I will discuss several recent results on the Turán density of long cycle-like hypergraphs. These results (due to Kamčev–Letzter–Pokrovskiy, Balogh–Luo, and myself) all follow a similar framework, and I will outline a general strategy to prove Turán-type results for tight cycles in larger uniformities or for other "cycle-like" hypergraphs.
One key ingredient in this framework, which I hope to prove in full, is a hypergraph analogue of the statement that a graph has no odd closed walks if and only if it is bipartite. More precisely, for various classes C of "cycle-like" r-uniform hypergraphs — including, for any k, the family of tight cycles of length k modulo r — we equiivalently characterize C-hom-free hypergraphs as those admitting a certain type of coloring of (r-1)-tuples of vertices. This provides a common generalization of results due to Kamčev–Letzter–Pokrovskiy and Balogh–Luo.
Industrial mathematics is a field that spans a broad spectrum of activity ranging from applied R&D performed by mathematicians employed in industry, to purely academic research projects undertaken by university mathematics professors. In this talk, I will survey several research projects I have been involved with that fall under the heading of what I'll call "mathematics *for* industry", which relates specifically to direct collaborations between university mathematicians and non-academic partner organizations. These projects encompass a diverse collection of mathematical techniques (ranging from simple algebra to partial differential equations, finite volume methods, inverse problems and homogenization theory) as well as applications from many scientific disciplines (such as fluid mechanics, image processing, atmospheric science and plant biology). In the process, I will attempt to characterize the job of an industrial mathematician and to identify the qualities and skills that are most desirable for anyone interested in making significant contributions to research at the interface between university and industry. I also hope to convince you that industrial collaborations can be a rich source of challenging and novel mathematical problems for academic mathematicians.
Emergent Research: The PIMS Postdoctoral Fellow Seminar
Abstract:
In this talk we will introduce the modular method, the approach followed by Wiles to prove Fermat’s Last Theorem. We will explain the role of elliptic curves, modular forms, and Galois representations in this framework, and discuss how the method has evolved in recent years.
Triangular modular curves are a generalization of modular curves and arise as quotients of the complex upper half-plane by congruence subgroups of hyperbolic triangle groups. These curves naturally parameterize hypergeometric abelian varieties, making them interesting arithmetic objects. In this talk, we will focus on the Borel-kind triangular modular curves. We will show that when restricting to prime level, there are finitely many such curves of any given genus, and there is an algorithm to enumerate them. Time permitting, we will explore generalizations to composite level. This is joint work with John Voight.
‘Reef halos’ are rings of sand, barren of vegetation, encircling reefs. However, the extent to which various biotic (e.g., herbivory) and abiotic (e.g., temperature, nutrients) factors drive changes in halo prevalence and size remains unclear. The objective of this study was to explore the effects of herbivore biomass, primary productivity, temperature, and nutrients on reef halo presence and width. First, we conducted a field study using artificial reef structures and their surrounding halos, finding that halos were more likely to be observed with high herbivorous fish biomass, and halos were larger under high temperatures. There was a distinct interaction between herbivorous fish biomass and temperature, where at high fish biomass, halos were more likely to be observed under low temperatures. Second, we incorporated environmental drivers into a consumer-resource model of halo dynamics. Certain formulations of temperature-dependent vegetation growth caused halo width and fish density to change from a fixed to an oscillating system, supporting the idea that environmental drivers can cause temporal fluctuations in halo width. Our unique combination of field-based and mechanistic modeling approaches has enhanced our understanding of the role of environmental drivers in grazing patterns, which will be particularly important as climate change causes shifts in marine systems worldwide.
The Turan density of a forbidden hypergraph F is the largest edge density a large hypergraph H can have without containing any copy of F, and determining this number for various F is a notoriously difficult problem. One on-ramp to this question (from Erdos and Sos) is to furthermore require that the hyperedges of H are distributed nearly uniformly across the vertices, giving the uniform Turan density of F. All known examples of such uniformly dense H avoiding some F follow the so-called “palette” construction of Rodl. In this talk we will introduce each of these notions before discussing our main result, that any palette can be obtained as an extremal construction for some finite family of forbidden subgraph F, which will require the tools of hypergraph regularity and Lagrangians. As an application we can obtain some (interesting) new values as the uniform Turan density of forbidden families.
Based on joint work with Simon Piga, Marcelo Sales, and Bjarne Schuelke.
Lethbridge Number Theory and Combinatorics Seminar
Abstract:
Fix a positive integer $n$ and a graph $F$. A graph $G$ with $n$ vertices is called $F$-saturated if $G$ contains no subgraph isomorphic to $F$ but each graph obtained from $G$ by joining a pair of nonadjacent vertices contains at least one copy of $F$ as a subgraph. The saturation function of $F$, denoted $\mathrm{sat}(n, F)$, is the minimum number of edges in an $F$-saturated graph on $n$ vertices. This parameter along with its counterpart, i.e. Turan number, have been investigated for quite a long time.
We review known results on $\mathrm{sat}(n, F)$ for various graphs $F$. We also present new results when $F$ is a complete multipartite graph or a cycle graph. The problem of saturation in the Erdos-Renyi random graph $G(n, p)$ was introduced by Korandi and Sudakov in 2017. We survey the results for random case and present our latest results on saturation numbers of bipartite graphs in random graphs.
A number is called a "period" if it can be expressed as the volume of a region in Euclidean space, defined by polynomial inequalities with rational coefficients. Many famous constants, such as π, log(2) and special values of the Riemann zeta function, are periods. Consequently, periods play an important role in many parts of mathematics and science. For example, they arise naturally when relating the mathematics of classical and quantum mechanics (Poisson geometry and noncommutative algebra, respectively), via a procedure known as "deformation quantization". It turns out that algebraic geometry endows periods with a wealth of rich and surprising structure, such as a "motivic Galois group" of symmetries, which constrains their properties and facilitates their calculation. I will give an introduction to this circle of ideas, emphasizing their role in recent developments in deformation quantization.
Mathematical biology offers powerful tools to tackle pressing problems at the interface of health and public policy. In this talk, I will share two vignettes demonstrating how mathematical and simulation modelling can be applied to tobacco regulatory science. The first uses a Markov state transition framework to capture population-level dynamics of two tobacco products, each with a flavour option. This structure highlights the challenges of modelling high-dimensional systems, parameter inference from sparse data, and representing policy interventions as modifications to initiation, cessation, and product switching rates. The second vignette focuses on social network modelling, where adolescent tobacco use is primarily shaped by peer influence and network structure. In this setting, stochastic processes and graph-based models describe how behaviours propagate and stabilise within adolescent populations. Together, these examples illustrate how applied mathematics can bridge data and policy in public health.
There is a striking and useful analogy between equivariant homotopy theory and functor calculus. In the equivariant setting, Greenlees conjectured that the category of rational G-spectra has an algebraic model - meaning it is equivalent to the derived category of an abelian category with desirable finiteness properties. This talk will examine the functor calculus counterpart of this conjecture in (potentially) more than one flavour of functor calculus. (Joint work with D. Barnes and M. Kedziorek.)