# Almost periodicity and large oscillations of prime counting functions

Date: Fri, Jun 21, 2024

Location: PIMS, University of British Columbia

Conference: Comparative Prime Number Theory

Subject: Mathematics, Number Theory

Class: Scientific

CRG: L-Functions in Analytic Number Theory

### Abstract:

If we assume the relevant Riemann hypotheses, after a suitable rescaling many functions counting certain primes become almost periodic. There are different notion of almost periodicity in use; here we consider the notion induced by the norm $||f|| = \sup_{x∈\mathbb{R}} \int_x^{x+1} |f(t)|^2\,dt$. We show that if a function $f$ can be approximated by linear combinations of periodic functions with respect to this norm, then the level sets $\left\{x: f(x) \geq t\right\}$ are almost periodic for all real $t$ with at most countably many exceptions. We also compare this notion to other notions of almost periodicity in use.

*Please note, the wrong video feed was captured for this lecture so the writing on the blackboard is not legible.*