Footnotes to Turing (1952): Some Modern Challenges in Pattern Formation

Speaker: Andrew Krause

Date: Wed, Oct 6, 2021

Location: PIMS, University of British Columbia, Online, Zoom

Conference: Mathematical Biology Seminar

Subject: Mathematics, Mathematical Biology

Class: Scientific


Motivated by recent work with biologists, I will showcase some mathematical results on Turing instabilities in complex domains. This is scientifically related to understanding developmental tuning in a variety of settings such as mouse whiskers, human fingerprints, bat teeth, and more generally pattern formation on multiple scales and evolving domains. Some of these problems are natural extensions of classical reaction-diffusion models, amenable to standard linear stability analysis, whereas others require the development of new tools and approaches. These approaches also help close the vast gap between the simple theory of diffusion-driven pattern formation, and the messy reality of biological development, though there is still much work to be done in validating even complex theories against the rich pattern dynamics observed in nature. I will emphasize throughout the role that Turing's 1952 paper had in these developments, and how much of our modern progress (and difficulties) were predicted in this paper. I will close by discussing a range of open questions, many of which fall well beyond the extensions I will discuss, but at least some of which were known to Turing.