# Scientific

## A glimpse into the differential geometry and topology of optimal transportation

The Monge-Kantorovich optimal transportation problem is to pair producers with consumers so as to minimize a given transportation cost. When the producers and consumers are modeled by probability densities on two given manifolds or subdomains, it is interesting to try to understand the structure of the optimal pairing as a subset of the product manifold. This subset may or may not be the graph of a map.

The talk will expose the differential topology and geometry underlying many basic phenomena in optimal transportation. It surveys questions concerning Monge maps and Kantorovich measures: existence and regularity of the former, uniqueness of the latter, and estimates for the dimension of its support, as well as the associated linear programming duality. It shows the answers to these questions concern the differential geometry and topology of the chosen transportation cost. It establishes new connections --- some heuristic and others rigorous ---based on the properties of the cross-difference of this cost, and its Taylor expansion at the diagonal.

See preprint at www.math.toronto.edu/mccann/publications

## Random Maps 13

The study of maps, that is of graphs embedded in surfaces, is a popular subject that has implications in many branches of mathematics, the most famous aspects being purely graph-theoretical, such as the four-color theorem. The study of random maps has met an increasing interest in the recent years. This is motivated in particular by problems in theoretical physics, in which random maps serve as discrete models of random continuum surfaces. The probabilistic interpretation of bijective counting methods for maps happen to be particularly fruitful, and relates random maps to other important combinatorial random structures like the continuum random tree and the Brownian snake. This course will survey these aspects and present recent developments in this area.

- Read more about Random Maps 13
- 7285 reads

## The critical points of lattice trees and lattice animals in high dimensions

Lattice trees and lattice animals are used to model branched polymers. They are of interest in combinatorics and in the study of critical phenomena in statistical mechanics. A lattice animal is a connected subgraph of the d dimensional integer lattice. Lattice trees are lattice animals without cycles. We consider the number of lattice trees and animals with n bonds that contain the origin and form the corresponding generating functions. We are mainly interested in the radii of convergence of these functions, which are the critical points. In this talk we focus on the calculation of the first three terms of the critical points for both models as the dimension goes to infinity. This is ongoing work with Gordon Slade.

## Correlation functions in the 2D Ising model via signed loops and paths

Using the combinatorial method for the 2D Ising model originating in the works of Sherman, Burgoyne and others we derive formulas for the correlation functions in terms of signed loops and paths. In the case of regular lattices we also identify the critical temperature for the phase transition in the long range behavior of these functions. Joint work with Wouter Kager and Ronald Meester.

## Interacting Particle Systems 16

Particles attempt to follow a simple dynamic (random walk, constant flow, etc) in some space (interval, line, cycle, arbitrary graph). Add a simple interaction between particles, and the behaviour can change completely. The resulting dynamical systems are far more complex than the ingredients suggest. These processes (interchange process, TASEP, sorting networks, etc) have diverse to many topics: growth processes, queuing theory, representation theory, algebraic combinatorics. I will discuss recent progress on and open problems arising from several models of interacting particle systems.

## Random Maps 16

The study of maps, that is of graphs embedded in surfaces, is a popular subject that has implications in many branches of mathematics, the most famous aspects being purely graph-theoretical, such as the four-color theorem. The study of random maps has met an increasing interest in the recent years. This is motivated in particular by problems in theoretical physics, in which random maps serve as discrete models of random continuum surfaces. The probabilistic interpretation of bijective counting methods for maps happen to be particularly fruitful, and relates random maps to other important combinatorial random structures like the continuum random tree and the Brownian snake. This course will survey these aspects and present recent developments in this area.

- Read more about Random Maps 16
- 4745 reads

## Random Maps 15

The study of maps, that is of graphs embedded in surfaces, is a popular subject that has implications in many branches of mathematics, the most famous aspects being purely graph-theoretical, such as the four-color theorem. The study of random maps has met an increasing interest in the recent years. This is motivated in particular by problems in theoretical physics, in which random maps serve as discrete models of random continuum surfaces. The probabilistic interpretation of bijective counting methods for maps happen to be particularly fruitful, and relates random maps to other important combinatorial random structures like the continuum random tree and the Brownian snake. This course will survey these aspects and present recent developments in this area.

- Read more about Random Maps 15
- 4588 reads

## Interacting Particle Systems 15

Particles attempt to follow a simple dynamic (random walk, constant flow, etc) in some space (interval, line, cycle, arbitrary graph). Add a simple interaction between particles, and the behaviour can change completely. The resulting dynamical systems are far more complex than the ingredients suggest. These processes (interchange process, TASEP, sorting networks, etc) have diverse to many topics: growth processes, queuing theory, representation theory, algebraic combinatorics. I will discuss recent progress on and open problems arising from several models of interacting particle systems.

## Interacting Particle Systems 14

Particles attempt to follow a simple dynamic (random walk, constant flow, etc) in some space (interval, line, cycle, arbitrary graph). Add a simple interaction between particles, and the behaviour can change completely. The resulting dynamical systems are far more complex than the ingredients suggest. These processes (interchange process, TASEP, sorting networks, etc) have diverse to many topics: growth processes, queuing theory, representation theory, algebraic combinatorics. I will discuss recent progress on and open problems arising from several models of interacting particle systems.

## Laplacians and connections

We discuss the Laplacian operator on vector bundles on graphs, in particular relating its determinant to the enumeration of "cycle-rooted spanning forests" which are combinatorial objects generalizing spanning trees.

- Read more about Laplacians and connections
- 4584 reads