# Number Theory

## A Mertens function analogue for the Rankin–Selberg L-function

Let f be a self-dual Maass form for $SL(n, Z)$. We write $L_f (s)$ for the Godement–Jacquet L-function associated to $f$ and $L_{f\times f} (s)$ for the Rankin–Selberg L-function of $f$ with itself. The inverse of $L_{f\times f} (s)$ is defined by

$$

\frac{1}{L_{f\times f}(s)} := \sum_{m=1}^\infty \frac{c(m)}{m^s}, \mathfrak{R}(s) > 1.

$$

It is well known that the classical Mertens function $M(x) := \sum_{m\leq x} \mu(m)$ is related to

$$

\frac{1}{\zeta(s)} = \sum_{m=1}^\infty \frac{\mu(m)}{m^s}, \mathfrak{R}(s) > 1.

$$

We define the analogue of the Mertens function for $L_{f\times f} (s)$ as $\widetilde{M}(x) := \sum_{m\leq x} c(m)$ and obtain an upper bound for this analogue $\widetilde{M}(x)$, similar to what is known for the Mertens function $M(x)$. In particular, we prove that $\widetilde{M}(x) \ll_f x \exp(−A\sqrt{\log{x}}$ for sufficiently large $x$ and for some positive constant $A$. This is a joint work with my Ph.D. supervisor Prof. A. Sankaranarayanan.

## Oscillations in Mertens’ product theorem for number fields

The content of this talk is based on joint work with Shehzad Hathi. First, I will give a short but sweet proof of Mertens’ product theorem for number fields, which generalises a method introduced by Hardy. Next, when the number field is the rationals, we know that the error in this result changes sign infinitely often. Therefore, a natural question to consider is whether this is always the

case for any number field? I will answer this question (and more) during the talk. Furthermore, I will present the outcome of some computations in two number fields: $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{13})$.

## The influence of the Galois group structure on the Chebyshev bias in number fields

In 2020, Fiorilli and Jouve proved an unconditional Chebyshev bias result for a Galois extension of number fields under a group theoretic condition on its Galois group. We extend their result to a larger family of groups. This leads us to characterize abelian groups enabling extreme biases. In the case of prime power degree extensions, we give a simple criterion implying extreme biases and we also investigate the corresponding Linnik-type question.

## The distribution of analytic ranks of elliptic curve over prime cyclic number fields

Let $E$ be an elliptic curve over $\mathbb{Q}$ and $C_l$ be the family of prime cyclic extensions of degree $l$ over $\mathbb{Q}$. Under GRH for elliptic L-functions, we give a lower bound for the probability for $K \in C_l$ such that the difference $r_K(E) − r_\mathbb{Q}(E)$ between analytic rank is less than a for $a \asymp l$. This result gives conjectural evidence that the Diophantine Stability problem suggested by Mazur and Rubin holds for most of $K \in C_l$.

## Joint distribution of central values and orders of Sha groups of quadratic twists of an elliptic curve

As a refinement of Goldfeld’s conjecture, there is a conjecture of Keating–Snaith asserting that $\log L(1/2,E_d)$ for certain quadratic twists $E_d$ of an elliptic curve $E$ behaves like a normal random variable. In light of this, Radziwill and Soundararajan conjectured that the distribution of $\log(|Sha(E_d)|/\sqrt{|d|}$ is approximately Gaussian for these $E_d$, and proved that the conjectures of Keating–Snaith and theirs are both valid “from above”. More recently, under GRH, they further established a lower bound for the involving distribution towards Keating–Snaith’s conjecture. In this talk, we shall discuss the joint distribution of central values and orders of Sha groups of $E_d$ and how to adapt Radziwill–Soundararajan’s methods to study upper bound and lower bounds for such a joint distribution if time allows.

## The Shanks–Rényi prime number race problem

Let $\pi(x; q, a)$ be the number of primes $p\leq x$ such that $p \equiv a (\mod q)$. The classical Shanks–Rényi prime number race problem asks, given positive integers $q \geq 3$ and $2 \leq r \leq \phi(q)$ and distinct reduced residue classes $a_1, a_2, . . . , a_r$ modulo $q$, whether there are infinitely many integers $n$ such that $\pi (n; q, a1) > \pi(n; q, a2) > \cdots > \pi(n; q, ar)$. In this talk, I will describe what is known on this problem when the number of competitors $r \geq 3$, and how this compares to the Chebyshev’s bias case which corresponds to $r = 2$.

## Fake mu's: Make Abstracts Great Again!

The partial sums of the Liouville function $\lambda(n)$ are "often" negative, and yet the partials sums of the Möbius function $\mu(n)$ are positive or negative "roughly equally". How can this, be, given that $\mu(n)$ and $\lambda(n)$ are so similar? I shall discuss some problems in this area, some joint work with Greg Martin and Mike Mossinghoff, and a possible application to zeta-zeroes.

## Generic Representations and ABV packets for p-adic Groups

After a brief introduction on the theory of p-adic groups complex representations, I will explain why tempered and generic Langlands parameters are open. I will further derive a number of consequences, in particular for the enhanced genericity conjecture of Shahidi and its analogue in terms of ABV packets. This is a joint work with Clifton Cunningham, Andrew Fiori, and Qing Zhang.

## Hypergeometric functions through the arithmetic kaleidoscope

The classical theory of hypergeometric functions, developed by generations of mathematicians including Gauss, Kummer, and Riemann, has been used substantially in the ensuing years within number theory, geometry, and the intersection thereof. In more recent decades, these classical ideas have been translated from the complex setting into the finite field and p

-adic settings as well.

In this talk, we will give a friendly introduction to hypergeometric functions, especially in the context of number theory.

## The Distribution of Logarithmic Derivatives of Quadratic L-functions in Positive Characteristic

To each square-free monic polynomial $D$ in a fixed polynomial ring $\mathbb{F}_q[t]$, we can associate a real quadratic character $\chi_D$, and then a Dirichlet $L$-function $L(s,\chi_D)$. We compute the limiting distribution of the family of values $L'(1,\chi_D)/L(1,\chi_D)$ as $D$ runs through the square-free monic polynomials of $\mathbb{F}_q[t]$ and establish that this distribution has a smooth density function. Time permitting, we discuss connections of this result with Euler-Kronecker constants and ideal class groups of quadratic extensions. This is joint work with Amir Akbary.