# Mathematics

## Univalence as a New Principle of Logic

It is often convenient or useful in mathematics to treat isomorphic structures as the same. The Univalence Axiom for the foundations of mathematics elevates this idea to a foundational principle in the setting of Homotopy Type Theory. It states, roughly, that isomorphic structures can be identified. In his talk, Prof. Awodey will explain this principle and how it can be taken as an axiom, and explore the motivations and consequences, both mathematical and philosophical, of making such an assumption.

## Native American Mathematics

One sometimes hears that the indigenous peoples of the Americas are for some reason not predisposed to be able to do mathematics. This belief is surprising, since the mathematical traditions of the Western Hemisphere prior to European contact were already rich and extensive. This talk will focus on some of those traditions, primarily Central American but with some information about mathematical traditions in Algonkian cultures such as the Blackfoot. Almost all of this talk will be accessible to any interested listener, with perhaps five minutes in the middle using a small amount of very elementary number theory. Along the way any listener who has ever eaten an 18 Rabbits granola bar will learn why doing so celebrates indigenous mathematics.

**ABOUT THE RICHARD AND LOUISE GUY LECTURE SERIES:**

The Richard & Louise Guy lecture series celebrates the joy of discovery and wonder in mathematics for everyone. Indeed, the lecture series was a 90th birthday present from Louise Guy to Richard in recognition of his love of mathematics and his desire to share his passion with the world. Richard Guy is the author of over 100 publications including works in combinatorial game theory, number theory and graph theory. He strives to make mathematics accessible to all. The other contributions to the lecture series have been made by Elwyn Berlekamp (2006), John Conway (2007), Richard Nowakowski (2008), William Pulleyblank (2009), Erik Demaine (2010), Noam Elkies (2011), Ravi Vakil (2012) and Carl Pomerance (2013).

## High Dimensional Expanders and Ramanujan Complexes

Expander graphs have played, in the last few decades, an important role in computer science, and in the last decade, also in pure mathematics. In recent years a theory of "high-dimensional expanders" is starting to emerge - i.e., simplical complexes which generalize various properties of expander graphs. This has some geometric motivations (led by Gromov) and combinatorial ones (started by Linial and Meshulam). The talk will survey the various directions of research and their applications, as well as potential applications in math and CS. Some of these lead to questions about buildings and representation theory of p-adic groups.

We will survey the work of a number of people. The works of the speaker in this direction are with various subsets of { S. Evra, K. Golubev, T. Kaufman, D. Kazhdan , R. Meshulam, S. Mozes }

## Math Modeling in Indudustry Team 7 - Final Report

TBA

## Math Modeling in Indudustry Team 4 - Final Report

TBA

## Math Modeling in Indudustry Team 3 - Final Report

TBA

## Math Modeling in Indudustry Team 7 - Intrim Report

TBA

## Math Modeling in Indudustry Team 6 - Intrim Report

TBA

## Math Modeling in Indudustry Team 4 - Intrim Report

TBA

## Math Modeling in Indudustry Team 3 - Intrim Report

TBA