Quantum Topology and its Applications

See the PIMS CRG in Quantum Topology and its Applications for more details.

Date: 
Wednesday, January 1, 2020 - 00:00 to Sunday, January 1, 2023 - 00:00

Combinatorial structures in perturbative quantum field theory

Speaker: 
Karen Yeats
Date: 
Fri, Jan 22, 2021
Location: 
Zoom
PIMS, University of Saskachewan
Conference: 
quanTA CRG Seminar
Abstract: 

I will give an overview of a few places where combinatorial structures have an interesting role to play in quantum field theory and which I have been involved in to varying degrees, from the Connes-Kreimer Hopf algebra and other renormalization Hopf algebras, to the combinatorics of Dyson-Schwinger equations and the graph theory of Feynman integrals.

For other events in this series see the quanTA events website.

Class: 

The topology and geometry of the space of gapped lattice systems

Speaker: 
Anton Kapustin
Date: 
Wed, Dec 9, 2020
Location: 
PIMS, University of Saskachewan
Zoom
Conference: 
quanTA CRG Seminar
Abstract: 

Recently there has been a lot of progress in classifying phases of gapped quantum many-body systems. From the mathematical viewpoint, a phase of a quantum system is a connected component of the “space” of gapped quantum systems, and it is natural to study the topology of this space. I will explain how to probe it using generalizations of the Berry curvature. I will focus on the case of lattice systems where all constructions can be made rigorous. Coarse geometry plays an important role in these constructions.

Class: 

The Infinite HaPPY Code

Speaker: 
Monica Jinwoo Kang
Date: 
Wed, Nov 4, 2020
Location: 
University of Saskatchewan
Centre for Quantum Topology and Its Applications
Zoom
Conference: 
quanTA CRG Seminar
Abstract: 

I will construct an infinite-dimensional analog of the HaPPY code as a growing series of stabilizer codes defined respective to their Hilbert spaces. These Hilbert spaces are related by isometries that will be defined during this talk. I will analyze its system in various aspects and discuss its implications in AdS/CFT. Our result hints that the relevance of quantum error correction in quantum gravity may not be limited to the CFT context.

For other events in this series see the quanTA events website.

Class: 

Conformal field theories and quantum phase transitions: an entanglement perspective

Speaker: 
William Witczak-Krempa
Date: 
Wed, Sep 30, 2020
Location: 
Zoom
University of Sasktachewan
Conference: 
quanTA CRG Seminar
Abstract: 

Quantum phase transitions occur when a quantum system undergoes a sharp change in its ground state, e.g. between a ferro- and para-magnet. I will present a remarkable set of transitions, called quantum critical, that are described by conformal field theories (CFTs). I will focus on 2 and 3 spatial dimensions, where the conformal symmetry is powerful yet less constraining than in 1 dimension. We will probe these scale-invariant theories via the structure of their quantum entanglement. The methods will include large-N expansions, the AdS/CFT duality from string theory, and large-scale numerical simulations. Finally, we’ll see that certain quantum Hall states, which are topological in nature, possess very similar entanglement properties. This hints at broader principles that relate very different quantum states.

For other events in this series see the quanTA events website.

Class: 

Pages