Mathematics

Predicting rain and lightning using statistical and machine learning techniques

Speaker: 
Courtney Schumacher
Date: 
Thu, Mar 17, 2022
Location: 
University of Victoria, Victoria, Canada
Abstract: 

Convective storms are highly intermittent and intense, making their occurrence and strength difficult to predict. This is especially true for climate models, which have grid resolutions much coarser (e.g., 100 km) than the scale of a storm’s microphysical and dynamical processes (< 1 km). Physically-based parameterizations struggle to account for this scale mismatch, causing large model errors in rain and lightning. This talk will explore some avenues of using statistical techniques (such as generalized linear and log-Gaussian Cox process models) and machine learning methods (such as random forests and neural networks) that are trained by satellite observations of thunderstorms to see how well they can improve upon existing physical parameterizations in producing accurate rain and lightning characteristics given a set of large-scale environmental conditions.

Class: 
Subject: 

Directional sensing and signal integration by immune cells

Speaker: 
Sean Collins
Date: 
Wed, Mar 23, 2022
Location: 
Zoom
Online
Conference: 
Mathematical Biology Seminar
Abstract: 

Human neutrophils and other immune cells sense chemical gradients to navigate to sites of injury, infection, and inflammation in the body. Impressively, these cells can detect gradients that differ by as little as about 1% in concentration across the length of the cell. Abstract models suggest that they may do this by integrating opposing local positive and long-range negative signals generated by receptors. However, the molecular basis for signal processing remains unclear. To investigate models of sensing, we developed experimental tools to control receptors with light while measuring downstream signaling responses with spatial resolution in single cells. We are directly measuring responses to both local and cell-wide receptor activation to determine the wiring of signal processing. While we do not see evidence for long-range negative signals, we do see a subcellular context-dependence of signal transmission. We propose that signal transmission from receptors happens locally, but cell-wide polarity biases sensing to maintain persistent migration and achieve temporal averaging to promote directional accuracy.

Class: 

Feelling Fundamental Principles of Bacterial Cell Physiology using Long-Term Time-Lapse Atomic Force Microscopy

Speaker: 
Haig Alexander Eskandarian
Date: 
Wed, Mar 16, 2022
Location: 
PIMS, University of British Columbia
Zoom
Online
Conference: 
Mathematical Biology Seminar
Abstract: 

Exposure of bacteria to cidal stresses typically select for the emergence of stress-tolerant cells refractory to killing. Stress tolerance has historically been attributed to the regulation of discrete molecular mechanisms, including though not limited to regulating pro-drug activation or pumps abrogating antibiotic accumulation. However, fractions of mycobacterial mutants lacking these molecular mechanisms still maintain the capacity to broadly tolerate stresses. We have sought to understand the nature of stress tolerance through a largely overlooked axis of mycobacterial-environmental interactions, namely microbial biomechanics. We developed Long-Term Time-Lapse Atomic Force Microscopy (LTTL-AFM) to dynamically characterize nanoscale surface mechanical properties that are otherwise unobservable using other established advanced imaging modalities. LTTL-AFM has allowed us to revisit and redefine fundamental biophysical principles underlying critical bacterial cell processes targeted by a variety of cidal stresses and for which no molecular mechanisms have previously been described. I aim to highlighting the disruptive power of LTTL-AFM to revisit dogmas of fundamental cell processes like cell growth, division, and death. Our studies aim to uncover new molecular paradigms for how mycobacteria physically adapt to stress and provide expanded avenues for the development of novel treatments of microbial infections.

Class: 

Humans Make Things Messy

Speaker: 
Shelby M. Scott
Date: 
Wed, Feb 16, 2022
Location: 
PIMS, University of British Columbia
Zoom
Online
Conference: 
Mathematical Biology Seminar
Abstract: 

Models become notably more complex when stochasticity is introduced. One of the best ways to add frustrating amounts of randomness to your model: incorporate humans. In this talk, I discuss three different ways in which humans have made things messy in my mathematical models, statistical models, and data science work. Despite the fact that humans do, indeed, make things messy, they also make our models so much more realistic, interesting, and intriguing. So while humans make things messy, it is so worth it to bring them into your work.

Class: 

Wasserstein gradient flows for machine learning

Speaker: 
Anna Korba
Date: 
Thu, Mar 17, 2022
Location: 
Online
Zoom
Conference: 
Kantorovich Initiative Seminar
Abstract: 

An important problem in machine learning and computational statistics is to sample from an intractable target distribution, e.g. to sample or compute functionals (expectations, normalizing constants) of the target distribution. This sampling problem can be cast as the optimization of a dissimilarity functional, seen as a loss, over the space of probability measures. In particular, one can leverage the geometry of Optimal transport and consider Wasserstein gradient flows for the loss functional, that find continuous path of probability distributions decreasing this loss. Different algorithms to approximate the target distribution result from the choice of the loss, a time and space discretization; and results in practice to the simulation of interacting particle systems. Motivated in particular by two machine learning applications, namely bayesian inference and optimization of shallow neural networks, we will present recent convergence results obtained for algorithms derived from Wasserstein gradient flows.

Class: 
Subject: 

Modular forms and their role in counting combinatorial and topological objects

Speaker: 
Josh Males
Date: 
Wed, Mar 9, 2022
Location: 
Online
Conference: 
Emergent Research: The PIMS Postdoctoral Fellow Seminar
Abstract: 

I will begin by introducing some of the most basic combinatorial objects - partitions. It turns out that their generating function is a prototypical example of a modular form. These are objects with infinite symmetry, in turn giving them extraordinary properties. I'll then talk about the asymptotic behaviour of various modular-type objects arising from combinatorics and topology using the Circle Method of Hardy-Ramanujan and Wright, as well as one can even obtain exact formulae. In particular, I'll highlight the asymptotic (non)-equidistribution properties of Betti numbers of various Hilbert schemes as well as t-hooks in partitions. This talk will include various works with configurations of my collaborators Kathrin Bringmann, Giulia Cesana, William Craig, Daniel Johnston, Ken Ono, and Aleksander Simonič.

Speaker Biography:

Joshua Males received his MMath (masters + bachelors) degree from Durham University, UK under the supervision of Jens Funke, before taking a year sabbatical in Durham. In late 2017 he joined Kathrin Bringmann's number theory group at the University of Cologne, Germany, where he earned his PhD in May 2021. Since August 2021, Joshua has been a PIMS postdoctoral fellow at the University of Manitoba, working under his mentor Siddarth Sankaran. His research focuses on modular forms and their use in number theory and beyond, with connections to combinatorics, topology, and arithmetic geometry. At the time of writing, Joshua has 8 published articles (4 solo author) and 6 preprints (1 solo author) as well as 3 more articles in the latter stages of preparation.

Class: 
Subject: 

Mathematician Helping Art Historians and Art Conservators

Speaker: 
Ingrid Daubechies
Date: 
Thu, Feb 24, 2022
Location: 
Online
Conference: 
PIMS Network Wide Colloquium
Abstract: 

Mathematics can help Art Historians and Art Conservators in studying and understanding art works, their manufacture process and their state of conservation. The presentation will review several instances of such collaborations, explaining the role of mathematics in each instance, and illustrating the approach with extensive documentation of the art works.

Speaker Biography

Ingrid Daubechies is a Belgian Physicist and Mathematician, one of the leaders in the area of wavelets, a part of applied harmonic analysis. Wavelets are widely used in data compression and image encoding. Indeed, a wavelet pioneered by Daubechies is the basis of the standard for digital cinema. Ingrid Daubechies has held positions at the Free University in Brussels, Princeton University, and is currently James B. Duke Professor at Duke University. She is a Member of the National Academy of Sciences and of the National Academy of Engineering and a Fellow of the American Association for the Advancement of Science. Ingrid Daubechies has received many awards including the Leroy P. Steele Prize for Seminal Contribution to Research of the American Mathematical Society.

Class: 
Subject: 

Meta-Analytic Inference for the COVID-19 Infection Fatality Rate

Speaker: 
Paul Gustafson
Date: 
Thu, Mar 3, 2022
Location: 
Online
Abstract: 

Estimating the COVID-19 infection fatality rate (IFR) has proven to be challenging, since data on deaths and data on the number of infections are subject to various biases. I will describe some joint work with Harlan Campbell and others on both methodological and applied aspects of meeting this challenge, in a meta-analytic framework of combining data from different populations. I will start with the easier case when the infection data are obtained via random sampling. Then I will discuss drawing in additional infection data obtained in decidedly non-random manner.

Class: 
Subject: 

Optimal transport theory in incomplete econometric models

Speaker: 
Marc Henry
Date: 
Thu, Feb 24, 2022
Location: 
Online
Zoom
Conference: 
Kantorovich Initiative Seminar
Abstract: 

This talk focuses on the central role played by optimal transport theory in the study of incomplete econometric models. Incomplete econometric models are designed to analyze microeconomic data within the constraints of microeconomic theoretic principles, such as maximization, equilibrium and stability. These models are called incomplete because they do not predict a single distribution for the variables observed in the data. Incompleteness arises because of multiple equilibria in game theoretic solutions, unobserved heterogeneity in choice sets, interval predictions in auctions, and unknown sample selection mechanisms. The problem of confronting the model parameters (possibly infinite dimensional) and the data can be formulated as an optimal transport problem, where the transport cost is some measure of departure from the microeconomic theoretic principles. We will discuss a selection of inference methodologies on the model parameter based on different choices of transport cost, and applications to industrial organization, consumer demand theory and network formation.

Class: 
Subject: 

Asymptotic analysis of the concentration difference due to diffusive fluxes across narrow windows

Speaker: 
Frédéric Paquin-Lefebvre
Date: 
Wed, Feb 9, 2022
Location: 
PIMS, University of British Columbia
Zoom
Online
Conference: 
Mathematical Biology Seminar
Abstract: 

How far inside a domain does a flux of Brownian particles perturb a background concentration when particles can escape through a neighboring window? What motivates this question is the dynamics of ions entering and exiting nanoregions of excitable cells through ionic membrane channels. Here this is explored using a simple diffusion model consisting of the Laplace's equation in a domain whose boundary is everywhere reflective except for a collection of narrow circular windows, where either flux or absorbing boundary conditions are prescribed. We derive asymptotic formulas revealing the role of the influx amplitude, the diffusion properties, and the geometry, on the concentration difference. Lastly, a length scale to estimate how deep inside a domain a local diffusion current can spread is introduced. This is joint work with David Holcman at ENS.

Class: 

Pages