Mathematics

Life History Variations and the Dynamics of Structured Populations

Speaker: 
Romain Richard
Date: 
Thu, Jul 14, 2011
Location: 
PIMS, University of Victoria
Conference: 
AMP Math Biology Workshop
2011 IGTC Summit
Abstract: 

This talk was one of the IGTC Student Presentations.

Class: 

The Mathematics of Doodling

Speaker: 
Ravi Vakil
Date: 
Mon, May 30, 2011
Location: 
PIMS, University of British Columbia
Conference: 
2011 Niven Lecture
Abstract: 

Doodling has many mathematical aspects: patterns, shapes, numbers, and more. Not surprisingly, there is often some sophisticated and fun mathematics buried inside common doodles. I'll begin by doodling, and see where it takes us. It looks like play, but it reflects what mathematics is really about: finding patterns in nature, explaining them, and extending them. By the end, we'll have seen some important notions in geometry, topology, physics, and elsewhere; some fundamental ideas guiding the development of mathematics over the course of the last century; and ongoing work continuing today.

Class: 
Subject: 

Memory Induced Animal Movement Patterns

Speaker: 
Ulrike Schlaegel
Date: 
Thu, Jul 14, 2011
Location: 
PIMS, University of Victoria
Conference: 
AMP Math Biology Workshop
2011 IGTC Summit
Abstract: 

This talk was one of the IGTC Student Presentations.

Class: 

Min Protein Patter Formation

Speaker: 
William Carlquist
Date: 
Thu, Jul 14, 2011
Location: 
PIMS, University of Victoria
Conference: 
AMP Math Biology Workshop
IGTC Summit
Abstract: 

This talk was one of the IGTC Student Presentations.

Class: 

Multi Variable Operator Theory with Relations

Speaker: 
Ken Davidson
Date: 
Tue, May 24, 2011
Location: 
PIMS, University of Victoria
Conference: 
Canadian Operator Symposium 2011 (COSY)
Abstract: 

TBA

Class: 

Raising the Floor and Lifting the Ceiling: Math For All

Speaker: 
Sharon Friesen
Date: 
Fri, Apr 29, 2011
Location: 
SFU Harbour Center
PIMS, Simon Fraser University
Conference: 
Changing the Culture 2011
Abstract: 

"Math. The bane of my existence for as many years as I can count. I cannot relate it to my life or become interested in what I'm learning. I find it boring and cannot find any way to apply myself to
it since I rarely understand it." (high school student)
Today, mathematics education faces two major challenges: raising the floor by expanding achievement for all, and lifting the ceiling of achievement to better prepare future leaders in mathematics, as well as in science, engineering, and technology. At first glance, these appear to be mutually exclusive: But are they? Is it possible to design learning that engages the vast majority of students in higher mathematics learning? In this presentation, I will present the findings and discuss the implications from a research study that explored the ways to teach mathematics that both raised the floor and lifted the ceiling.

Class: 
Subject: 

Changing the Culture of Homework

Speaker: 
Justin Grey
Jamie Mulholand
Date: 
Fri, Apr 29, 2011
Location: 
SFU Harbour Center
PIMS, Simon Fraser University
Conference: 
Changing the Culture 2011
Abstract: 

Who do your students think their homework is for? Does attaching credit to homework promote student understanding, or encourage students to find answers by whatever means necessary? Are they focused on calculating the answer, or seeing the big picture? Is their homework grade a true reflection of their own understanding of the material, or does it better reflect the understanding of their "support network"?
In this workshop we will describe our efforts to improve student feedback and to promote good study skills in first and second year mathematics classes.

Class: 
Subject: 

As Geometry is Lost - What Connections are Lost? What Reasoning is Lost? What Students are Lost? Does it Matter?

Speaker: 
Walter Whitley
Date: 
Fri, Apr 29, 2011
Location: 
SFU Harbour Center
PIMS, Simon Fraser University
Conference: 
Changing the Culture 2011
Abstract: 

In a North American curriculum preoccupied with getting to calculus, we witness an erosion of geometric content and practice in high school. What remains is often detached from "making sense of the world", and from reasoning (beyond axiomatic work in University). We see the essential role of geometry in science, engineering, computer graphics and in solving core problems in applications put aside when revising math curriculum. A second feature is that most graduates with mathematics degrees are not aware of these rich connections for geometry.

We will present some samples of: what we know about early childhood geometry.; and then of the critical role of geometry and geometric reasoning in work in multiple fields outside of mathematics. With a perspective from "modern geometry", we note the critical role of transformations, symmetries and invariance in many fields, including mathematics beyond geometry.

With these bookends of school mathematics in mind, we consider some key issues in schools, such as which students are lost when the bridge of geometry is not there to carry them through (caught in endless algebra) and possible connections other subjects. We also consider the loss within these other disciplines. We will present some sample investigations and reasoning which can be supported by a broader more inclusive set of practices and which pays attention to geometric features and reasoning in various contexts. In particular, we illustrate the use of dynamic geometry investigations, hands on investigations and reflections, and making connections to deeper parts of the rest of mathematics and science.

Class: 
Subject: 

Sparse Optimization Algorithms and Applications

Speaker: 
Stephen Wright
Date: 
Mon, Apr 4, 2011
Location: 
PIMS, University of British Columbia
Conference: 
IAM-PIMS-MITACS Distinguished Colloquium Series
Abstract: 

In many applications of optimization, an exact solution is less useful than a simple, well structured approximate solution. An example is found in compressed sensing, where we prefer a sparse signal (e.g. containing few frequencies) that matches the observations well to a more complex signal that matches the observations even more closely. The need for simple, approximate solutions has a profound effect on the way that optimization problems are formulated and solved. Regularization terms can be introduced into the formulation to induce the desired structure, but such terms are often non-smooth and thus may complicate the algorithms. On the other hand, an algorithm that is too slow for finding exact solutions may become competitive and even superior when we need only an approximate solution. In this talk we outline the range of applications of sparse optimization, then sketch some techniques for formulating and solving such problems, with a particular focus on applications such as compressed sensing and data analysis.

Class: 
Subject: 

Virtual Lung Project at UNC: What's Math Got To Do With It?

Speaker: 
Gregory Forest
Date: 
Fri, Mar 18, 2011
Location: 
PIMS, University of British Columbia
Abstract: 

A group of scientists at the University of North Carolina, from theorists to clinicians, have coalesced over the past decade on an effort called the Virtual Lung Project. There is a parallel VLP at the Pacific Northwest Laboratory, focused on environmental health, but I will focus on our effort. We come from mathematics, chemistry, computer science, physics, lung biology, biophysics and medicine. The goal is to engineer lung health through combined experimental-theoretical-computational tools to measure, assess, and predict lung function and dysfunction. Now one might ask, with all due respect to Tina Turner: what's math got to do with it? My lecture is devoted to many responses, including some progress yet more open problems.

Class: 

Pages