L-Functions of Elliptic Curves Modulo Integers

Speaker: Félix Baril Boudreau, University of Lethbridge

Date: Wed, Mar 1, 2023

Location: Online

Conference: Emergent Research: The PIMS Postdoctoral Fellow Seminar

Subject: Mathematics

Class: Scientific


Elliptic curves are one of the major objects of study in number theory. Over finite fields, their zeta functions were proven to be rational by F. K. Schmidt in 1931. In 1985, R. Schoof devised an algorithm to compute zeta functions of elliptic curves over finite fields by directly computing the numerators of these rational functions modulo sufficiently many primes. Over function fields of positive characteristic p, we know from the work of A. Grothendieck, M. Artin, J.L. Verdier (1964/1965) and others, that their L-functions are rational. They are even polynomials with integer coefficients if we assume that their j-invariants are nonconstant rational functions, as shown by P. Deligne in 1980 using a result of J.-I. Igusa (1959).

Therefore, we can meaningfully study the reduction of the L-function of an elliptic curve E with nonconstant j-invariant modulo an integer N. In 2003, C. Hall gave a formula for that reduction modulo N, provided the elliptic curve had rational N-torsion.

In this talk, we first obtain, under the assumptions of C. Hall, a formula for the L-function of any of the infinitely many quadratic twists of E. Secondly, without any condition on the rational 2-torsion subgroup of E, we give a formula for the quotient modulo 2 of L-functions of any two quadratic twists of E. Thirdly, we illustrate that sometimes the reduced L-function is enough to determine important properties of the L-function itself. More precisely, we use the previous results to compute the global root numbers of an infinite family of quadratic twists of some elliptic curve and, under extra assumptions, find in most cases the exact analytic rank of each of these quadratic twists. Finally, we use our formulas to compute directly some degree 2 L-functions, in analogy with the algorithm of Schoof.