

dΞ

dt
= ∇ log v(X)

Thusξ is proportional to velocity vector of ray.

[(ξ, τ ) normal to light cone.]
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Singularities of Products

To computeWF (ru) fromWF (r) andWF (u), useGabor calculus(Duistermaat,
Ch. 1)

Herer is really (r ◦ π)u, whereπ(x, t) = x. Choose bump functionφ localized
near(x, t)

̂φ(r ◦ π)u(ξ, τ ) =

∫

dξ′ dτ ′̂φr(ξ′)δ(τ ′)û(ξ − ξ′, τ − τ ′)

=

∫

dξ′
̂φr(ξ′)û(ξ − ξ′, τ )
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This will decay rapidly as|(ξ, τ )| → ∞ unless (i) you can find(x′, ξ′) ∈ WF (r)

so thatx,x′ ∈ π(suppφ), ξ − ξ′ ∈ WF (u), i.e. (ξ, τ ) ∈ WF (r ◦ π) + WF (u), or
(ii) ξ ∈ WF (r) or (ξ, τ ) ∈ WF (u).

Possibility (ii) will not contribute, so effectively

WF ((r ◦ π)u) = {(x, ts, ξ + Ξs(ts), ·) : (x, ξ) ∈WF (r), x = Xs(ts)

for a ray(Xs,Ξs) with Xs(0) = xs, someτ .
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Wavefront set of Scattered Field

Once again use propagation of singularities:(xr, t, ξr, τr) ∈ WF (δu) ⇔ on ray
(Xr,Ξr) passing throughWF (ru). Can argue that time of intersection ist− tr < t.

That is,

Xr(t) = xr,Xr(t− tr) = Xs(ts) = x,

t = tr + ts, and

Ξr(ts) = ξ + Ξs(ts)

for someξ ∈ WF (r). Q. E. D.
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Rakesh’s Thesis

Rakesh also showed thatF [v] is aFourier Integral Operator= class of oscillatory
integral operators, introduced by Hörmander and others in the ’70s to describe the
solutions of nonelliptic PDEs.

Phases and amplitudes of FIOs satisfy certain restrictive conditions. Canonical
relations have geometric description similar to that ofF [v]. Adjoint of FIO is FIO
with inverse canonical relation.

ΨDOs are special FIOs, as are GRTs.

Composition of FIOs doesnot yield an FIO in general. Beylkin had shown that
F [v]∗F [v] is FIO (ΨDO, actually) under simple ray geometry hypothesis - but this
is only sufficient. Rakesh noted that this follows from general results of Ḧormander:
simple ray geometry⇔ canonical relation is graph of ext. deriv. of phase function.
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The Shell Guys and TIC

Smit, tenKroode and Verdel (1998): provided that

• source, receiver positions(xs,xr) form anopen4D manifold (“complete cover-
age” - all source, receiver positions at least locally), and

• theTraveltime Injectivity Condition(“TIC”) holds: C−1
F [v] ⊂ T ∗Y −{0}×T ∗X−

{0} is afunction- that is, initial data for source and receiver rays and totaltravel
time together determine reflector uniquely.

thenF [v]∗F [v] is ΨDO ⇒ application ofF [v]∗ produces image, andF [v]∗F [v] has
microlocal parametrix (“asymptotic inversion”).
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TIC is a nontrivial constraint!

x x

x xs r

Symmetric waveguide: time (xs → x̄ → xr) same as time (xs → x → xr), so TIC
fails.
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Stolk’s Thesis

Stolk (2000): under “complete coverage” hypothesis,v for which F [v]∗F [v] is =
[ΨDO + rel. smoothing op] form open, dense set (without assuming TIC!).

NB: application ofF [v]∗ involves accounting forall rays connecting source and
receiver with reflectors. Standard practice still attemptsimaging with single choice
of ray pair (shortest time, max energy,...). Operto et al (2000) give nice illustration
that all rays must be included.
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Nolan’s Thesis

Limitation of Smit-tenKroode-Verdel: most idealized dataacquisition geometries
violate “complete coverage”: for example, idealized marine streamer geometry
(src-recvr submfd is 3D)

Nolan (1997): result remains true without “complete coverage” condition: requires
only TIC plus addl condition so that projectionCF [v] → T ∗Y is embedding - but
examples violating TIC are much easier to construct when source-receiver submfd
has positive codim.

Sinister Implication: When data is just a single gather - common shot, common
offset - image may containartifacts, i.e. spurious reflectors not present in model.
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Horrible Example I

Synthetic 2D Example (Stolk and WWS, 2001 -Geophysics2004)

Strongly refracting acoustic lens (v) over horizontal reflector (r), d = F [v]r.

(i) for open source-receiver set,F [v]∗d = good image of reflector - within limits of
finite frequency implied by numerical method,F [v]∗F [v] acts likeΨDO;

(ii) for common offsetsubmfd (codim 1), TIC is violated andWF (F [v]∗d) is larger
thanWF (r).
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Gaussian lens velocity model, flat reflector at depth 2 km, overlain with rays and
wavefronts (Stolk & S. 2002 SEG).
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Typical shot gather - lots of arrivals
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Offset common image gather (slice ofF̃ [v]∗d), with kinematically predicted reflec-
tor images overlain.
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Horrible Example II

Stolk and Symes,Geophysics2004: “Marmouflat” model = smoothed Marmousi
(Versteeg & Grau 1991) with two flat reflectors.
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5.5 km�s
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Typical shot gather: much evidence of multipathing, caustic formation.
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Typical common scattering angle image gather: note nonflat event in box - results
from data event migrating alongwrong ray pair.
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Blue rays = energy path producing data event. Black rays: energy path for migra-
tion, resulting in displaced, angle-dependent image artifact.
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What it all means

Note that a gather scheme makes the scattering operator block-diagonal: for exam-
ple with data sorted into common offset gathersh = (xr − xs)/2,

F [v] = [Fh1[v], ..., FhN [v]]T , d = [dh1, ..., dhN ]T

ThusF [v]∗d =
∑

i Fhi[v]
∗dhi. Otherwise put: to form image,migrate ith gather

(apply migration operatorFhi[v]
∗, then stack individual migrated images (hence

prestack migration).

Horrible Examples show that individual migrated images maycontain nonphysical
apparent reflectors (artifacts).

Smit-tenKroode-Verdel, Nolan, Stolk: if TIC holds, then these artifacts are not sta-
tionary with respect to the gather parameter, hencestack out(interfere destructively)
in final image.
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Wave Equation Migration

Techniques for computingF [v]∗:

(i) Reverse time

(ii) Reverse depth

1



Reverse Time Migration, Zero Offset

Start with the zero-offset case - easier, but only if you replace it with the exploding
reflector model, which replacesF [v] by

F̃ [v]r(xs, t) = w(xs, t), xs ∈ Xs, 0 ≤ t ≤ T

(

4

v2

∂2

∂t2
−∇2

)

w = δ(t)
2r

v2
, w ≡ 0, t < 0

To compute the adjoint, start with its definition: choosed ∈ E(Xs × (0, T )), so that

< F̃ [v]∗d, r >=< d, F̃ [v]r >

=

∫

Xs

dxs

∫ T

0

dt d(xs, t)w(xs, t)

2



The only thing you know aboutw is that it solves a wave equation withr on the
RHS. To get this fact into play, (i) rewrite the integral as a space-time integral:

=

∫

R3
dx

∫ T

0

dt

∫

Xs

dxs d(xs, t)δ(x − xs)w(x, t)

(ii) write the other factor in the integrand as the image of a fieldq under the (adjoint
of the) wave operator (it’s self-adjoint), that is,

(

4

v2

∂2

∂t2
−∇2

)

q(x, t) =

∫

Xs

dxs d(xs, t)δ(x − xs)

so

=

∫

R3
dx

∫ T

0

dt

[(

4

v2(x)

∂2

∂t2
−∇2

)

q(x, t)

]

w(x, t)
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(iii) integrate by parts

=

∫

R3
dx

∫ T

0

dt

[(

4

v2(x)

∂2

∂t2
−∇2

)

w(x, t)

]

q(x, t)

which works ifq ≡ 0, t > T (final value condition); (iv) use the wave equation for
w

=

∫

R3
dx

∫ T

0

dt
2

v(x)2
r(x)δ(t)q(x, t)

(v) observe that you have computed the adjoint:

=

∫

R3
dx r(x)

[

2

v(x)2
q(x, 0)

]

=< r, F̃ [v]∗d >

i.e.

F̃ [v]∗d =
2

v(x)2
q(x, 0)

4



Summary of the computation, with the usual description:

• Use that data as sources, backpropagate in time - i.e. solve the final value (“re-
verse time”) problem

(

4

v2

∂2

∂t2
−∇2

)

q(x, t) =

∫

Xs

dxs d(xs, t)δ(x − xs), q ≡ 0, t > T

• read out the “image” (= adjoint output) att = 0:

F̃ [v]∗d =
2

v(x)2
q(x, 0)

Note: The adjoint (time-reversed) fieldq is not the physical field (δu) run back-
wards in time, contrary to some imputations in the literature.
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Historical Remarks

• Known as “two way reverse time finite difference poststack migration” in geo-
physical literature (Whitmore, 1982)

• uses full (two way) wave equation, propagates adjoint field backwards in time,
generally implemented using finite difference discretization.

• Same as “adjoint state method”, Lions 1968, Chavent 1974 forcontrol and in-
verse problems for PDEs - much earlier for control of ODEs - Lailly, Tarantola
’80s.

• My buddy Tapia says: all you’re doing is transposing a matrix! True (after
discretization), but it’s important that these matrices are triangular, so can be
implemented by recursions - forward for simulation, backwards for adjoint.
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Reverse Time Migration, Prestack

A slightly messier computation computes the adjoint ofF [v] (i.e. multioffset or
prestackmigration):

F [v]∗d(x) = −
2

v(x)

∫

dxs

∫ T

0

dt

(

∂q

∂t
∇2u

)

(x, t;xs)

whereadjoint fieldq satisfiesq ≡ 0, t ≥ T and

(

1

v2

∂2

∂t2
−∇2

)

q(x, t;xs) =

∫

dxr d(xr, t;xs)δ(x − xr)
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Proof

< F [v]∗d, r >=< d, F [v]r >

=

∫ ∫

dxs dxr

∫ T

0

dt d(xr, t;xs)
∂δu

∂t
(xr, t;xs)

=

∫

dxs

∫

dx

∫ T

0

dt

{
∫

dxr d(xr, t;xs)δ(x − xr)

}

∂δu

∂t
(x, t;xs)

=

∫

dxs

∫

dx

∫ T

0

dt

[(

1

v2

∂2

∂t2
−∇2

)

q

]

∂δu

∂t
(x, t;xs)
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= −

∫

dxs

∫

dx

∫ T

0

dt

[(

1

v2

∂2

∂t2
−∇2

)

δu

]

∂q

∂t
(x, t;xs)

(boundary terms in integration by parts vanish because (i)δu ≡ 0, t << 0; (ii)
q ≡ 0, t >> 0; (iii) both vanish for largex, at eacht)

= −

∫

dxs

∫

dx

∫ T

0

dt

(

2r

v2

∂2u

∂t2
∂q

∂t

)

(x, t;xs)

= −

∫

dxs

∫

dx r(x)
2

v2(x)

∫ T

0

dt

(

∂2u

∂t2
∂q

∂t

)

(x, t;xs)

=< r, F [v]∗d >

q.e.d.
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Implementation

Algorithm: finite difference or finite element discretization in x, finite difference
time stepping.

• For eachxs, solve wave equation foru forward in t, record final (t=T) Cauchy
data, also (for example) Dirichlet boundary data.

• Stepu andq backwards in time together; at each time step, data serves assource
for q (“backpropagate data”)

• During backwards time stepping, accumulate (approximations to)

Q(x)+ =
2

v2(x)

∫ T

0

dt

(

∂2u

∂t2
∂q

∂t

)

(x, t;xs)

(“crosscorrelate reference and backpropagated field”).

• nextxs - after lastxs, F [v]∗d = Q.
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Reverse Depth Migration, Zero Offset

aka: depth extrapolation, downward continuation, or simply “wave equation migra-
tion”.

Introduced by Claerbout, early 70’s (“swimming pool equation”). Again, assume
exploding reflector model:

F̃ [v]r(xs, t) = w(xs, t), xs ∈ Xs, 0 ≤ t ≤ T

(

4

v2

∂2

∂t2
−∇2

)

w = δ(t)
2r

v2
, w ≡ 0, t < 0

Basic idea: 2nd order wave equation permits waves to move in all directions, but
waves carrying reflected energy are (mostly) movingup. Should satisfy a 1st order
equation for wave motion in one direction.
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Coming up...

For the moment use 2D notationx = (x, z) etc. Write wave equation as evolution
equation inz:

∂2w

∂z2
−

(

4

v2

∂2

∂t2
−

∂2

∂x2

)

w = −δ(t)
2r

v2

Suppose that you could take the square root of the operator inparentheses - call it
B. Then the LHS of the wave equation becomes

(

∂

∂z
− B

)(

∂

∂z
+ B

)

w = −δ(t)
2r

v2

so settingw̃ =
(

∂
∂z + B

)

w you get
(

∂

∂z
− B

)

w̃ = −δ(t)
2r

v2

12



Some issues

Thismightbe the required equation for upcoming waves.

Two major problems: (i) how the h–l do you take the square rootof a PDO?

(ii) what guarantees that the equation just written governsupcoming waves?

Answers to be found in the theory ofΨDOs!
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ClassicalΨDOs

Importantsubclassof classicalΨDOs: those whose (“classical”) symbols have
asymptotic expansions:

p(x, ξ) ∼
∑

j≤m

pj(x, ξ), |ξ| → ∞

in whichpj is homogeneous inξ of degreej:

pj(x, τξ) = τ jpj(x, τξ), τ, |ξ| ≥ 1

Theprincipal symbolis the homogeneous term of highest degree, i.e.pm above.
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Products ofΨDOs areΨDOs.

ClassicalΨDOs have more completecalculus, including prescriptions for “com-
puting” adjoints, products, and the like. From now on unlessotherwise stated, all
ΨDOs are classical.

Product rule forΨDOs: if p1, p2 are classical,

p1(x, ξ) =
∑

j≤m1

p1
j(x, ξ), p2(x, ξ) =

∑

j≤m2

p2
j(x, ξ)

then so isp1(x, D)p2(x, D), and its principal symbol isp1
m1(x, ξ)p2

m2(x, ξ), and
there is an algorithm for computing the rest of the expansion.

In an open neighborhoodX × Ξ of (x0, ξ0), symbol ofp1(x, D)p2(x, D) depends
only on symbols ofp1, p2 in X × Ξ.
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Consequence: ifa(x, D) has an asymptotic expansion and is of orderm ∈ R, and
am(x0, ξ0) > 0 in P ⊂ R

n × R
n − 0, then there existsb(x, D) of orderm/2 with

asymptotic expansion for which

(a(x, D) − b(x, D)b(x, D))u ∈ E(Rn)

for anyu ∈ E ′(Rn) with WF (u) ⊂ P.

Moreover,bm/2(x, ξ) =
√

am(x, ξ), (x, ξ) ∈ P. Will call b a microlocal square
root of a.

Similar construction: ifa(x, ξ) 6= 0 in P, then there isc(x, D) of order−m so that

c(x, D)a(x, D)u − u, a(x, D)c(x, D)u − u ∈ E(Rn)

for anyu ∈ E ′(Rn) with WF (u) ⊂ P.

Moreover,c−m(x, ξ) = 1/am(x, ξ), (x, ξ) ∈ P. Will call b a microlocal inverseof
a.
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Application: the Square Root Operator

a(x, z,Dt, Dx) =
∂2

∂x2
−

4

v(x, z)2
∂2

∂t2
=

4

v(x, z)2
D2

t − D2
x

is

a(x, z, τ, ξ) =
4

v(x, z)2
τ 2 − ξ2

For δ > 0, set

Pδ(z) =

{

(x, t, ξ, τ ) :
4

v(x, z)2
τ 2 > (1 + δ)ξ2

}
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The SSR Operator

Then according to the last slide, there is an order 1ΨDO-valued function ofz,
b(x, z, Dt, Dx), with principal symbol

b1(x, z, τ, ξ) =

√

4

v(x, z)2
τ 2 − ξ2 = τ

√

4

v(x, z)2
−

ξ2

τ 2
, (x, t, ξ, τ ) ∈ Pδ(z)

for whicha(x, z,Dt, Dx)u ≃ b(x, z, Dt, Dx)b(x, z, Dt, Dx)u if WF (u) ⊂ Pδ(z).

b is the world-famoussingle square root (“SSR”) operator - see Claerbout, IEI.
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The SSR Assumption

To what extent has this construction factored the wave operator:

(

∂

∂z
− ib(x, z,Dx, Dt)

)(

∂

∂z
+ ib(x, z, Dx, Dt)

)

=
∂2

∂z2
+ b(x, z, Dx, Dt)b(x, z,Dx, Dt) +

∂b

∂z
(x, z,Dx, Dt)

SSR Assumption: For someδ > 0, the wavefieldw satisfies

(x, z, t, ξ, ζ, τ ) ∈ WF (w) ⇒ (x, t, ξ, τ ) ∈ Pδ(z) andζτ > 0
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This statement has a ray-theoretic interpretation (which will eventually make sense):
rays carrying significant energy are nowhere horizontal. Along any such ray,z de-
creases ast increases -coming up!

w̃(x, z, t) =

(

∂

∂z
+ ib(x, z, Dx, Dt)

)

w(x, z, t)

b(x, z,Dx, Dt)b(x, z,Dx, Dt)w ≃

(

4

v(x, z)2
D2

t − D2
x

)

w

with a smooth error, so
(

∂

∂z
− ib(x, z,Dx, Dt)

)

w̃(x, z, t) = −
2r(x, z)

v(x, z)2
δ(t)

+i

(

∂

∂z
b(x, z,Dx, Dt)

)

w(x, z, t)

20



(sinceb depends onz, thez deriv. does not commute withb). So w̃ = w̃0 + w̃1,
where

(

∂

∂z
− ib(x, z,Dx, Dt)

)

w̃0(x, z, t) = −
2r(x, z)

v(x, z)2
δ(t)

(this is theSSR modeling equation)

(

∂

∂z
− ib(x, z,Dx, Dt)

)

w̃1(x, z, t) = i

(

∂

∂z
b(x, z,Dx, Dt)

)

w(x, z, t)

Claim: WF (w̃1) ⊂ WF (w). Granted this⇒ WF (w̃0) ⊂ WF (w) also.
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Upshot: SSR modeling

F̃0[v]r(xs, zs, t) = w̃0(xs, zs, t)

produces the same singularities (i.e. the same waves) as exploding reflector model-
ing, so is as good a basis for migration.

SSR migration: assume that sources all lie onzs = 0.

< F̃0[v]∗d, r >=< d, F̃0[v]r >

=

∫

dxs

∫

dt d(xs, t)w̃0(xs, 0, t)
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=

∫

dxs

∫

dt

∫

dz ¯d(xs, t)δ(z)w̃0(xs, z, t)

Define the adjoint fieldq by
(

∂

∂z
− b(x, z,Dx, Dt)

)

q(x, z, t) = d(x, t)δ(z), q(x, z, t) ≡ 0, z < 0

which is equivalent to solving the initial value problem
(

∂

∂z
− ib(x, z,Dx, Dt)

)

q(x, z, t) = 0, z > 0; , q(x, 0, t) = d(x, t)

Insert in expression for inner product, integrate by parts,use self-adjointness ofb,
get

< d, F̃0[v]r >=

∫

dx

∫

dz
2r(x, z)

v(x, z)2
q(x, z, 0)
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whence

F̃0[v]∗d(x, z) =
2

v(x, z)2
q(x, z, 0)

Standard description of the SSR migration algorithm:

• downward continue data (i.e. solve forq)

• image att = 0.

The art of SSR migration: computable approximations tob(x, z, Dx, Dt) - swim-
ming pool operator, many successors.
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Proof of the Claim

Unfinished business: proof of claim

Depends on celebratedPropagation of Singularities theorem of Ḧormander (1970).

Given symbolp(x, ξ), order m, with asymptotic expansion, definebicharateristics
as solutions(x(t), ξ(t)) of Hamiltonian system

dx

dt
=

∂p

∂ξ
(x, ξ),

dξ

dt
= −

∂p

∂x
(x, ξ)

with p(x(t), ξ(t)) ≡ 0.

Theorem: Supposep(x, D)u = f , and suppose that fort0 ≤ t ≤ t1, (x(t), ξ(t)) /∈

WF (f). Then either{(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂ WF (u) or {(x(t), ξ(t)) : t0 ≤

t ≤ t1} ⊂ T ∗(Rn) − WF (u).
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P of S has at least two distinct proofs:

• Nirenberg, 1972

• Hörmander, 1970 (in Taylor, 1981)

Proof of claim: check that bicharacteristics for SSR operator are just upcoming
rays of geom. optics for wave equation. These pass intot < 0 where RHS is
smooth, also initial condn at largez is smooth - so each ray has one “end” outside
of WF (w̃1). If ray carries singularity, must pass ofWF of w, but then it’s entirely
contained by P of S applied tow. q. e. d.
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Reverse Depth Migration, Prestack

Nonzero offset (“prestack”): starting point is integral representation of the scattered
field

F [v]r(xr, t;xs) =
∂2

∂t2

∫

dx
2r(x)

v(x)2

∫

dsG(xr, t − s;x)G(xs, s;x)

By analogy with zero offset case, would like to view this as “exploding reflectors
in both directions”: reflectors propagate energy upward to sources and to receivers.

However can’t do this because reflection location issamefor both.
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The “survey sinking” idea

Bold stroke: introduce a new space variabley (a “sunken source”, think ofx as a
“sunken receiver”), define

F̃ [v]R(xr, t;xs) =
∂2

∂t2

∫ ∫

dx dy R(x,y)

∫

dsG(xr, t − s;x)G(xs, s;y)

and note that̃F [v]R = F [v]r if

R(x,y) =
2r

v2

(

x + y

2

)

δ(x − y)
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This trick decomposesF [v] into two “exploding reflectors”:

F̃ [v]R(xr, t;xs) = u(x, t;xs)|x=xr

where
(

1

v(x)2
∂2

∂t2
−∇2

x

)

u(x, t;xs) =

∫

dy R(x,y)G(xs, t;y)

≡ ws(xs, t;x)

(“upward continue the receivers”),
(

1

v(y)2
∂2

∂t2
−∇2

y

)

ws(y, t;x) = R(x,y)δ(t)

(“upward continue the sources”).
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This factorization ofF [v] (r 7→ R 7→ F̃ [v]R) leads to a reverse time computation
of adjointF̃ [v]∗ - will discuss this later.

It’s equally possible to continue the receivers first, then the sources, which leads to
(

1

v(y)2
∂2

∂t2
−∇2

y

)

u(xr, t;y) =

∫

dxR(x,y)G(xr, t;x)

≡ wr(xr, t;y)

(“upward continue the sources”),
(

1

v(x)2
∂2

∂t2
−∇2

x

)

wr(x, t;y) = R(x,y)δ(t)

(“upward continue the receivers”).
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The DSR Assumption

Apply reverse depth concept: as before, go 2D temporarily,x = (x, zr),y = (y, zs),
all sources and receivers onz = 0.

Double Square Root (“DSR”) assumption: For someδ > 0, the wavefieldu satis-
fies

(x, zr, t, y, zs, ξ, ζs, τ, η, ζr) ∈ WF (u) ⇒

(x, t, ξ, τ ) ∈ Pδ(zr), (y, t, η, τ ) ∈ Pδ(zs), andζrτ > 0, ζsτ > 0,

As for SSR, there is a ray-theoretic interpretation: rays from source and receiver to
scattering point stay away from the vertical and decrease inz for increasingt, i.e.
they are all upcoming.
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Sincez will be singled out (and eventuallyR(x,y) will have a factor ofδ(x,y)),
impose the constraint that

R(x, z, x, zs) = R̃(x, y, z)δ(z − zs)

Define upcoming projections as for SSR:

w̃s =

(

∂

∂zs
+ ib(y, zs, Dy, Dt)

)

ws,

w̃r =

(

∂

∂zr
+ ib(x, zr, Dx, Dt)

)

wr,

ũ =

(

∂

∂zs
+ ib(y, zs, Dy, Dt)

) (

∂

∂zr
+ ib(x, zr, Dx, Dt)

)

u
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Except for lower order commutators which we justify throwing away as before,
(

∂

∂zs
− ib(y, zs, Dy, Dt)

)

w̃s = R̃δ(zr − zs)δ(t),

(

∂

∂zr
− ib(x, zr, Dx, Dt)

)

w̃r = R̃δ(zr − zs)δ(t),

(

∂

∂zr
− ib(x, zr, Dx, Dt)

)

ũ = w̃s

(

∂

∂zs
− ib(y, zs, Dy, Dt)

)

ũ = w̃r

Initial (final) conditions are that̃wr, w̃s, andũ all vanish for largez - the equations
are to be solve in decreasingz (“upward continuation”).
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Simultaneous upward continuation:

∂

∂z
ũ(x, z, t; y, z) =

∂

∂zr
ũ(x, zr, t; y, z)|z=zr +

∂

∂zr
ũ(x, z, t; y, zs)|z=zs

= [ib(x, zr, Dx, Dt)ũ + w̃s + ib(y, zs, Dy, Dt)ũ + w̃r]zr=zs=z

Sincew̃s(y, z, t; x, z) = w̃r(x, z, t; y, z) = R̃(x, y, z)δ(t), ũ is seen to satisfy the

DSR modeling equation:
(

∂

∂z
− ib(x, z,Dx, Dt) − ib(y, z, Dy, Dt)

)

ũ(x, z, t; y, z) = 2R̃(x, y, z)δ(t)

F̃ [v]R̃(xr, t; xs) = ũ(xr, 0, t; xs, 0)
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DSR Migration

Computation of adjoint follows same pattern as for SSR, and leads to

DSR migration equation: solve
(

∂

∂z
− ib(x, z, Dx, Dt) − ib(y, z, Dy, Dt)

)

q̃(x, y, z, t) = 0

in increasingz with initial condition atz = 0:

q̃(xr, xs, 0, t) = d(xr, xs, t)

ThenF̃ [v]∗d(x, y, z) = q̃(x, y, z, 0)

The physical DSR model has̃R(x, y, z) = r(x, z)δ(x − y), so final step in DSR
computation ofF [v]∗ is adjoint ofr 7→ R̃:

F [v]∗d(x, z) = q̃(x, x, z, 0)

35



Standard description of DSR migration

(See Claerbout, IEI):

• downward continue sources and receivers (solve DSR migration equation)

• image att = 0 and zero offset (x = y)

Another moniker: “survey sinking”: DSR field̃q is (related to) the field that you
would get by conducting the survey with sources and receivers at depthz. At any
given depth, the zero-offset, time-zero part of the field is the instantaneous response
to scatterers on which source = receiver is sitting, therefore constitutes an image.

As for SSR, the art of DSR migration is in the approximation ofthe DSR operator.
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Remarks

Stolk and deHoop (2001) derived DSR modeling and migration via a more system-
atic argument than that used here, involvingΨDO matrix factorization of the wave
equation written as a first order evolution system inz. This idea goes back to Tay-
lor (1975) who used it to show that singularities propagating along bicharacteristics
reflect as expected at boundaries.

Stolk (2003) has also carried out a very careful global construction of a family of
SSRΨDOs which are of non-classical type at near-horizontal directions (“nearly
evanescent waves”). This construction should lead to more reliable discretizations.

The last part of the course will present the various apparently ad-hoc “prestack
modeling” ideas within a unified framework.
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A step beyond linearization: velocity analysis
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Velocity Analysis

Partially linearized seismic inverse problem (“velocity analysis”): given observed
seismic datad, find smoothvelocity v ∈ E(X), X ⊂ R

3 oscillatory reflectivity
r ∈ E ′(X) so that

F [v]r ≃ d

Acoustic partially linearized model: acoustic potential field u and its perturbation
δu solve

(

1

v2

∂2

∂t2
−∇2

)

u = δ(t)δ(x − xs),

(

1

v2

∂2

∂t2
−∇2

)

δu = 2r∇2u

plus suitable bdry and initial conditions.

F [v]r =
∂δu

∂t

∣

∣

∣

∣

Y

data acquisition manifoldY = {(xr, t;xs)} ⊂ R
7, dimnY ≤ 5 (many idealizations

here!).
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F [v] : E ′(X) → D′(Y ) is a linear map (FIO of order1), but dependence onv is
quite nonlinear, so this inverse problem is nonlinear.

Agenda:

• reformulation of inverse problem viaextensions

• “standard processing” extension and standard VA

• the surface oriented extension and standard MVA

• theΨDO property and why it’s important

• global failure of theΨDO property for the SOE

• Claerbout’s depth oriented extension has theΨDO property

• differential semblance
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Extensions

Extensionof F [v]: manifold X̄ and mapsχ : E ′(X) → E ′(X̄), F̄ [v] : E ′(X̄) →
D′(Y ) so that

F̄ [v]
E ′(X̄) → D′(Y )

χ ↑ ↑ id
E ′(X) → D′(Y )

F [v]

commutes.

Invertible extension:̄F [v] has aright parametrixḠ[v], i.e. I − F̄ [v]Ḡ[v] is smooth-
ing. [The trivial extension -X̄ = X, F̄ = F - is virtually never invertible.] Alsoχ
has aleft inverseη.

Reformulation of inverse problem: givend, find v so thatḠ[v]d ∈ R(χ) (implicitly
determinesr also!).
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Reformulation of inverse problem

Givend, find v so thatḠ[v]d ∈ the range ofχ.

Claim: if v is so chosen, then[v, r] solves partially linearized inverse problem with
r = ηḠ[v]d.

Proof: Hypothesis means

Ḡ[v]d = χr

for somer (whence necessarilyr = ηḠ[v]d), so

d ≃ F̄ [v]Ḡ[v]d = F̄ [v]χr = F [v]r

Q. E. D.
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Example 1: Standard VA extension

Treat each CMPas if it were the result of an experiment performed over a layered
medium, but permit the layers to vary with midpoint.

Thusv = v(z), r = r(z) for purposes of analysis, but at the endv = v(xm, z), r =

r(xm, z).

F [v]R(xm, h, t) ≃ A(xm, h, z(xm, h, t))R(xm, z(xm, h, t))

Herez(xm, h, t) is the inverse of the 2-way traveltime

t(xm, h, z) = 2τ (xm + (h, 0, z),xm)v=v(xm,z)

computed with the layered velocityv(xm, z), i.e.
z(xm, h, t(xm, h, z′)) = z′.
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That is,F [v] is a change of variable followed by multiplication by a smooth func-
tion. NB: industry standard practice is to use vertical traveltime t0 instead ofz for
depth variable.

Can write this asF [v] = F̄ [v]S∗, whereF̄ [v] = N [v]−1M [v]−1 has right parametrix
Ḡ[v] = M [v]N [v]:

N [v] = NMO operator N [v]d(xm, h, z) = d(xm, h, t(xm, h, z))

M [v] = multiplication byA

S = stacking operator

Sf(xm, z) =

∫

dh f(xm, h, z), S∗r(xm, h, z) = r(x, z)

7



Identify as extension:F̄ [v], Ḡ[v] as above,X = {xm, z}, H = {h}, X̄ = X ×

H,χ = S∗, η = S - the invertible extension properties are clear.

Standard names for the Standard VA extension objects:F̄ [v] = “inverse NMO”,
Ḡ[v] = “NMO” [often the multiplication opM [v] is neglected];η = “stack”, χ =
“spread”

How this is used for velocity analysis: Look for v that makesḠ[v]d ∈ R(χ)

So what isR(χ)? χ[r](xm, z, h) = r(xm, z) Anything in range ofχ is independent
of h. Practical issues⇒ replace “independent of” with “smooth in”.
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Flatten them gathers!

Inverse problem reduced to: adjustv to makeḠ[v]dobs smooth inh, i.e. flat in z, h

display for eachxm (NMO-corrected CMP).

Replacez with t0, v with vRMS em localizes computation: reflection throughxm, t0, 0

flattenedby adjustingvRMS(xm, t0) ⇒ 1D search, do by visual inspection.

Various aids - NMO corrected CMP gathers, velocity spectra,etc.

See: Claerbout:Imaging the Earth’s Interior

WWS: MGSS 2000 notes
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Example 2: Surface oriented or standard MVA

extension

. Standard VA only works where Earth is “nearly layered”. Where this fails, replace
NMO by prestack migration.

Version based on common offset modeling/migration:Σh = set of half-offsets in
data,X̄ = X × Σh, χ[r](x,h) = r(x).

F̄ [v]r̄(xs, t,h) =
∂2

∂t2

∫

dx r̄(x,h)

∫

dsG(xs + 2h, t − s;x)G(xs, s; x)

Note that this operator is “block diagonal” inh.
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Properties of SOE

Beylkin (1985), Rakesh (1988): if‖v‖C2(X) “not too big”, then

• F̄ hasthe ΨDO property: F̄ F̄ ∗ is ΨDO

• singularities ofF̄ F̄ ∗d ⊂ singularities ofd

• straightforward construction of right parametrix̄G = F̄ ∗Q, Q = ΨDO, also as
generalized Radon Transform - explicitly computable.

Range ofχ (offset version):r̄(x,h) independent ofh ⇒ “semblance principle”:
find v so thatḠ[v]dobs is independent ofh. Practical limitations⇒ replace “inde-
pendent ofh” by “smooth inh”.

12



Industrial MVA

Application of these ideas = industrial practice of migration velocity analysis.

Idea: twiddlev until Ḡ[v]dobs is smooth inh.

Since it is hard to inspect̄G[v]dobs(x, y, z, h), pull out subset for constantx, y =
common image gather (“CIG”): display function ofz, h for fixedx, y. These play
same role as NMO corrected CMP gathers in layered case.

Try to adjustv so that selected CIGs areflat - just as in Standard VA. This is much
harder, as there is no RMS velocity trick to localize the computation - each CIG
depends globally onv.

Description, some examples: Yilmaz,Seismic Data Processing.
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Bad news

Nolan (1997), Stolk & WWS (2004): big trouble! In general, standard extension
doesnot have theΨDO property. Geometric optics analysis: for‖v‖C2(X) “large”,
multiple rays connect source, receiver to reflecting pointsin X; block diagonal
structure ofF̄ [v] ⇒ info necessary to distinguish multiple rays isprojected out.
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Example 3: Claerbout’s depth oriented extension

Standard MVA extension only works when Earth has simple ray geometry. Claer-
bout (1971) proposed alternative extension:

Σd = somewhat arbitrary set of vectors near 0 (“offsets”),X̄ = X×Σd, χ[r](x,h) =

r(x)δ(h), η[r̄](x) = r̄(x, 0)

F̄ [v]r̄(xs, t,xr) =
∂2

∂t2

∫

dx

∫

Σd

dh r̄(x,h)

∫

dsG(xs, t − s;x + 2h)G(xr, s;x)

=
∂2

∂t2

∫

dx

∫

x+2Σd

dy r̄(x,y − x)

∫

dsG(xs, t − s;y)G(xr, s;x)

NB: in this formulation, there appears to be too many model parameters.
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Shot record modeling

for eachxs solve

F̄ [v]r̄(xr, t;xs) = u(x, t;xs)|x=xr

where
(

1

v(x)2
∂2

∂t2
−∇2

x

)

u(x, t;xs) =

∫

x+2Σd

dy r̄(x,y)G(y, t;xs)

(

1

v(y)2
∂2

∂t2
−∇2

y

)

G(y, t;xs) = δ(t)δ(xs − y)

Finite difference scheme: form RHS for eqn 1, stepu, G forward in t.
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ComputingḠ[v]

Instead of parametrix, be satisfied with adjoint.

Reverse time adjoint computation - specify adjoint field as in standard reverse time
prestack migration:

(

1

v(x)2
∂2

∂t2
−∇2

x

)

w(x, t;xs) =

∫

dxr d(xr, t;xs)δ(x − xr)

with w(x, t;xs) = 0, t >> 0. Then

F̄ [v]∗d(x,h) =

∫

dxs

∫

dtG(x + 2h, t;xs)w(x, t;xs)

i.e. exactly the same computation as for reverse time prestack, except that crosscor-
relation occurs at an offset2h.
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Nomenclature

NB: the “usual computation” of̄G[v] is either DSR or a variant of shot record com-
putation of previous slide using depth extrapolation.h is usually restricted to be
horizontal, i.e.h3 = 0.

Common names: shot-geophone or survey-sinking migration (with DSR), or shot
record migration.

“Downward continue sources and receivers, image att = 0, h = 0”

These are what is typically meant by “wave equation migration”!
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What should be the character of the image when the velocity iscorrect?

Hint: for simulation of seismograms, the input reflectivityhad the formr(x)δ(h).

Therefore guess that when velocity is correct,image is concentrated nearh = 0.

Examples: 2D finite difference implementation of reverse time method. Correct
velocity ≡ 1. Input reflectivity used to generate synthetic data: random! For
output reflectivity (image ofF̄ [v]∗), constrain offset to be horizontal:̄r(x,h) =

r̃(x, h1)δ(h3). Display CIGs (i.e.x1 =const. slices).
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Stolk and deHoop, 2001

Claerbout extension has theΨDO property, at least when restricted tor̄ of the form
r̄(x,h) = R(x, h1, h2)δ(h3), and under DSR assumption.

Sketch of proof (after Rakesh, 1988):

This will follow from injectivityof wavefront orcanonical relationCF̄ ⊂ T ∗(X̄)−

{0} × T ∗(Y ) − {0} which describes singularity mapping properties ofF̄ :

(x,h, ξ, ν,y, η) ∈ CFδ[v] ⇔

for someu ∈ E ′(X̄), (x,h, ξ, ν) ∈ WF (u), and (y, η) ∈ WF (F̄ u)
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Characterization ofCF̄

((x,h, ξ, ν), (xs, t,xr, ξs, τ, ξr)) ∈ CF̄ [v] ⊂ T ∗(X̄) − {0} × T ∗(Y ) − {0}

⇔ there arerays of geometric optics(Xs,Ξs), (Xr,Ξr) and timests, tr so that

Π(Xs(0), t,Xr(0),Ξs(0), τ,Ξr(0)) = (xs, t,xr, ξs, τ, ξr),

Xs(ts) = x,Xr(tr) = x + 2h, ts + tr = t,

Ξs(ts) + Ξr(tr)||ξ,Ξs(ts) − Ξr(tr)||ν
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Proof

Uses wave equations foru, G and

• Gabor calculus: computes wave front sets of products, pullbacks, integrals, etc.
See Duistermaat, Ch. 1.

• Propagation of Singularities Theorem

and that’s all! [No integral representations, phase functions,...]
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Note intrinsic ambiguity: if you have a ray pair, move timests, tr resp. t′s, t
′
r, for

whichts+tr = t′s+t′r = t then you can construct two points(x,h, ξ, ν), (x′,h′, ξ′, ν ′)

which are candidates for membership inWF (r̄) and which satisfy the above rela-
tions with the same point in the cotangent bundle ofT ∗(Y ).

No wonder - there are too many model parameters!

Stolk and deHoop fix this ambiguity by imposing two constraints:

• DSR assumption: all rays carrying significant reflected energy (source or re-
ceiver) are upcoming.

• RestrictF̄ to the domainZ ⊂ E ′(X̄)

r̄ ∈ Z ⇔ r̄(x,h) = R(x, h1, h2)δ(h3)
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If r̄ ∈ Z, then(x,h, ξ, ν) ∈ WF (r̄) ⇒ h3 = 0. So source and receiver rays inCF̄

must terminate at same depth, to hit such a point.

Because of DSR assumption, this fixes the traveltimests, tr.

Restricted to Z , CF̄ is injective.

⇒ CF̄ ∗F̄ = I

⇒ F̄ ∗F̄ is ΨDO when restricted toZ.

28



x
r
(t )

r r
(t )

r 

s ,p

s(t )s(t )sx s

x r, r
x s,,p

k k

29



Lens data, shot-geophone migration [B. Biondi, 2002]
Left: Image via DSR. Middle:̄G[v]d - well-focused (ath = 0), i.e. in range ofχ to

extent possible. Right: Angle CIG.
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Quantitative VA

SupposeW : E ′(X̄) → D′(Z) annihilates range ofχ:

χ W
E ′(X) → E ′(X̄) → D′(Z) → 0

and moreoverW is bounded onL2(X̄). Then

J [v; d] =
1

2
‖WḠ[v]d‖2

minimizedwhen[v, ηḠ[v]d] solves partially linearized inverse problem.

Construction ofannihilatorof R(F [v]) (Guillemin, 1985):

d ∈ R(F [v]) ⇔ Ḡ[v]d ∈ R(χ) ⇔ WḠ[v]d = 0
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Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

• W = (I − ∆)−
1
2∇h (“differential semblance” - WWS, 1986)

• W = I − 1
|H|

∫

dh (“stack power” - Toldi, 1985)

• W = I − χF [v]†F̄ [v] ⇒ minimizingJ [v, d] equivalent to least squares.

For Claerbout extension, differential semblanceW = h.
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But not many are good for much...

Sinceproblem is huge, only W giving rise to differentiablev 7→ J [v, d] are useful -
must be able to use Newton!!! Once again, idealizew(t) = δ(t).

Theorem (Stolk & WWS, 2003):v 7→ J [v, d] smooth⇔ W pseudodifferential.

i.e. only differential semblancegives rise to smooth optimization problem,uni-
formly in source bandwidth.

Numerical examples using synthetic and field data: WWS et al., Chauris & Noble
2001, Mulder & tenKroode 2002. deHoop et al. 2004.
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Example: NMO-based Differential Semblance

J [v, d] =
1

2

∥

∥

∥

∥

∂

∂h
N [v]d

∥

∥

∥

∥

2

(recall thatN [v] is the NMO operator = composition witht(z, h))

Theory: under some circumstances, can show thatall stationary points are global
minimizers(WWS, TRIP annual reports ’99, ’01).

Example uses data from North Sea survey (thanks: Shell) withlight preprocess-
ing: cutoff (“mute”) and multiple suppression (predictivedecon) to enhance con-
formance with model, low pass filter.

Minimization ofJ via quasi-Newton method.
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Beyond Born

Nonlinear effects not included in linearized model:multiple reflections. Conven-
tional approach: treat ascoherent noise, attempt to eliminate - active area of re-
search going back 40+ years, with recent important developments.

Why not model this “noise”?

Proposal:nonlinear extensionswith F [v]r replaced byF [c]. Create annihilators in
same way (now also nonlinear), optimize differential semblance.

Nonlinear analog of Standard Extended Model appears to beinvertible - in fact
extended nonlinear inverse problem isunderdetermined.

Open problems: no theory. Also must determinew(t) (Lailly SEG 2003).
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And so on...

• Elasticity: theory of asymptotic Born inversion at smooth background in good
shape (Beylkin & Burridge 1988, deHoop & Bleistein 1997). Theory of exten-
sions, annihilators, differential semblance partially complete (Brandsberg-Dahl
et al 2003).

• Anisotropy - work of deHoop (Brandsberg-Dahl et al 2003).

• Anelasticity - in the sedimentary section,Q = 100 − 1000, lower in gassy sedi-
ments and near surface. No mathematical results, but some numerics - Minkoff
& WWS 1997, Blanch et al 1998.

• Source determination - actually always an issue. Some success in casting as an
inverse problem - Minkoff & WWS 1997, Routh et al SEG 2003.

• ...
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