# Scientific

## Approximating Functions in High Dimensions

This talk will discuss mathematical problems which are challenged by the fact they involve functions of a very large number of variables. Such problems arise naturally in learning theory, partial differential equations or numerical models depending on parametric or stochastic variables. They typically result in numerical difficulties due to the so-called ''curse of dimensionality''. We shall explain how these difficulties may be handled in various contexts, based on two important concepts: (i) variable reduction and (ii) sparse approximation.

## A Functional Integral Representation for Many Boson Systems

This is the 2007 CRM-Fields-PIMS prize lecture by Joel Feldman, with citation by David Brydges.

## Quantum Magic in Secret Communication

In this talk, we shall tell the tale of the origin of Quantum Cryptography from the birth of the first idea by Wiesner in 1970 to the invention of Quantum Key Distribution in 1983, to the first prototypes and ensuing commercial ventures, to exciting prospects for the future. No prior knowledge in quantum mechanics or cryptography will be expected.

## Introduction to Marsden & Symmetry

Alan Weinstein is a Professor of the Graduate School in the Department of Mathematics at the University of California, Berkeley. He was a colleague of Jerry Marsden throughout Jerry’s career at Berkeley, and their joint papers on “Reduction of symplectic manifolds with symmetry” and “The Hamiltonian structure of the Maxwell-Vlasov equations” were fundamental contributions to geometric mechanics.

## Expanders, Group Theory, Arithmetic Geometry, Cryptography and Much More

This is a lecture given on the occasion of the launch of the PIMS CRG in "L-functions and Number Theory".

The theory of expander graphs is undergoing intensive development. It finds more and more applications to diverse areas of mathematics. In this talk, aimed at a general audience, I will introduce the concept of expander graphs and discuss some interesting connections to arithmetic geometry, group theory and cryptography, including some very recent breakthroughs.

## Perfect Crystals for Quantum Affine Algebras and Combinatorics of Young Walls

In this talk, we will give a detailed exposition of theory of perfect crystals, which has brought us a lot of significant applications. On the other hand, we will also discuss the strong connection between the theory of perfect crystals and combinatorics of Young walls. We will be able to derive LLT algorithm of computing global bases using affine paths. The interesting problem is how to construct affine Hecke algebras out of affine paths.

## Regular Permutation Groups and Cayley Graphs

Regular permutation groups are the `smallest' transitive groups of permutations, and have been studied for more than a century. They occur, in particular, as subgroups of automorphisms of Cayley graphs, and their applications range from obvious graph theoretic ones through to studying word growth in groups and modeling random selection for group computation. Recent work, using the finite simple group classification, has focused on the problem of classifying the finite primitive permutation groups that contain regular permutation groups as subgroups, and classifying various classes of vertex-primitive Cayley graphs. Both old and very recent work on regular permutation groups will be discussed.

## Law of Large Number and Central Limit Theorem under Uncertainty, the related New Itô's Calculus and Applications to Risk Measures

- The distributions of $X_i$ are within an abstract subset of distributions $\{F_q(x):q \in Q\}$, called the distribution uncertainty of $X_i$, with $['(m)]=[\^(\mathbf{E})][X_i]=\sup_q\int_{-\infty}^\infty xF_q(dx)$ and $m=-[\^\,(\mathbf{E})][-X_i]=\inf_q \int_{-\infty}^\infty x F_q(dx)$.
- Any realization of $X_1, \ldots, X_n$ does not change the distributional uncertainty of $X_{n+1}$ (a new type of `independence' ).

## On Fourth Order PDEs Modelling Electrostatic Micro-Electronical Systems

Now unlike the model involving only the second order Laplacian (i.e., $d = 0$), very little is known about this equation. We shall explain how, besides the above practical considerations, the model is an extremely rich source of interesting mathematical phenomena.

## Geometry and analysis of low dimensional manifolds

In this talk, I will start with a brief tour on geometrization of 3-manifolds. Then I will discuss recent progresses on geometry and analysis of 4-manifolds.